Agent-Based Project Management

Charles Petrie!, Sigrid Goldmann?, and Andreas Raquet?

! Center for Design Research, Stanford University
Stanford, CA 94305-2232
petrie@stanford.edu
2 AG Kiinstliche Intelligenz, Universitit Kaiserslautern
Kaiserslautern, Germany
sigig, raquet@informatik.uni-kl.de

Abstract. Integrated project management means that design and plan-
ning are interleaved with plan execution, allowing both the design and
plan to be changed as necessary. This requires that the right effects
of change are propagated through the plan and design. When this is
distributed among designers and planners, no one may have all of the
information to perform such propagation and it is important to identify
what effects should be propagated to whom when. We describe a set of
dependencies among plan and design elements that allow such notifica-
tion by a set of message-passing software agents. The result is to provide
a novel level of computer support for complex projects.

1 Introduction

Today, traditional project management methods are not sufficient for managing
the many tasks in the design and development process. They do not take into
account all the sources of change, the task interactions, and the necessity for
distributed planning. They do not provide proper change notification: notify-
ing the right agents (people or software) of the effects at the right time in the
process.

Process coordination is always most complex in domains that require artifact
design and construction planning. This is particularly true when the artifacts are
large and many people and software tools must be coordinated and managed.

When design changes cause plan and schedule changes, the problem is worse
than simply modifying the design. Somehow, all the people assigned to the af-
fected tasks, and no one else, should be notified of the change and how it affects
them. This difficulty is reflected in the expense of coordinating projects and in
the achievement of suboptimal results[2, 16].

1.1 Example Problems

The following few examples serve both to illustrate this difficulty and to suggest
the kind of questions answered by this paper.

“Fast track” construction attempts allow the architect to finish or change the
design after construction has started. These design changes frequently necessitate

a change in the construction plan and or schedule. As a simple example, suppose
that the design calls for concrete roof tiles. Then the wall plaster must be applied
after the roof is built, or the heavy tiles will deform the walls causing the plaster
to crack. But if it is decided later that lighter fiberglass tiles should be used
instead, it is no longer necessary to wait to plaster the walls - the two tasks can
be more concurrent and the plan schedule shortened. What kind of computer
support could ensure that when the architect changes the material specification,
the contractor will be notified of the possibility of shortening the schedule?

Suppose that we are designing and building a prototype of a new gyroscope
for use in navigation equipment. Suppose further that one engineer decides that
high resolution encoders is a better design than the rate sensors plus low resolu-
tion encoders in the current design. How can we ensure that the machinist who
is designing the frame to hold the components will be notified of this change?

A hospital adds a new surgery wing. The architectural specifications for the
width of the doors into the new wing were determined by the width of the
hospital beds that had to be wheeled through them. During construction of the
new surgery, someone in the hospital decided independently to buy new, much
wider, beds. What kind of process mechanism could have avoided the subsequent
remodeling of doors in the freshly built surgery?

Imagine building the international space station with hundreds or even thou-
sands of companies and engineers and contractors of all sorts. How can the emerg-
ing mass of design decisions and changes be coordinated across organizations?
How could this ever be “fast-tracked”?

The problem is not lack of connectivity. With the Internet, and intranets,
combinations of email and groupware enabling everyone to reach everyone else
with ease, one could make a case that the ability to task each other so easily
is actually making the problem worse. The problem is that there insufficient
structure supporting the distributed task interactions of modern enterprises,
especially for project management.

1.2 What is Missing

Today’s distributed project management tool are still based upon a single-user
model of planning and the change notification is still primitive- meaning that all
change notifications must be pre-specified, usually by the users.

If one considers single-user project management tools, such as MacProject or
MS Project, one can see immediately that they are completely inadequate. The
model is that a single general contractor makes decisions and changes and then
somehow notifies the people involved. Notifications to the general contractor
that cause changes and the notification of the people affected by the change
are simply not part of the computer support, though very much a part of any
project. The only distributed support from such products is that emails may be
sent when a task is assigned and completed.

AutoPlan{5} is in contrast a distributed project management tool that pro-
vides an electronic blackboard for change notification. This allows people to
receive email when a pre-specified type of event occurs, such as assignment of

a task. This definitely takes the computer support of Distributed Project Man-
agement (DPM) one step further, but it is still based upon a single-user model
of planning and the change notification is still primitive. That is, the general
contractor is still responsible for all changes and all of the change notification
must be pre-specified, usually by the users.

In small or medium sized projects, a general contractor may track the hun-
dreds of informal change orders with a cork bulletin board and notes. That we do
not provide better support for such projects limits the complexity of the project
to that which can be managed by a single person. As a result, plans are kept
simple and rigid and many opportunities to improve the plan, or even to avoid
mistakes, are missed.

But worse is the cumbersome formal change order process required on large
engineering projects, which multiple levels of management approvals, with in-
creased time and cost, in an attempt to catch most interactions. Usually, many
more people are notified for a given design change than are actually necessary,
burdening the whole design process.

The current lack of technology for coordinating design decisions and man-
aging change over the life of a product creates higher costs, longer cycle times,
and poorer quality than is currently possible. Occasionally, this lack of technol-
ogy is even dangerous, whether one is maintaining an older passenger plane or
decommissioning a nuclear weapon.

1.3 Distributed Integrated Project Management

As described in more detail in the white paper “Distributed Integrated Pro-
cess Coordination” {9}, process coordination missing from various well-known
computer support approaches to business integration, group collaboration, and
project management. Process coordination means the runtime determination of
who should be notified and what task should be performed next. Computer sup-
port for this means some automation of the notification and tracking of task
properties as they are created or change.

Process coordination is more general than workflow in that it does not require
that all tasks and ways of doing them be identified prior to process execution.
For instance, anyone should be able to assign any tasks to anyone else at any
time during process execution. And appropriate notifications associated with
that task delegation, or subtask assignment, should be handled by the computer
support system.

Process coordination is most complex in domains that require artifact design
and construction planning, especially when the artifacts are large and many peo-
ple and software tools must be coordinated and managed. Distributed Integrated
Project Management (DPIM) is an extreme form of Process Coordination in
which design, planning, scheduling, and execution are interleaved across dis-
tributed organizations and engineering disciplines as well as computer tools.

In particular, we want to be able to support change that occurs from in-
complete designs, in order to support “fast tracking”, as well as contingencies
and planning under uncertainty. We also want to be able to support design and

planning that is distributed among people and software that can best solve parts
of the problem.

Computer support for DPIM necessarily involves a heterogeneous mix of soft-
ware and people passing messages describing tasks and changes. The least com-
mitment strategy, with respect to platform, of federating people and their soft-
ware tools is to use an agent communications language (ACL) such as KQML{6}
or FIPA{7} . This only supposes that each software module, possibly just an in-
terface for a person, can exchange ASCII text messages according to standard
Internet protocols such as socket connections with TCP /IP.

If the software systems are sufficiently homogeneous so that they can make a
stronger commitment, they can directly exchange objects using a facilities such
as Java RMI and CORBA. An standard ACL. using an agent[23] model, requires
less of a commitment to transport mechanism and more of a commitment to
message semantics and protocol. In any case, the choice of the interoperability
infrastructure is necessary but not sufficient for coordination and management
of distributed projects.

What is also necessary is that the human and software agents also agree
upon a model of coordination. This is also consistent with the view of agents as
software and humans that share a common protocol of messages in which some
responses are legal and some are not[11].

Because the central problem of distributed interleaved planning is change
propagation, we characterize our coordination model as a logical set of depen-
dencies among the project elements that can be used to determine the effects of
changes within the project. This paper defines a such set of dependencies that
should be managed by a computer system in order to coordinate a distributed
project.

1.4 Scope of this Paper

This paper does not address enterprise process models prior to runtime or orga-
nizational models such as VDT {1} and the Process Handbook and PIF{2}. We
do not address specific buisiness integration approaches such as the commercial
systems of SAP{3} and PeopleSoft{4}. All of these approaches are successful in
their domains.

One key problem for change notification is agreement upon the technical
terms and words used to describe different parts of the project. There are various
schemes, proposals, and mechanisms for doing so, such as the ontologies in {14},
and so we do not address that important topic explicitly here.

However, managing the dependencies of the various aspects of a project, and
understanding how changes should be propagated has been a generally neglected
topic in the literature. Therefore, we address the latter rather than the former.

In this paper, we describe what the authors have learned in researching the
topic of dependencies for distributed integrated project management while trying
to extend a specific approach to the general problem. We address the use of
dependencies for change propagation once a change to the plan, schedule, or

design has been made. We do not address here the use of such dependencies for
decision support prior to decision-making.

And while decision rationale is important for change propagation, we do not
address specific forms of argumentation; i.e., reasons for or against particular
courses of action. We focus on capturing facts and statements supporting deci-
sions and the notification appropriate when they change.

We do not require that an agent be either “intelligent” or “autonomous” [23]
but only require that they be able to exchange messages with one another and
be able to act either by making decisions or acting upon the results of such
decisions. This paper will not prescribe a precise agent protocol such as contract
nets[15] but will define a set of dependencies with which a given protocol should
be consistent. We have implemented such a protocol within the ProcessLink
project{0}.

Finally, we do not require a totally decentralized model such as market-based
agent systems{8}. The dependencies we propose are consistent with such models
as we make no restrictions on how planning decisions are arrived at, but we do
require a least one special facilitating agent be aware are the actions of all others
to the degree that dependencies among the actions can be tracked. That is, at
least one agent’s knowledge is complete with respect to these dependencies.

2 Dependency Key Ideas

This paper uses “design” to mean generally the design of the target artifact.
A “plan” is generally the determination of the tasks and subtasks required to
develop the artifact, including the durations and other task features, except for
the start and end dates, which are assigned by the “schedule”. “Execution” will
generally refer to the execution of the plan, which will change the state of the
developing artifact.

Thus, the architect designs a building, for which a general contractor develops
an overall plan and schedule for constructing. As concrete is poured, the plan is
executed and the building takes shape.

We note here briefly, and explain further later, that these simple notions can
be endlessly complicated. For instance, design itself can be planned, and the
execution of such plans results in a design. Then we plan to build the design
(which is sometimes called, confusingly, the “execution” of the design.) Anyone
who decides how much time should be alloted to developing a part of a design
has done design planning to some extent. However, we refer to the simpler uses,
defined at the beginning of this section, of design, planning, scheduling, and
execution in the discussion of dependency requirements below.

2.1 Precedence is Not Enough

Projects follow plans about tasks, their durations, and resources. These factors
always implicitly depend upon the design of the artifact being constructed. As

the design changes, these factors may change, because of interactions between
the design and the plan and schedule.

One of the most important of these factors are the precedence relationships.
These are usually functions of resources and other interactions of tasks. Yet
such interactions are rarely captured. Traditional project management requires
precedences to be input at the beginning of the plan. Therefore there can be no
dynamic adjustment of the plan as factors that influence precedence change.

The roof tile and plastering example mentioned previously illustrates this.
The two tasks of roofing and plastering are connected by the design feature of the
weight of the roofing material. The precedence that the plastering task should
follow the roofing task depends upon this weight. If this weight changes because
of the design change, then the precedence ordering should be reconsidered.

This is an example of how a change in the design of the artifact may introduce
an opportunity to improve the plan for constructing it. But this opportunity
would be lost if precedence relationships are static and not tied to features of
the design.

A key insight here is that the way to relate the artifact design and the plan
is by including artifact features and conditions in the plan.

2.2 Plans are Designs Too

This suggests the next insight: that plans and schedules are also designs. Artifact
designs can be characterized by design decisions about components and features.
Plans and schedules are also designed artifacts with components and features.

A fundamental component of a plan is a task. Fundamental task features
that need to be taken into account are task inputs and outputs. If one task
outputs something that is an input for a second task, then at least there is a
precedence relationship that the second task cannot end before the first. Thus,
the plan design decision, which we will call a planning decision, was to have
the second task follow the first, with a decision decision based upon a design
rationale consisting of the task inputs and outputs.

The idea of design decisions gives us a way to think about interactions between
task planning, scheduling, and task execution. If we can determine a general
model for design change propagation, then we can apply it to planning and
scheduling and interleave all three as is required.

And if this model allows concurrent design, then since planning and schedul-
ing can be viewed as design, then the model should support distributed planning
and scheduling as well.

3 The Redux Design Model

There is a general model of design change propagation: Redux[20]. Our approach
is to extend it to planning and scheduling, identifying specialized extensions, and
allowing for special conditions that may arise as a plan is executed.

The first cut of these extensions was the Procura design[10]. This has been
furthered by the forthcoming diplom thesis of Raquet and discussions with the
developers of ComMoKit][8].

3.1 Redux Overview

We begin this description with some general observations about Redux depen-
dencies.

The basic Redux model is similar to that of gIbis[4]. However, whereas glbis
is a passive recording of issues, Redux computes the propagation of changes
to the design. By adding simple notions of conflicts and rationales, very useful
inferences can be derived as shown in [21].

In addition to simply documenting design rationale, Redux makes the design
rationale active by tracking its validity in several respects and notifying designers
when it changes.

We have found that even in small design projects, people lose their ability
to maintain a comprehensive picture of the history and interplay of design de-
cisions, constraints and rationales. Under these conditions the advice generated
by Redux’ soon becomes non-obvious and intuitive only in hindsight as Redux’
reveals forgotten opportunities and hidden conflicts.

Assertion @

Fig. 1. Redux structures

Design Decisions The Redux model of design is a model based on a simple
notion of design decisions that could be used in a distributed design project

such as PACT[6]. First a decision must be about some goal: this can be any sort
of design task, issue, or question. The purpose of the decision is to somehow
address this goal. For example, a design goal might be “design a computer”.

Further, a decision must include some result of one or both of two kinds:
an assignment and/or a new goal that is a subgoal of the original goal. The
assignment is some statement about the design such as “the computer will use
a fast chip”. The assignment may optionally be structured so that it has a
feature, such as “part-of”; an object, such as “memory-1”, and a value, such as
“fast memory chip mcp-2”, resulting in a complete assignment such as “part-of
memory-1 fast memory chip mcp-2”. A subgoal is some new design goal that is
necessary to satisfy before the original goal can be satisfied, such as “design the
memory controller”.

This model does not assume the existence of a single root goal and allows
design to be represented in general as an arbitrary set of goals to be achieved.
But in general, a goal is satisfied when all of its subgoals are satisfied so it is
easy and useful to represent a design problem as beginning with a single top-level
root goal, such as “design the computer”.

If reasons are provided for a decision, Redux uses them to generate a decision
rationale. If one of these reasons subsequently becomes invalid, then the decision
rationale may become invalid, if there are no other supporting valid reasons. If
the rationale becomes invalid, the agent that made the decision is notified that
the decision should be reconsidered. The decision is not automatically retracted
in this case.

For example, a decision rationale might include the two reasons “this memory
costs 2 cents” and “this memory supplier is reliable”. If these are two separate
reasons, and the cost changes, then the decision to use this memory still has
a valid rationale consisting of the supplier reliability. If this second condition
changes, the decision maker would be notified that the decision should be recon-
sidered. If desired, both facts could be included as a conjunction comprising a
single reason and the decision maker would then be notified if either changes.

Dependents and contingencies may additionally be associated with a Redux
decision. A dependent is an assignment that is the result of some other decision.
It can also be called a “decision input”. A contingency is some environmental
condition that is assumed not to be the case. If the dependent becomes invalid,
or the contingency becomes true, then the decision is automatically retracted
and becomes invalid. An example of a contingency is a statement such as “this
memory part is unavailable”.

Figure 1 shows a goal, that is decomposed to a subgoal and a assignment.
Goals are represented by ellipses, decisions by triangles and assignments and
facts by rectangles. justifying dependencies are represented by a solid line, re-
tracting dependencies by a dashed line.

Multiple design decisions conflict with each other via their assignments. A set
of conflicting design assignments is expressed as a constraint violation, though
Redux says nothing about how such violations are detected and does no con-
straint propagation. However, given a constraint violation, Redux will determine

which among a set of possible decisions might be rejected in order to resolve the
violation. If a decision is rejected, it is retracted and a reason for the rejection is
noted.

If a decision is retracted, the decision become invalid. Redux can also main-
tain reasons for the retraction. A decision can be arbitrarily retracted, but in
general it will be rejected, meaning that there are good reasons for having re-
jected the decision, such as “this kind of memory doesn’t work with this cpu”.

A decision may become invalid if retracted/rejected or if an dependent be-
comes invalid or if a contingency occurs. in this case, all of its assignments and
subgoals may become invalid, if they are not supported additionally by some
other decision.

3.2 Redux Notifications

The simple Redux model allows inferences to be drawn that are useful in the
notification of participants. There is an implemented Redux agent in ProcessLink
that does just this. The essential requirement is that all agents notify the Redux
agent when decisions have been made, describing the decision as above. The
agents should notify Redux of constraint violations, goal blocks, and general
decision rejections as well. Finally, facts may be asserted and deleted as desired.
Changes will be reported according to the Redux model.

If a decision becomes invalid, then its objective goal is no longer reduced. The
decision maker should be notified at least that progress has been lost in working
on this goal. If the goal was previously satisfied, then the decision maker will be
notified that the goal is no longer satisfied. If this goal satisfaction previously
contributed to the satisfaction of some supergoal, then the decision maker for
the supergoal will be notified of the loss of satisfaction of that goal.

If a decision becomes invalid, some of its assertions and subgoals may become
invalid. The invalidity of these assignments and goals will have further ramifica-
tions. If a goal becomes invalid, then any decision maker for that goal should be
informed that the goal is now redundant and any decision reducing that goal is
now suboptimal as a result.

If an invalid assignment was used as dependent to a decision, then that
decision becomes invalid, with the same notifications as above. If the assignment
was used as a rationale, then the decision becomes suboptimal and the decision
maker is informed the decision should be reconsidered.

If some decision was previously rejected in part because of of an assignment
that is now invalid, the decision maker will be informed that this decision may
now be optimal and should be reconsidered. The same is true for any fact or
constraint in the rejection reason that becomes invalid.!

If some decision maker has attempted to make decisions about a goal and
each has been rejected or invalidated, and the decision maker cannot think of
a new way to work on the goal, the decision maker may declare a goal block.
All of the decision makers responsible for an assignment in any of the rejection

! This implements a version of Pareto optimality[9] tracking described in [21].

reasons or dependents for the previously defeated decisions will be notified of
the impasse, as will the decision maker that created the blocked goal, if any.

3.3 Distributed Design Example

In order to show how the Redux model works with distributed design, we present
a simplified version of work done recently with Toshiba.

Project

Manager
a) 10U-2 is available

e)Partsare
now inconsistent

Mirror
Designer

d) Don’t need a frame

b) Reconsider
DOU decision
¢) Use I0U-2
instead Base

Designer

Integrated

Optics
Designer (I0D)

Fig. 2. Design Agents

Figure 2 represents a Redux agent working with four design agents in a
project to design an optical device. There is an overall Project Manager that
sets the top-level goals and resolves disputes, a Mirror Designer that designs the
mirror systems, the Integrated Optical Designer (IOD) that chooses the optical
detector mechanisms, and a Base Designer who designs the base that holds the
whole array of components.

During the course of the design, the IOD has tried to use two varieties of
an “integrated optical unit” (IOU) but ran into problems in both cases, in one
case simply because inventory said the part was not available. The IOD ended
up using a “discrete optical unit” (DOU) which necessitated the Base Designer
building an extra frame to hold the discrete components.

Using Redux, the Product Manager can examine the rationale for the DOU
decision and see that in one case, a particular part, an IOU-2, was not used
because inventory said it was unavailable. However, the Product Manager knows

that this was an arbitrary status based upon project priorities, and declares the
part available in message a) to Redux.

Redux knows to notify the IOD to reconsider using IOU-2 instead of the
DOU in message b) in the figure. The IOD makes this change in message c)
and in messages e) and d), Redux notifies the Mirror Designer that the mirror
parts decision uses the DOU information that is no longer valid, and the Base
Designer that the goal of designing a frame for the discrete DOU parts is also
no longer valid.

Fig. 3. Agent Applet Graph

Such a system is implemented and running using the JAT Lite agent infras-
tructure{10} and Java applets that display colored decision graphs such as in
Figure 3 using the KQML messages and extensions documented at {13}. This
system has the great advantage that the applets can be downloaded to any Java-
compatible browser anywhere on the Internet and the outstanding messages for
that agent read and processed.

In Figure 3, the decision to use a DOU is D-10 and the decision to use IOU-2
is D-6 and the goal to build the discrete component frame is G-9. Since the
part unavailability was a contingency that prevented the use of that part in
attempted decision D-6, and since Redux automatically constructs a decision
rationale for further decisions D-7 and D-10 based upon D-6, Redux can send
message b) to the owner of D-6, the IOD. The goal G-9 was a subgoal of D-
10 and so was automatically invalidated when that decision was rejected. This
caused D-13 to be suboptimal and message d) was sent to that decision owner,
the Base Designer. Further, an assignment of D-10 was used as a dependent by

a decision of the Mirror Designer in choosing parts, so Redux invalidates that
decision and sends message e) that the mirror parts goal is no longer satisfied.

This particular scenario is detailed on the web at {11}. Engineers enter these
decisions either directly using a desktop applet agent, or indirectly by using
CAD tools that have been “wrapped” to become ProcessLink agents{10} or by
using design documentation authoring tools that allow Redux annotation{12}.
A detailed examination of Redux rationale maintenance in another application
is available in [21].

Now we would like to extend this design change notification functionality to
project management.

4 Planning Dependency Extensions

In order to extend this Redux model to planning and scheduling, we will posit
other agents specialized for planning and scheduling that will make special re-
quests of Redux and require some extensions to the general model.

In the ProcessLink system, we provide a framework of domain independent
agents of which one is Redux, one is a Constraint Manager (CM) that manages
constraint solvers and performs constraint propagaton, and on is a Plan Manager
(PM) that performs global tracking of the plan elements, using the Redux and
the CM, and the JAT/I; Litej/I; agent infrastructure as a general “bus” for the
exchange of messages. Domain-specific design, planning, and scheduling agents
may connect as desired from anywhere on the Internet. These agents can also
make Redux decisions and work with the PM and the CM using the ProcessLink
Electronic Project Language (EPL) protocol{13}.

aaaaaa

an
Manager
(PM)
Sn
I« — JaTLie
Agent "bus*

Fig. 4. The ProcessLink Framework

One simple extension is that Redux especially treats assignments that have
a feature with the keyword “assign-agent”. Then the feature object is expected
to be the name of a goal and the value is expected to be the name of an agent.

Given the new validity of such an assignment, when the goal is valid, the agent
is sent a message that the goal has been assigned to that agent. When either the
goal or the assignment become invalid, the agent is advised of this change.

However, most planning and scheduling extensions will be handled by the
PM either by using the decision model to establish the right dependencies to
be maintained by Redux, and the CM, or maintaining the dependencies itself.
In addition to the dependencies described below, the PM must provide common
project management functions, including resource management and representa-
tion and scheduling. We do not address these problems here as they are well
understood and may be handled by a number of algorithms by the PM or other
planning and scheduling agents.

4.1 Interleaving Designs and Plans

The first way in which Redux dependencies can be used effectively is to ensure
that the plan does not contain valid elements that are unnecessary. We can do
this by using plan subgoal validity.

Design
Detectors

Plan
acquisition
machining

& assembly

Use rate sensors
& low res encoders

Fig. 5. Plan Subgoal of Design Goal

In Figure 5, the design decision to use rate sensors and low-resolution en-
coders directly generates a plan goal to acquire the encoders and sensors, and
machine the base for them and assemble them. This goal will become invalid as
soon as the design decision is rejected in favor of high resolution encoders. This
behavior is what is desired. Any planning decisions made based on this plan goal
will become suboptimal and the planner notified, though the decisions will not
automatically be invalidated. There will be possibly many subgoals and deci-
sions beneath this high-level plan goal that should be carefully handled given a
change.

However, this simple model is flawed because the super goal of the plan goal
is a design goal, not another plan goal. Apart from the strangeness of the naming
conventions, this has two disadvantages. First, it necessarily puts the designer
in the position of generating plan goals, and two, it is now not possible to use

the Redux goal satisfaction mechanism to determine if either the design alone is
complete, without a lot of awkwardness.

Plan

Design acquisition
Detectors machining
& assembly

parts

Use rate sensors
& low res encoders

Plan
a,m, &a
rate sensors
& low res encoders

Fig. 6. Design Rationale for Plan

What is going on here is that we have conflated the goal dependency with the
goal generation. We need not generate the plan goal directly as a subgoal. We
can instead posit the existence of a planning agent that reviews the design and
decides independently on when and how to plan the execution of the design. It
is only necessary that the planning goals should become invalid when the planned
parts are no longer a walid part of the design. The easiest way to do this is
to make design assignments a part of either the rationale or the dependents of
planning decisions as in Figure 6.

The most automatic alternative is to make the design assignment a dependent
so if the design decision becomes invalid, and the assignment becomes invalid
(no other valid design decision supports it), then the planning decision to plan
for those components will become invalid.

However, notice that this scheme a) biases in favor of the designer, and b)
automatically invalidates any plan subgoals. Another choice for representation
is to use the design assignment as only a rationale. This also results in a notice
to the planner, but does not invalidate any subgoals or change the plan in any
way. The planner and the designer can then argue about whether the plan or
the design takes precedence.

This general idea can be elaborated in many different ways but it allows
Redux to be used to manage the satisfaction of different aspects of the work, such
as design and construction planning and scheduling. It requires only the general
idea of a Plan Manager (PM) agent that either reviews the design periodically
or requests Redux to be notified when design decisions are initially made. The
Plan Manager then decides what aspects of the design to plan when, recording
these decisions in Redux, using decision rationales and dependents to connect
to the design features. An example of this general idea is shown in Figure 7.

Build
Building
Plan
Building

Construct
Building
Schedule

Plan

Design
Building
AN

Design
Walls
Design
Rest A
Cover Walls Plaster

7
I

|

I

! Plan

! Other

)

stuff

I A

Cover Roof Concrete Tiles ‘

‘ Roof Precedes Plastering

Fig. 7. Complex Planning

At some point in this example, the design for the building, done by the
architect, results in the two assignments that are used as dependents by the plan
decision that results in the explicit precedence statement that the end of the roof
task should precede the beginning of the plastering task. This figure does not
specify all of the preceding goals and decisions but only shows these as examples.
This precedence statement would then be used as input to some scheduling
decision. When the “Cover Roof Concrete Tiles” assignment becomes invalid,
the precedence statement would become invalid (unless there were another valid
decision supporting it) and the schedule would then be changed. Thus an action
by the architect would result in a necessary plan change and a notification to a
PM.

Various specific schemes are possible. Goldmann has described one in Goldmann-
1 and Raquet is developing a successor system with important variations[24].
These systems vary in the dimensions of exactly how the goals and decisions are
generated by what agents when and how much information is cached. In fact, the
situation is not quite as simple as suggested above as there are several important
further considerations.

One consideration is that the last scheme of Figure 6 in which the planner is
free to decide when to plan based upon a review of the design does not provide for
any automatic notice as does the scheme of Figure 5. Reconciling these features

is a topic of future research. A similarly difficult issue concerns task inputs and
outputs.

4.2 Task Inputs and Outputs

First, define a TASK as associated a goal with the attributes:
. Duration . Start-Time . Stop-Time

. Assigned-Agent . Inputs . Outputs

Notice that this means that the PM will be making decisions that result in
assignments of values to task attributes, so that “task” is a reification in Redux
of a Redux goal.

If we represent a plan task as associated with a Redux goal, then decision
dependents and rationales and any resulting assignments correspond to the task
inputs and outputs. But it should be clear also that planned inputs and outputs
for a task are distinct from the decision dependents, rationales and assignments.
The former is what is planned and the latter is what actually occurred. If the
two are not equivalent, then this should be noted.

It should also be clear that such a distinction is desirable. Any arbitrary task
may be accomplished in a variety of ways, and the various ways, described as
decisions, may require different inputs. For instance, the task of building a wall
may accomplished by using bricks, which requires that a foundation of sufficient
strength be constructed first. This foundation strength is represented as the
output of the foundation construction task and as the input to the wall building
task.

But we may choose to build the wall using a crane and prefabricated lightweight
wall sections. In this case, the needed input is the overhead clearance along the
wall. Determining this clearance, or creating it, may then be another task. The
clearance is then a new input for the task of building the wall.

Thus, one should use planned task inputs and outputs for planning purposes
while realizing that the actual task inputs and outputs are those dependents
and rationales used and assignments produced by decisions about these tasks.
Planned and actual inputs must be compared by a PM.

If each input and output is described using a feature and object, the PM
can register with Redux an interest in any changes in assignments that match
that description. The PM can also register an interest in any decisions made
about the goal in general, so that it can identify whether the assigned agent
corresponded to the actual agent, for instance.

In the current implementation, this is done by having the PM send a “TRACE”
message to Redux concerning the designated goal or feature and object.

For example,

(Trace :sender PM :receiver Redux :language ProcessLink
:content (Goal | acquire-encoder &
Variable | input acquire-encoder &))

is a request from the PM to Redux to track all changes in the Redux goal named
”acquire-encoder” and also the variable (feature plus object) of the “input” of

the task ”acquire-encoder” corresponding to the Redux goal of the same name.
Redux responds with an “UPDATE” message whenever the status of the goal
”acquire-encoder” changes or whenever the status of any assignment of any value
to “input acquire-encoder” changes.?

This alone is not sufficient in a distributed planning environment. The PM
must take further steps to track planned inputs and outputs against these as-
signments. For example, the PM may have anticipated that one of the inputs
to “acquire-encoder” was the design assignment named “encoder-weight”. How-
ever, this planning task was handed off to a specialist who decomposed the task
into subtasks eventually resulting in a low-level plan that never involved. How is
the PM to know that something (the use of a planned input) never happened?

The PM could ask Redux for the exact description of the decisions used,
but it can also just enforce the rule that whenever a planning decision is made,
the actual dependents and rationales are explicitly recorded as assignments; e.g.,
“actual-input acquire-encoder encoder-weight”. It is the responsibility of the PM
to enforce this rule and compare the plan against execution.

4.3 Scheduling Extensions

Scheduling involves a large number of arithmetic constraints that must be checked
and trigger notifications if they are violated. These are distinct from model de-
pendencies tracked by Redux and are best done by a combination of the PM
and the CM as described in [24].

The only special dependency that need be tracked is that when a plan or
scheduling decision is made using some set of resource assumptions. These should
be recorded as a rationale for the decision. That is, in the notification that a
decision has been made, the decision definition should include the resource as a
part of the decision rationale.

If the resources change, this may affect the optimality of the decision and
the decision maker notified. If the decision maker is using a commercial tool, the
the decision maker may request a new schedule from that tool.

There are some specific representation issues concerning scheduling however,
especially with respect to reconciling start and stop times of abstract tasks with
the start and stop times of their subtasks. One of the key issues will be to reduce
suboptimal time “buffers” as more is known about the design and plan.

The lower-level abstract tasks may be performed by different agents with
better knowledge. It may be that the planned inputs and outputs were not
used, which will dramatically affect the possibilities for a tighter schedule. These
possibilities should be communicated to the relevant agents.

Figure 8 shows a simplified example for several scheduling decisions. In this
figure, we represent the actual construction tasks, such as “Construct Building”,
as squares to denote that they are specializations of goals. Each scheduling goal

2 The ProcessLink “TRACE”, “UPDATE”, and “UNTRACE” performatives are not
part of any standard ACL, but as they are fundamental, we have added them to our
KQML performative set.

Construct Schedule

Building BuiIding
Build Plaster Start Building day 1

Roof Walls End Building day 11
Schedule
Schedule Plastering
Roof
/N

| /
Start Roof day 7

Start Plaster day 9
End Plaster day 10

End Roof day 10 Start Plaster day 10
End Plaster day 11
Roof Precedes P, teringT
7N\

Fig. 8. Scheduling dependencies

is associated with such a task, as are the assignments of start and end times.
Each scheduling decision may be performed by a separate scheduling agent with
the best knowledge to perform that task.

The scheduling decision for the plastering task depends, in part, on the plan
information that plastering has to take place after the roof has been built. This
fact in turn depends on the design decision to use concrete tiles, as shown Fig-
ure 7. Because of this precedence relationship, plastering cannot start before day
10, when the roof is finished. Since the plastering is the last subtask of “Con-
struct Building” to be done, this supertask’s end date cannot be earlier than
the plastering task’s end date, day 11 (based on a task duration of 1 day, not
shown).

Now suppose that the roof design is changed in a way that calls for the
fiberglass tiles instead of the concrete ones, thereby making the precedence re-
lationship between roof construction and plastering obsolete. The responsible
agent will be notified that the scheduling decision for the plastering task is now
suboptimal, and should be reconsidered. The task can be moved “to the left” in
the schedule, i.e. be scheduled to be executed in parallel with roof construction.

Figure 8 shows that when the precedence assignment becomes invalid, and
then the decision to start plastering after the roof is finished becomes invalid, a
new scheduling decision is made for the plastering task. In turn, the scheduler
of the whole building needs to be notified.

Such notification is a good example of not using the Redux decision model,
which is essentially propositional because the notification depends upon the spe-
cific numeric values of the schedules. Notice, for instance, relating end times
for tasks and supertasks is outside the scope of TRACE. The better approach
is to use the more general constraint manager (CM)[22] that can ask Redux to
track assignments of, say, feature End-Time, as well as explit assignments of fea-
ture Sub-Task (versus the implicit Redux subgoal relationship) and check more
complicated constraints of whether the End-Time of any abstract task is either
inconsistent or unnecessarily long.

4.4 Execution Extensions

In the same way that we connect plan goals with design decisions, we can connect
“execution goals” with planning decisions. Then a execution decision with an
assignment that the wall is built, perhaps with a certain height, records the
completion of the action. Thus is the execution goal satisfied.

However, the result of such execution decisions will be assignments that re-
flect a change in the real world. For instance, one result might be “built-wall
height 2m”, recording that a wall was constructed with a height of 2m. This is
very different from a planned wall height of 2m that can be changed at will.

Thus plan and design assignments should never be used as dependents in
execution decisions. They can and should be used as rationales. When the design
or plan changes, the agent that made the execution decision will be notified that
their is an element of the construction that no longer corresponds to what is
currently desired. However, such a decision can only be retracted manually, and
only when a separate execution of wall demolition has been recorded.

Though it is out of the scope of this paper, planning agents must also consider
how to represent time. The simplest way is to record that the wall was erected
at a certain time and to generally reason explicitly about the time for which
the wall actually exists and has designated properties, using constraints and the
CM.

4.5 Demolition costs

Upon being notified that some aspect of the construction, say a wall, is no longer
desired, via a decision suboptimality message from Redux, and upon determining
that the wall should actually be torn down, the PM can now inquire about what
resources have been expended on the wall and what needs to be done to demolish
it and the plan changed accordingly.

More abstractly, when any task is canceled, outputs created by this activity
pose a similar problem. They may be undesired and may cause time and money
to eliminate. A demolition task must be added to the plan.

Consider an activity that has built a number of computer parts which are
no longer usable due to technology advance. As storage also causes costs, these
parts must be removed, but they often cannot just be thrown away. Instead an
activity must be planned to get rid of them. Such activities will cost resources.

This kind of costs is referred to as ’demolition costs’. Note that ’demolition’
is used here in a very broad sense. It can just mean transfer to other companies.
In software design, most produced artifacts are just specifications or code stored
in electronic form. If no longer desired, they can just be deleted without note-
worthy costs. Therefore, given an canceled task, a general PM must inquire to
domain-dependent agents about demolition costs and decide whether a new task
of demolition must be planned.

We make no commitment here as to whether the original task to build the
wall remains as a part of the current plan. In Redux terms, the corresponding
goals and assignments will be initially invalid but may be revalidated by a new
decision that also includes the demolition as a follow-on activity. That is, there
is a question of whether the new plan should say there had previously been a
task to build a wall and it is now invalid or there is a valid and completed task
to build the wall, followed by a subsequent task of demolition.

This suggests the more general topic of costs expended pursuing a task.

4.6 Sunk Costs

In a environment of interleaved planning and execution it is not sufficient only
to react to changes. It is also necessary to prohibit certain changes. Activities
that have already been executed can not be undone, used resources can often
not be regained. Such resources are referred to as ’sunk costs’. They are ’sunk’
into the process and cannot be regained. When the wall is constructed, some
amount of time, money, and materials have been consumed and this must be
taken into account.

If a project manager removes such an already conducted activity that used
non-regain-able resources from a plan, he will automatically generate an incon-
sistency between plan and execution. To ensure correct resource tracking we
must avoid such changes.

Time is a special case that can be dealt with in a domain-independent
method. Given a task that is either completed or to be canceled prior to com-
pletion, the time spent already on this task must be accounted for. One way to
do this is by creating a new task in the plan that consumes the right amount of
time and showing it as completed. This task should also consume the inputs and
produce the outputs that model the work done. These facts can alternatively
be represented by the PM - the important point is that time and irretrievably
consumed resources not depend upon the validity of the task.

However not all resources ’sink’ into the process. Resources like available
space can be regained if undesired objects are removed, parts that have been
assembled to a composite product can in some cases be regained by disassembling
this product. Without domain knowledge it is not possible to determine whether
aresource will ’sink’ into the project or whether it will be regainable. So although
a domain-independent PM can so model canceled tasks, the PM will have to
make requests of domain-dependent agents in order to ascertain actual resource
consumption.

4.7 Miscellaneous Issues

Redux only has two notions of authority: 1) only a decision maker has the
authority to retract a decision, 2) except there is one overall “design manager”
who can retract any decision. Perhaps a more extensive but flexible authorities
and permissions agent to control who can make and retract decisions of various
types will be needed such as is being developed for the Enterprise{14} project
by Peter Jarvis. The current Redux model assumes that anyone can see all of
the information, but this may not be a generally applicable principle.

There is also the topic of information goals discussed in [10]. In this imple-
mentation, such goal and information structures were explicitly cached as part
of the entire planning trace. However, it is not clear that this need be done.
Another implementation we are exploring allows agents to generate a separate
project for acquiring the information needed to make a decision in the original
project. This separate project goal and decision tree is finally collapsed to the
assignments and facts used in this separate decision-making process. This col-
lapsed set of assignments and facts can then be used as a rationale for a decision
in the original project.

For instance, in deciding between hi res encoders and low res encoders, their
may be an information project that results, after some work, in costs of various
components from various suppliers. These can be used in the rationale for, say,
the decision to use a hi res encoder.

This paper does not address all of the issues that planning agent alone needs
to address, such as resource leveling and the difference between tasks inputs
such as artifact parts, tools constructed especially for special tasks, and simple
information, such as specifications.

Finally, we note that the project management representation presented here
can be recursively applied to design itself. Often, before any design is done, there
is some design planning and scheduling. E.g., before a new CDROM player is
designed, one plans for the design of the “actuator” as that is a common part.
And one schedules the actuator design on the Gantt chart shown to management.
Thus is the design process planned and scheduled prior to design. Since the actual
design will at least add information to such planning and scheduling activities,
if not correct them, it is necessary to use a mechanism such as the one presented
in this paper to manage the design.

Thus we now have as a minimum, interactions between the components of

— the artifact design plan and schedule,

the artifact design,

— the artifact plan and schedule of construction, and
— artifact construction.

Each includes design decisions that also interact with each other, also man-
aged by the Redux model. Notice also that the design is the execution of the
design plan and schedule, just as the artifact construction is the execution of the
artifact plan and schedule of construction.

5 Comparison to Other Systems

Redux, as the core of the ProcessLink multiagent design system is compared to
some other mechanisms in [14]. It is a very different approach from, though not
incompatible with, constraint-based systems such as Bowen. We are developing
agent systems that integrate this mechanism[22].

Redux is also not the same sort of system as the Contract Net Protocol[7]
although a round of such negotiation could be initiated by a Redux task assign-
ment or a constraint violation notice. Finally, none of these types of systems
deals with planning and scheduling.

Redux in its original form as a complete planner[19], together with these
planning and scheduling extensions, are most similar to O-Plan[5,25] in that
both treat planning as an explicit processes which can be controlled via an
agenda. Both also use constraint representations extensively[22,26] for search,
pruning and backtracking. However, Redux provides a richer model of the types
of changes and their effects to be propagated, especially in characterizing design
decisions and distinguishing between decision validity and optimality. And the
ProcessLink system makes a stronger commitment to an agent architecture{10}
and protocol{13}. However, O-Plan is open and the primitives seem to be largely
consistent with Redux and it would be interesting to see if the two systems could
work together in the future.

The Minerva[l] system also guarantees consistency among design decisions
and coordinates design activities for VLSI design. The model includes design
objectives similar to Redux goals as well as constraints. The model does not
have the same change propagation mechanism as Redux, though the system
intent is very similar.

Shared-DRIMS[18] is another similar design process system that distinguishes
also between goals and constraints, as does O-Plan and Minerva, and provides
a richer model of design rationale argumentation. However, DRIMS has no ex-
plicit characterization of design decisions and plans to accomplish goals are tied
directly to goals prior to runtime. Also, though DRIMS rationales are more com-
plex than in Redux, the latter better supports changes in the rationale factors.

Finally, the planning ontology of tasks used by any planning agent could be
consistent with the PIF[15] standard, but as that standard is concerned only
with processes prior to runtime, this standard is somewhat orthogonal to the
runtime coordination representation described here. The same is true for other
process models though DesignRoadmap[17] has a very similar process model.

6 Summary

We have presented here a novel approach for managing complex distributed
projects using agents and a particular representation based upon a general model
of design: Redux. We have shown how design, planning, scheduling, and con-
struction can be interleaved and distributed but coordinated by using a central

facilitating agent, but which is not a planner or scheduler itself. Indeed, the de-
sign, planning, and scheduling for the project may be distributed as required
among human and software agents as appropriate.

This enables, in principle, the management of much more complex projects
then are now possible. Alternatively, it enables distributed projects to be com-
pleted more quickly, or to start earlier with less complete information because
there change notification is supported.

This model has been modified for various applications. For example in ComMoKit[8],
invalid goals invalidate their decisions also. But the general model has proved use-
ful and the first implementation of a Project Management system, Procura[10]
was shown to work.

This paper is intended to assist other system builders with reusable principles
in hopes that experimentation with this particular model of agent coordination
will be accelerated.

7 Acknowledgments

Professor Mark R. Cutkosky of the Stanford Mechanical Engineering Depart-
ment and and Professor Martin Fischer of the Stanford Civil Engineering De-
partment have been of great assistance in developing and exploring these ideas.
Stanford Center for Design Research work was funded by Navy contract SHARE
N00014-92-J-1833 under the US DARPA RaDEQ program.

8 WWW URLs

{0} http://cdr.stanford.edu/ProcessLink/

{1} http://www-leland.stanford.edu/group/CIFE/VDT/

{2} http://ccs.mit.edu/pifintro.html

{3}http://www.sap.com/

{4} http://www.peoplesoft.com/

{5} http://www.digit.com/ap.html

{6} http:// KQML

{7} http:// FIPA ACL

{8} http://www.sics.se/isl/coord/

{9} http://cdr.stanford.edu/ProcessLink /papers/white-dpm.html
{10} http://cdr.stanford.edu/ProcessLink/ABE/

{11} http://cdr.stanford.edu/ProcessLink/talks/wulkow/proj-27.html
{12}http://cdr.stanford.edu/ProcessLink /talks/wulkow/proj-22.html
{13} http://cdr.stanford.edu/ProcessLink/protocol /EPL-syntax.html
{14} http://www.aiai.ed.ac.uk/~entprise/

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. Jacome M. F. and S. W. Director, “Design Process Management for CAD Frame-

works,” In 29th ACM/IEEE Design Automation Conference, Washington D.C.
IEEE Computer Society Press (1992).

Benda, M., internal survey of Boeing managers, 1998.

Bowen J. and Bahler D., “Task Coordination in Concurrent Engineering”, Enter-
prise Integration Modeling, C. Petrie, ed., MIT Press, October, 1992.

. Conklin, J. and M. Begeman, “gIBIS: A Hypertext Tool for Exploratory Policy

Discussion,” Proceedings of CSCW ’88 (Computer Supported Cooperative Work),
September 1988.

Currie, K.W. and Tate,A. (1991) ”O-Plan: the Open Planning Architec-
ture”, Artificial Intelligence Vol 52, No. 1, pp. 49-86 Autumn 1991, Elsevier.
http://www.aiai.ed.ac.uk/~oplan/oplan/oplan-doc.html

Cutkosky, M., et al., “PACT An Experiment in Integrating Concurrent Engineering
Systems,”, IEEE Computer, January, 1993.

Davis, R. and Smith R., “Negotiation as a Metaphor for Distributed Problem
Solving,” AI Journal 1983, 20(1): 63-109.

Dellen, B., Maurer, F., and Pews, G., “ Knowledge-based techniques to increase
the flexibility of workflow management,” Data € Knowledge Engineering, North-
Holland, 1997. See also http://wwwagr.informatik.uni-kl.de/~comokit/.
Feldman, Allan M., Welfare Economics and Social Choice Theory, Kluwer, Boston,
1980.

Goldmann, S., “Procura: A Project Management Model of Concurrent Plan-
ning and Design,” Proc. WETICE-96, Stanford, CA., June, 1996. See also
http://cdr.stanford.edu/ProcessLink /Procura/papers/procura.html.

Haddadi, A., Communication and Cooperation in Agent-Systems: A Pragmatic
Theory, Springer Verlag, Lecture Notes in Computer Science, No. 1056, 1996 .
Kuokka, D. and L. Harada, “A Communication Infrastructure for Concurrent En-
gineering,” Journal of Artificial Intelligence for Engineering Design, Analysis and
Manufacturing (AIEDAM), /bf 9, 1995.

Labrou, Y. and Finin, T., “A Proposal for a new KQML Specification,”
U. of Mayland CS and EE Dept. TR CS-97-03, February 1997. Also
http://www.cs.umbc.edu/kqml/.

Lander, S., “AI in Design: Issues in Multiagent Design Systems,” IEEE FExpert,
April, 1997.

Lee, J., and Malone, T., “Partially Shared Views: A scheme for communicating be-
tween groups using different type hierarchies,” ACM Transactions on Information
Systems, 8(1), 1-26, 1990.

McKinsey Quarterly, No. 1, 1997.

Park, H., “Modeling of Collaborative Design Processes for Agent-Assisted Product
Design”, Dissertation, Center for Design Research, Stanford U., January, 1995.
Pea-Mora, F., esign Rationale for Computer Supported Conflict Mitigation during
the Design-Construction Process of Large-Scale Civil Engineering Systems, Doctor
of Science Thesis, MIT, September 1994.

Petrie, C., “Scheduling with REDUX: A Technology for Replanning,” Proc.
Aerospace Applications of AI October, 1990, Dayton. Also Microelectronics and
Computer Technology Corporation TR, ACT-RA-340-90, November, 1990.

Petrie, C., “The Redux’ Server,” Proc. Internat. Conf. on Intelligent and Cooper-
atiwe Information Systems (ICICIS), Rotterdam, May, 1993.

21.

22.

23.

24.

25.

26.

Petrie, C., Webster, T., and Cutkosky, M., “Using Pareto Optimality to Coordinate
Distributed Agents” Artificial Intelligence for Engineering Design, Analysis and
Manufacturing (AIEDAM), 9, 269-281, 1995.

Petrie, C., Jeon, H., and Cutkosky, M., “Combining Constraint Propaga-
tion and Backtracking for Distributed Engineering,” ECAI-96 Workshop on
Non-Standard Constraint Processing, Budapest, August, 1996, revised for
AAAI-97T Workshop on Constraints and Agents, Providence, RI, July, 1997.
See also http://cdr.stanford.edu/ProcessLink/papers/non-stan-const/non-stan-
const.html.

Petrie, C., Agent-Based Engineering, the Web, and Intelligence,” IEEE Ezpert,
December, 1996. See also http://cdr.stanford.edu/NextLink/Expert.html
Raquet, A., “Dynamic Project Management for distributed Processes,”
Thesis, Kaiserslautern, in progress.

Tate, A., Drabble, B. and Dalton, J. (1996) ”The Open Planning Ar-
chitecture and its Application to Logistics”, in ”Advanced Planning Tech-
nology” (ed. A.Tate), pp. 257-264, AAAI Press, Menlo Park, CA. USA.
ftp://ftp.aiai.ed.ac.uk/pub/documents/1996/96-arpi-oplan-and-logistics. ps
Tate,A. (1996) "The <I-N-OVA> Constraint Model of Plans”, Proceedings
of the Third International Conference on Artificial Intelligence Planning Sys-
tems, (ed. B.Drabble), pp.221-228, Edinburgh, UK, May 1996, AAAI Press.
ftp://ftp.aiai.ed.ac.uk/pub/documents/1996/96-aips-inova.ps

Diplom

