Skip to main content

Dijkstra’s Algorithm On-Line: An Empirical Case Study from Public Railroad Transport

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1668))

Abstract

Traffic information systems are among the most prominent real-world applications of Dijkstra’s algorithm for shortest paths. We consider the scenario of a central information server in the realm of public railroad transport on wide-area networks. Such a system has to process a large number of on-line queries in real time. In practice, this problem is usually solved by heuristical variations of Dijkstra’s algorithm, which do not guarantee optimality. We report results from a pilot study, in which we focused on the travel time as the only optimization criterion. In this study, various optimality-preserving speed-up techniques for Dijkstra’s algorithm were analyzed empirically. This analysis was based on the timetable data of all German trains and on a “snapshot” of half a million customer queries.1

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Albers, A. Crauser, and K. Mehlhorn: Algorithmen für sehr große Datenmengen. MPI Saarbrücken (1997).7

    Google Scholar 

  2. K. Ishikawa, M. Ogawa, S. Azume, and T. Ito: Map Navigation Software of the Electro Multivision of the’ 91 Toyota Soarer. IEEE Int. Conf. Vehicle Navig. Inform. Syst. (VNIS’ 91), 463–473.

    Google Scholar 

  3. R. Agrawal and H. Jagadish: Algorithms for Searching Massive Graphs. IEEE Transact. Knowledge and Data Eng. 6 (1994), 225–238.

    Article  Google Scholar 

  4. R.K. Ahuja, T.L. Magnanti, and J.B. Orlin: Network Flows. Prentice-Hall, 1993.

    Google Scholar 

  5. A. Car and A. Frank: Modelling a Hierarchy of Space Applied to Large Road Networks. Proc. Int. Worksh. Adv. Research Geogr. Inform. Syst. (IGIS’ 94), 15–24.

    Google Scholar 

  6. B.V. Cherkassky, A.V. Goldberg und T. Radzik: Shortest Paths Algorithms: Theory and Experimental Evaluation. Mathematical Programming 73 (1996), 129–174.

    MathSciNet  MATH  Google Scholar 

  7. S. Shekhar, A. Kohli, and M. Coyle: Path Computation Algorithms for Advanced Traveler Information System (ATIS). Proc. 9th IEEE Int. Conf. Data Eng. (1993), 31–39.

    Google Scholar 

  8. T.H. Cormen, C.E. Leiserson, and R.L. Rivest: Introduction to Algorithms. MIT Press and McGraw-Hill, 1994.

    Google Scholar 

  9. S. Jung and S. Pramanik: HiTi Graph Model of Topographical Road Maps in Navigation Systems. Proc. 12th IEEE Int. Conf. Data Eng. (1996), 76–84.

    Google Scholar 

  10. T. Lengauer: Combinatorial Algorithms for Integrated Circuit Layout.Wiley, 1990.

    Google Scholar 

  11. J. Shapiro, J. Waxman, and D. Nir: Level Graphs and Approximate Shortest Path Algorithms. Network 22 (1992), 691–717.

    Article  MathSciNet  Google Scholar 

  12. T. Preuss and J.-H. Syrbe: An Integrated Traffic Information System. Proc. 6th Int. Conf. Appl. Computer Networking in Architecture, Construction, Design, Civil Eng., and Urban Planning (europIA’ 97).

    Google Scholar 

  13. K. Weihe: Reuse of Algorithms — Still a Challenge to Object-Oriented Programming. Proc. 12th ACM Symp. Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA’ 97), 34–48.

    Google Scholar 

  14. K. Weihe, U. Brandes, A. Liebers, M. Müller-Hannemann, D. Wagner, and T. Willhalm: Empirical Design of Geometric Algorithms. To appear in the Proc. 15th ACM Symp. Comp. Geometry (SCG’ 99).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schulz, F., Wagner, D., Weihe, K. (1999). Dijkstra’s Algorithm On-Line: An Empirical Case Study from Public Railroad Transport. In: Vitter, J.S., Zaroliagis, C.D. (eds) Algorithm Engineering. WAE 1999. Lecture Notes in Computer Science, vol 1668. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48318-7_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-48318-7_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66427-7

  • Online ISBN: 978-3-540-48318-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics