
Testing Concurrent Systems :

A Formal Approach

Jan Tretmans

University of Twente ⋆

Faculty of Computer Science, Formal Methods and Tools research group
P.O. Box 217, 7500 AE Enschede, The Netherlands

email: tretmans@cs.utwente.nl

Abstract. This paper discusses the use of formal methods in testing
of concurrent systems. It is argued that formal methods and testing
can be mutually profitable and useful. A framework for testing based
on formal specifications is presented. This framework is elaborated for
labelled transition systems, providing formal definitions of conformance,
test execution and test derivation. A test derivation algorithm is given
and its tool implementation is briefly discussed.

1 Introduction

During the last decades much theoretical research in computing science has been
devoted to formal methods. This research has resulted in many formal languages
and in verification techniques, supported by prototype tools, to verify properties
of high-level, formal system descriptions. Although these methods are based on
sound mathematical theories, there are not many systems developed nowadays
for which correctness is completely formally verified using these methods.

On the other hand, the current practice of checking correctness of computing
systems is based on a more informal and pragmatic approach. Testing is usually
the predominant technique, where an implementation is subjected to a number
of tests which have been obtained in an ad-hoc or heuristic manner. A formal,
underlying theory for testing is mostly lacking.

The combination of testing and formal methods is not very often made.
Sometimes it is claimed that formally verifying computer programs would make
testing superfluous, and that, from a formal point of view, testing is inferior as a
way of assessing correctness. Also, some people cannot imagine how the practical,
operational, and ‘dirty-hands’ approach of testing could be combined with the
mathematical and ‘clean’ way of verification using formal methods. Moreover,
the classical biases against the use of formal verification methods, such as that
formal methods are not practical, that they are not applicable to any real system

⋆ This research is supported by the Dutch Technology Foundation STW under project
STW TIF.4111: Côte de Resyste – COnformance TEsting of REactive SYSTEms;
URL: http://fmt.cs.utwente.nl/CdR.

but very simple toy systems, and that they require a profound mathematical
training, do not help in making test engineers adopt formal methods.

Fortunately, views are changing. Academic research on testing is increasing,
and even the most formal verifyer admits that a formally verified system should
still be tested. (Because: Who verified the compiler? And the operating system?
And who verified the verifyer?). On the other hand, formal methods are used
in more and more software projects, in particular for safety critical systems,
and also the view that a formal specification can be beneficial during testing is
getting more support.

The aim of this paper is to strengthen this process of changing views. To that
purpose, this paper discusses how testing can be performed based on formal spec-
ifications, and how advantage can be obtained in terms of precision, clarity and
consistency of the testing process by adopting this formal approach. Also, it will
be shown how the use of formal methods helps automating the testing process, in
particular the automated derivation of tests from formal specifications. The dis-
cussion about testing and formal methods will support the following claims: (i)
formal methods and testing are a perfect couple; (ii) testing and formal verifica-
tion are both necessary; (iii) a formally verified specification is a good starting
point for testing; (iv) formal testing is a good starting point for introducing
formal methods in software development.

The structure of this paper is as follows. In the next section we start with
some informal discussion on classical software testing, see, e.g., [38, 3]. Section 3
then discusses a formal, generic framework for testing with formal methods.
Section 4 makes this framework more specific by instantiating it for the formalism
of labelled transition systems. Section 5 discusses tool support and a concrete
application of testing a simple protocol based on the labelled transition system
testing theory. Finally, section 6 comes back to the claims made above and
discusses some open issues.

The intention of this paper is to give an idea about how testing and formal
methods can be mutually beneficial. A complete overview of formal approaches
to testing is outside the scope of this paper. Other approaches exist, e.g., [21]
for Abstract Data Type testing, and certainly other instantiations of the generic
framework of section 3 are possible, e.g., with Finite-State Machines (Mealy
machines) [7, 35]. Also it is not the intention to give a complete and precise
overview of testing for labelled transition systems. However, the branch of testing
theory, which is elaborated in section 4, is shown to be a realistic and practically
applicable approach in section 5. Moreover, many pointers to the literature are
provided which allow to explore alternatives and to study further details.

2 Software Testing

What is testing? Testing is an operational way to check the correctness of a
system implementation by means of experimenting with it. Tests are applied
to the implementation under test in a controlled environment, and, based on
observations made during the execution of the tests, a verdict about the correct

functioning of the implementation is given. The correctness criterion that is to
be tested is given by the system specification; the specification is the basis for
testing.

Testing is an important technique to increase confidence in the quality of a
computing system. In almost any software development trajectory some form of
testing is included.

Sorts of testing There are many different kinds of testing. In the first place,
different aspects of system behaviour can be tested: Does the system have the
intended functionality and does it comply with its functional specification (func-
tional tests or conformance tests)? Does the system work as fast as required
(performance tests)? How does the system react if its environment shows un-
expected or strange behaviour (robustness tests)? Can the system cope with
heavy loads (stress testing)? How long can we rely on the correct functioning of
the system (reliability tests)? What is the availability of the system (availability
tests)?

Moreover, testing can be applied at different levels of abstraction and for
different levels of (sub-)systems: individual functions, modules, combinations of
modules, subsystems and complete systems can all be tested.

Another distinction can be made according to the parties or persons perform-
ing (or responsible for) testing. In this dimension there are, for example, system
developer tests, factory acceptance tests, user acceptance tests, operational ac-
ceptance tests, and third party (independent) tests, e.g., for certification.

A very common distinction is the one between black box and white box
testing. In black box testing, or functional testing, only the outside of the system
under test is known to the tester. In white box testing, also the internal structure
of the system is known and this knowledge can be used by the tester. Naturally,
the distinction between black and white box testing leads to many gradations of
grey box testing, e.g., when the module structure of a system is known, but not
the code of each module.

In this paper, we concentrate on black box, functional testing, also called
conformance testing. We do not care about the level of (sub-)systems or who is
performing the testing. Key points are that there is a system implementation
exhibiting behaviour and that there is a specification. The specification is a pre-
scription of what the system should do; the goal of testing is to check, by means
of testing, whether the implemented system indeed satisfies this prescription.
In particular, the rest of this paper will consider a conformance testing process
based on specifications which are given in a formal notation.

Confusion of tongues Sometimes the term testing is also used for performing
static checks on the program code, e.g., checking declarations of variables using
a static checker, or code inspections. This kind of testing is then denoted by
static testing. However, we restrict to dynamic testing, i.e., testing consisting of
really executing the implemented system, as described above. Another broader
use of the term testing is to include monitoring. Monitoring is then called pas-

sive testing as opposed to active testing as described above, where the tester

has active control over the test environment, and a set of predefined tests is
executed. A third extension of the term testing, sometimes made, is to include
all checking activities in the whole software development trajectory, e.g., reviews
and inspections.

The testing process In the conformance testing process there are two main
phases: test generation and test execution. Test generation involves analysis of
the specification and determination of which functionalities will be tested, de-
termining how these can be tested, and developing and specifying test scripts.
Test execution involves the development of a test environment in which the test
scripts can be executed, the actual execution of the test scripts and analysis of
the execution results and the assignment of a verdict about the well-functioning
of the implementation under test.

Other important activities in the testing process are test management and
test maintenance. In particular, test maintenance is often underestimated. It
involves recording and documenting the test scripts, test environments, used test
tools, relating test sets to versions of specifications and implementations, with
the aim of making the testing process repeatable and reusable, in particular for
regression testing. Regression testing is the re-testing of unmodified functionality
in case of a modification of the system. It is one of the most expensive (and thus
often deliberately neglected) aspects of testing.

Test automation Testing is a difficult, expensive, time-consuming and labour-
intensive process. Moreover, testing is (should be) repeated each time a system
is modified. Hence, testing would be an ideal candidate for automation.

The main class of commercially available test tools are record & playback tools
(capture and replay tools) which support the test execution process. Record &
playback tools are able to record user actions at a (graphical) user interface,
such as keyboard and mouse actions, in order to replay these actions at a later
point in time. In this way a recorded test can be replayed several times, which
may be advantageous during regression testing.

For the test generation phase there are tools which are able to generate large
amounts of input test data. However, these tools are mainly used for performance
and stress tests and hence, are outside the scope of this paper. Some tools exist
that are able to generate a set of tests with the same structure based on a tem-
plate of a test case by only varying the input parameters in this template. In the
area of communication protocol testing there exist some (prototype) test tools
that can (semi-) automatically generate test cases for conformance testing from
a formal specification. Some of these tools will be briefly described in section 5.

To relate test cases to the requirements that they test, standard requirements
management tools can be used, but such tools are not specific for testing. The
main functionality of such tools is to relate high level system requirements to
(lower level) sub-system requirements and to relate requirements to test cases.

A kind of test tools which are used during test execution, but which (should)
influence test generation, are code coverage tools. Code coverage tools calculate
the percentage of the system code executed during test execution according

to some criterion, e.g., “all paths”, ”all statements”, or “all definition-usage
combinations” of variables. They give an indication about the completeness of
a set of tests. Note that this notion of completeness refers to the implemented
code (white box testing); it does not say anything about the extent to which the
requirements or the specification were covered.

3 Formal Framework for Testing

In section 2 the software testing process was described from a traditional per-
spective. Conformance testing was introduced as a kind of testing where the
behaviour of a system is systematically tested with respect to the system’s spec-
ification of functional behaviour.

In this section a framework is presented for the use of formal methods in
conformance testing [10, 44, 32]. The framework can be used for testing of an im-
plementation with respect to a formal specification of its functional behaviour.
It introduces, at a high level of abstraction, the concepts used in a formal con-
formance testing process and it defines a structure which allows to reason about
testing in a formal way. The most important part of this is to link the infor-
mal world of implementations, tests and experiments with the formal world of
specifications and models. To this extent the framework introduces the concepts
of conformance, i.e., functional correctness, testing, sound and exhaustive test
suites, and test derivation. All these concepts are introduced at a generic level;
sections 4 and 5 will show how to instantiate and apply these concepts.

Conformance For talking about conformance we need implementations and spec-
ifications. The specifications are formal, so a universe of formal specifications
denoted SPECS is assumed. Implementations are the systems that we are going
to test, henceforth they will be called iut, implementation under test, and the
class of all iut’s is denoted by IMPS . So, conformance could be introduced by
having a relation conforms-to ⊆ IMPS × SPECS with iut conforms-to s
expressing that iut is a correct implementation of specification s.

However, unlike specifications, implementations under test are real, physi-
cal objects, such as pieces of hardware or software; they are treated as black
boxes exhibiting behaviour and interacting with their environment, but not
amenable to formal reasoning. This makes it difficult to give a formal defini-
tion of conforms-to which should be our aim in a formal testing framework.
In order to reason formally about implementations, we make the assumption
that any real implementation iut ∈ IMPS can be modelled by a formal object
iIUT ∈ MODS , where MODS is referred to as the universe of models. This as-
sumption is referred to as the test hypothesis [6]. Note that the test hypothesis
only assumes that a model iIUT exists, but not that it is known a priori.

Thus the test hypothesis allows to reason about implementations as if they
were formal objects, and, consequently, to express conformance by a formal re-
lation between models of implementations and specifications. Such a relation
is called an implementation relation imp ⊆ MODS × SPECS [10, 32]. Imple-
mentation iut ∈ IMPS is said to be correct with respect to s ∈ SPECS ,

iut conforms-to s, if and only if the model iIUT ∈ MODS of iut is imp-related
to s: iIUT imp s.

Observation and testing The behaviour of an implementation under test is in-
vestigated by performing experiments on the implementation and observing the
reactions that the implementation produces to these experiments. The specifi-
cation of such an experiment is called a test case, and the process of applying a
test to an implementation under test is called test execution.

Let test cases be formally expressed as elements of a domain TESTS . Then
test execution requires an operational procedure to execute and apply a test
case t ∈ TESTS to an implementation under test iut ∈ IMPS . This operational
procedure is denoted by exec(t, iut). During test execution a number of obser-
vations will be made, e.g., occurring events will be logged, or the response of
the implementation to a particular stimulus will be recorded. Let (the formal
interpretation of) these observations be given in a domain of observations OBS ,
then test execution exec(t, iut) will lead to a subset of OBS . Note that exec
is not a formal concept; it captures the action of “pushing the button” to let t
run with iut. Also note that exec(t, iut) may involve multiple runs of t and
iut, e.g., in case nondeterminism is involved.

Again, since exec(t, iut) corresponds to the physical execution of a test case,
we have to model this process of test execution in our formal domain to allow
formal reasoning about it. This is done by introducing an observation function
obs : TESTS ×MODS → P(OBS). So, obs(t, iIUT) formally models the real test
execution exec(t, iut).

In the context of an observational framework consisting of TESTS , OBS ,
exec and obs , it can now be stated more precisely what is meant by the test
hypothesis:

∀iut ∈ IMPS ∃iIUT ∈ MODS ∀t ∈ TESTS : exec(t, iut) = obs(t, iIUT) (1)

This could be paraphrased as follows: for all real implementations that we are
testing, it is assumed that there is a model, such that if we would put the iut
and the model in black boxes and would perform all possible experiments defined
in TESTS , then we would not be able to distinguish between the real iut and
the model. Actually, this notion of testing is analogous to the ideas underlying
testing equivalences [15, 14], which will be elaborated for transition systems in
section 4.

Usually, we like to interpret observations of test execution in terms of being
right or wrong. So we introduce a family of verdict functions νt : P(OBS) →
{fail,pass} which allows to introduce the following abbreviation:

iut passes t ⇐⇒def νt(exec(t, iut)) = pass (2)

This is easily extended to a test suite T ⊆ TESTS : iut passes T ⇔ ∀t ∈ T :
iut passes t. Moreover, an implementation fails test suite T if it does not pass:
iut fails T ⇔ iut /passes T .

Conformance testing Conformance testing involves assessing, by means of test-
ing, whether an implementation conforms, with respect to implementation re-
lation imp, to its specification. Hence, the notions of conformance, expressed
by imp, and of test execution, expressed by exec, have to be linked in such a
way that from test execution an indication about conformance is obtained. So,
ideally, we would like to have a test suite Ts such that for a given specification s

iut conforms-to s ⇐⇒ iut passes Ts (3)

A test suite with this property is called complete; it can distinguish exactly be-
tween all conforming and non-conforming implementations. Unfortunately, this
is a very strong requirement for practical testing: complete test suites are usually
infinite, and consequently not practically executable. Hence, usually a weaker re-
quirement on test suites is posed: they should be sound, which means that all
correct implementations, and possibly some incorrect implementations, will pass
them; or, in other words, any detected erroneous implementation is indeed non-
conforming, but not the other way around. Soundness corresponds to the left-
to-right implication in (3). The right-to-left implication is called exhaustiveness ;
it means that all non-conforming implementations will be detected.

To show soundness (or exhaustiveness) for a particular test suite we have to
use the formal models of implementations and test execution:

∀i ∈ MODS : i imp s ⇐⇒ ∀t ∈ T : νt(obs(t, i)) = pass (4)

Once (4) has been shown it follows that

iut passes T
iff (∗ definition passes T ∗)

∀t ∈ T : iut passes t
iff (∗ definition passes t ∗)

∀t ∈ T : νt(exec(t, iut)) = pass

iff (∗ test hypothesis (1) ∗)
∀t ∈ T : νt(obs(t, iIUT)) = pass

iff (∗ completeness on models (4) applied to iIUT ∗)
iIUT imp s

iff (∗ definition of conformance ∗)
iut conforms-to s

So, if the completeness property has been proved on the level of models and if
there is ground to assume that the test hypothesis holds, then conformance of
an implementation with respect to its specification can be decided by means of
a testing procedure.

Now, of course, an important activity is to devise algorithms which produce
sound and/or complete test suites from a specification given an implementation
relation. This activity is known as test derivation. It can be seen as a function
der imp : SPECS → P(TESTS). Following the requirement on soundness of
test suites, such a function should only produce sound test suites for any spec-
ification s ∈ SPECS , so the test suite der imp(s) should satisfy the left-to-right
implication of (4).

Extensions Some extensions to and refinements of the formal testing framework
can be made. Two of them are mentioned here. The first one concerns the test

architecture [44, 32]. A test architecture defines the environment in which an
implementation is tested. It gives an abstract view of how the tester commu-
nicates with the iut. Usually, an iut is embedded in a test context, which is
there when the iut is tested, but which is not the object of testing. In order
to formally reason about testing in context, the test context must be formally
modelled. Sometimes, the term sut – system under test – is then used to denote
the implementation with its test context, whereas iut is used to denote the bare
implementation without its context.

The second extension is the introduction of coverage within the formal frame-
work. The coverage of a test suite can be introduced by assigning to each erro-
neous implementation that is detected by a test suite a value and subsequently
integrating all values. This can be combined with a stochastic view on erroneous
implementations and a probabilistic view on test execution [9, 26].

4 Labelled Transition Systems

One of the formalisms studied in the realm of conformance testing is that of
labelled transition systems. A labelled transition system is a structure consisting
of states with transitions, labelled with actions, between them. The formalism of
labelled transition systems can be used for modelling the behaviour of processes,
such as specifications, implementations and tests, and it serves as a semantical
model for various formal languages, e.g., ACP [5], CCS [37], and CSP [28].
Also (most parts of) the semantics of standardized languages like LOTOS [30]
and SDL [12], and of the modelling language Promela [29] can be expressed in
labelled transition systems. We assume the basic definitions of labelled transition
systems to be familiar; they can be found in many of the given references, e.g., in
[45] the definitions are given in the same notation as they are used here (however,
we will not consider internal actions τ in this section).

This section instantiates the generic, formal testing framework of section 3
with labelled transition systems. This means that the formal domains SPECS ,
MODS and TESTS will now consist of (some kind of) transition systems. In
particular, it will be shown how the ioco-testing theory based on inputs, outputs
and repetitive quiescence fits within the testing framework [45].

Traditionally, for labelled transition systems the term testing theory does not
refer to conformance testing. Instead of starting with a specification to find a
test suite that characterizes the class of its conforming implementations, these
testing theories aim at defining implementation relations, given a class of tests:
a transition system p is equivalent to a system q if any test case in the class leads
to the same observations with p as with q (or more generally, p relates to q if
for all possible tests, the observations made of p are related in some sense to the
observations made of q). In terms of an observational framework as introduced
in section 3, an implementation relation imp is defined by

p imp q ⇐⇒def ∀t ∈ TESTS : obs(t, p) ⊗ obs(t, q) (5)

Many different relations can be defined by variations of the class of tests TESTS ,
the way observations obs are obtained, and the required relation between obser-
vations ⊗ [15, 1, 14, 40, 23, 24].

Once an implementation relation has been defined, conformance testing in-
volves finding a test derivation algorithm such that test suites can be derived
from a specification which are sound, and, in some sense, minimal. Conformance
testing for labelled transition systems has been studied especially in the context
of testing communication protocols with the language LOTOS, e.g., [11, 8, 41,
49, 34, 47, 45, 27].

For the discussion of the ioco-testing theory both kinds of testing theory
are used: firstly, the implementation relation ioco is defined following the prin-
ciple of (5); secondly, test derivation from specifications for ioco is investigated
resulting in a sound and exhaustive test derivation algorithm.

In the remainder of this section we will successively instantiate all the in-
gredients of the formal testing framework of section 3 for ioco-based testing.
These include SPECS , IMPS , MODS , imp, TESTS , OBS , νt, exec, obs and
der imp. The description of the different concepts will be done semi-formally; full
technical details can be found in [45]. The next section, section 5, will briefly
discuss the use of this ioco-testing theory for building of software tools and for
testing some simple communication protocol implementations based on LOTOS
and Promela specifications.

Specifications For specifications we allow to use labelled transition systems, or
any formal language with a labelled transition system semantics. We require
that the actions of the transition system are known and can be partitioned into
inputs and outputs, denoted by LI and LU , respectively. However, we do not
impose any restrictions on inputs or outputs. For LTS(L) the class of labelled
transition systems over action alphabet L, SPECS := LTS(LI ∪ LU).

Implementations and their models We assume implementations to be modelled
by a special class of transition systems called input-output transition systems,
which, inspired by Input/Output Automata (IOA) [36], have the property that
any input action is always enabled in any state. For IOTS(LI , LU) the class of
input-output transition systems with inputs in LI and outputs in LU , MODS :=
IOTS(LI , LU).

For IMPS we allow any computer system or program which can be modelled
as an input-output transition system, i.e., a system which has distinct inputs
and outputs, where inputs can be mapped 1:1 on LI and outputs on LU , and
where inputs can always occur.

Implementation relation The implementation relation is instantiated with the
relation ioco ⊆ IOTS(LI , LU)×LTS(LI ∪LU), which is briefly discussed here.

The relation ioco inherits many ideas from other relations defined in the lit-
erature. Its roots are in the theory of testing equivalence and preorders [15, 14],
where testing preorder on transitions systems is defined following (5) using tran-
sition systems as tests, traces and completed traces of the synchronized parallel

composition of t and p as observations, and inclusion of observations as compar-
ison criterion. Three developments, which build on these testing preorders, are
of importance for ioco.

Firstly, a relation with more discriminating power than testing preorder was
defined in [40] by having more powerful testers which can detect not only the
occurrence of actions but also the absence of actions, i.e., refusals. We follow
[33] in modelling the observation of a refusal by adding a special label θ 6∈ L
to observers: TESTS = LTS(L ∪ {θ}). While observing a process, a transition
labelled with θ can only occur if no other transition is possible. In this way the
observer knows that the process under observation cannot perform the other
actions it offers. This is modelled using a parallel operator ⌉| which is the usual
synchronized parallel composition operator extended with the following inference
rule to cope with the refusal-detecting features of θ:

u θ−→u′, ∀a ∈ L : u
a

−−→/ or p
a

−−→/ ⊢ u⌉| p θ−→u′⌉| p

The implementation relation defined in this way is called refusal preorder.
A second development was the definition of a weaker implementation rela-

tion conf that is strongly related to testing preorder [11]. It is a modification
of testing preorder by restricting all observations to only those traces that are
contained in the specification s. This restriction is in particular used in con-
formance testing. It makes testing a lot easier: only traces of the specification
have to be considered, not the huge complement of this set, i.e., the traces not
explicitly specified. In other words, conf requires that an implementation does
what it should do, not that it does not do what it is not allowed to do. Sev-
eral test generation algorithms have been developed for the relation conf [41,
49], among which the canonical tester theory [8], corresponding tools have been
implemented [17, 2], and extensions have been studied [34, 16].

The third development of importance for ioco was the application of the
principles of testing preorder to Input/Output Automata in [42]. It was shown
that testing preorder coincides with quiescent trace preorder introduced in [46]
when requiring that inputs are always enabled.

The relation ioco inherits from all these developments. The definition of ioco

follows the principles of testing preorder (5) with tests that can also detect the
refusal of actions as in refusal preorder. Outputs and always enabled inputs are
distinguished analogous to IOA, and, moreover, a restriction is made to only the
traces of the specification as in conf . The resulting relation ioco can be defined
semi-formally as follows.

Let i ∈ IOTS(LI , LU), s ∈ LTS(LI ∪ LU) then

i ioco s ⇐⇒def ∀σ ∈ Straces(s) : out(i after σ) ⊆ out(s after σ)

where

– p after σ is the set of states in which transition system p can be after having
executed the trace σ.

– out(p after σ) is the set of output actions which may occur in some state
of p after σ . Additionally, the special action δ, indicating quiescence, may
occur if there is a quiescent state in p after σ .

– A state p is quiescent, denoted by p δ−→ p, if no output action can occur:
∀x ∈ LU : p

x
−−→/ .

– Straces(s) are the suspension traces of specification s, i.e., the traces in which
the special action δ may occur beside normal input and output actions.

!liq

?but?but

?but

!choc

r1

?but

?but

!liq

?but

?but

?but ?but

?but

!liq

?but

r2

!choc

?but

?but

?but

?but

/ioco

ioco

Fig. 1. (Non-)ioco-related input-output transition systems.

The relation ioco is chosen as implementation relation in our framework:
imp := ioco. Informally, an implementation i is ioco-correct with respect to
the specification s if i can never produce an output which could not have been
produced by s in the same situation, i.e., after the same suspension trace. More-
over, i may only be quiescent, i.e., produce no output at all, if s can do so.

Example 1. Figure 1 gives two input-output transition systems with LI = {?but}
and LU = {!liq, !choc} and their ioco-relation.
r1 /ioco r2 since out(r1 after ?but ·δ·?but) = {!liq, !choc},
while out(r2 after ?but ·δ·?but) = {!choc}.

For more details about the relation ioco, argumentation for its use, and for
more generic definitions we refer to [45]. New developments have led to a vari-
ant of ioco, called mioco, were explicit communication channels for actions are
distinguished. Moreover, this mioco-theory allows to include all testing-based
implementation relations, including refusal preorder, testing preorder, trace pre-
order, quiescent trace preorder and different variants of ioco and mioco, in a
single lattice [27, 25].

Tests Also TESTS is instantiated with transition systems, but this time we
add an extra label θ, as in [33], to model the detection of refusals, in particular
the detection of the refusal of all outputs, i.e., quiescence. Moreover, we restrict
tests to deterministic transition systems with finite behaviour, so that any test

execution is always finite and ends in a terminal state of the test case. We will
denote these terminal states as either pass or fail. Finally, we require that for
each non-terminal state s of a test case either init(s) = {a} for some a ∈ LI , or
init(s) = LU ∪ {θ}; init(t) is the set of initial actions of t: init(t) = {a|t a−→}.
So, the behaviour of a test case is described by a (finite) tree where in each
state either one specific input action can occur, or all outputs together with
the special action θ. The special label θ 6∈ L ∪ {δ} will be used in a test case
to detect quiescent states of an implementation, so it can be thought of as the
communicating counterpart of a δ-action. It will usually be implemented by a
kind of time-out.

Example 2. Figure 2 gives an example of a test case t.

?but

!choc

?but

θ

fail

!choc

θ

θ

fail

fail

passfail

fail

pass

!liq

!liq

!liq

!choc

Fig. 2. A test case t

Observations Observations are logs of actions, i.e., traces over L∪ {θ}: OBS :=
(L ∪ {θ})∗.

Observation function The observation function obs is defined by the synchro-
nized parallel composition of t and i ending in a final state of t:

obs(t, i) =def { σ ∈ (L ∪ θ)∗ | t⌉| i
σ

=⇒ t′⌉| i′, t′ = pass or t′ = fail }

Example 3. For r1 (figure 1) there are three observations with t of figure 2:

t⌉| r1

?but ·!liq
======⇒pass⌉| r′1

t⌉| r1

?but ·θ·?but ·!liq
===========⇒ fail⌉| r′′1

t⌉| r1

?but ·θ·?but ·!choc·θ
==============⇒pass⌉| r′′′1

where r′1, r′′1 , and r′′′1 are the leaves of r1 from left to right.

Verdicts The verdict assigned to a set of observations O ⊆ OBS is pass if all
traces in O lead to the terminal state pass of the test case:

νt(O) =def

{

pass if ∀σ ∈ O : t
σ

=⇒pass

fail otherwise

Example 4. Continuing example 3 we have that, since the terminal state of t for
the second run is fail, the verdict for r1 is fail. Similarly, it can be checked that
the verdict for r2 is pass.

Test execution Test execution exec(t, iut) should be correctly implemented,
i.e., it should be implemented such that it correctly reflects the semantics as
expressed by obs(t, iIUT) and establishes the test hypothesis.

Test derivation The following algorithm specifies the derivation of test cases
from a labelled transition system specification for the implementation relation
ioco. The test cases are denoted using a process-algebraic notation: “;” denotes
action prefix; “+” denotes choice; “Σ” denotes generalized choice. Moreover, for
S a set of states, S after a denotes the set of states which can be reached from
any state in S via action a.

Algorithm – ioco test derivation: Let s be a specification with initial state s0.
Let S be a non-empty set of states, with initially S = {s0}. Then a test case
t is obtained from S by a finite number of recursive applications of one of the
following three nondeterministic choices:

1. (∗ terminate the test case ∗)
t := pass

2. (∗ give a next input to the implementation ∗)
t := a ; t′ , if S after a 6= ∅
where a ∈ LI , and t′ is obtained by recursively applying the algorithm for
S′ = S after a .

3. (∗ check the next output of the implementation ∗)
t := Σ { x ; fail | x ∈ LU , x 6∈ out(S) }

+ Σ { θ ; fail | δ 6∈ out(S) }
+ Σ { x ; tx | x ∈ LU , x ∈ out(S) }
+ Σ { θ ; tθ | δ ∈ out(S) }

where tx and tθ are obtained by recursively applying the algorithm for
S after x and S after δ , respectively.

Given a specification s ∈ LTS(LI ∪ LU), this algorithm was proved in [45]
to produce only sound test cases, i.e., test cases which never produce fail while
testing an ioco-conforming implementation. Formally, let der be any function
satisfying the (nondeterministic) algorithm, then the following holds

∀i ∈ IOTS(LI , LU) : i ioco s =⇒ ∀t ∈ der(s) : νt(obs(t, i)) = pass

Moreover, it was shown in [45] that any non-conforming implementation can
always be detected by a test case generated with this algorithm, i.e., let Ts be
the set of all test cases which can be generated by the algorithm from s, then

∀i ∈ IOTS(LI , LU) : i ioco s ⇐= ∀t ∈ Ts : νt(obs(t, i)) = pass

Example 5. Using the ioco-test derivation algorithm the test case t of figure 2
can be derived from specification r2 in figure 1. This is consistent with fig-
ure 1 and example 4: r1 /ioco r2, r2 ioco r2 (ioco is reflexive), and in-
deed νt(obs(t, r1)) = fail, and νt(obs(t, r2)) = pass. So, test case t can
be used to detect that r1 is not ioco-correct with respect to r2.

5 Tools and an Application

The algorithm for ioco-test derivation has a wider applicability than candy
machines. Different tools have been built which implement, more or less strictly,
this algorithm. These include Tveda [39, 13], TGV [18] and TorX [4].

Tveda is a tool which is able to generate test cases in TTCN [31, part 3]
from single-process SDL specifications. Actually, it is interesting to note that
the test generation algorithm of Tveda was not based on the algorithm for
ioco-test derivation but on the intuition and heuristics of experienced test case
developers at France Telecom CNET. Only careful analysis afterwards showed
that this algorithm generates test cases for an implementation relation which
was called “R1” in [39] and which is almost the same as ioco.

The tool TGV generates tests in TTCN from LOTOS or SDL specifications.
It implements a test derivation algorithm for ioco with an unfair extension
for finite-state divergences. Moreover, it allows test purposes to be specified by
means of automata, which makes it possible to identify the parts of a specification
which are interesting from a testing point of view.

Whereas Tveda and TGV only support the test derivation process by deriv-
ing test suites and expressing them in TTCN, the tool TorX combines ioco-test
derivation and test execution in an integrated manner. This approach, where test
derivation and test execution occur simultaneously, is called on-the-fly testing.
Instead of deriving a complete test case, the test derivation process only derives
the next test event from the specification and this test event is immediately
executed. While executing a test case, only the necessary part of the test case
is considered: the test case is derived lazily (cf. lazy evaluation of functional
languages). This can reduce the effort needed for deriving a test case, see also
[48].

TorX is currently able to derive test cases from LOTOS and Promela
specifications, but since its implementation uses the Open/Cæsar interface
[20] for traversing through a labelled transition system, the tool can be easily
extended to any formalism with transition system semantics for which there is
an Open/Cæsar interface implementation available.

A simple experiment was conducted to show the viability and the practical
applicability of the ioco testing theory and the tool TorX [4]. For this ex-
periment a simple protocol, the Conference Protocol, was considered [19]. The

Conference Protocol resembles a “chatbox”. It offers to users the possibility to
join a group, to chat with the members of the group, and to leave the group. It
is implemented on top of the UDP protocol from the TCP/IP protocol suite.

Specifications in LOTOS and in Promela were developed for the Conference
Protocol. An implementation in the C programming language was developed,
too. From this implementation 27 (erroneous) mutants were derived. Moreover,
for benchmarking, an SDL specification was developed from which 13 TTCN
test cases were generated using the tool Autolink which is part of the SDL
tool set Tau [43].

The 28 different implementations were tested with respect to the LOTOS
and Promela specifications using TorX with the on-the-fly approach. All 25
ioco-incorrect mutants could be detected, based on the LOTOS as well as on
the Promela specification. The length of the test run, i.e., the number of test
events before the defect was detected, varied between 2 and 498 test events.
Two mutants, although differing from the specification, were ioco-correct, and
indeed no errors were found in these implementations. (These implementations
differed in traces not explicitly contained in the specification, i.e., traces σ, with
σ 6∈ Straces(s), cf. the definition of ioco in section 4).

While testing the ioco-correct implementations based on the LOTOS specifi-
cation, we were able to execute test runs consisting of 28,000 test events without
finding a discrepancy between implementation and specification. Then the infa-
mous message “out of memory” occurred while consuming 1.4 Gb. of memory.
Since our Promela implementation in TorX inherits the state-space explo-
ration algorithm from the very efficient model checker Spin [29], much longer
test runs could be made with Promela: 450,000 test events using 400 Mb.

Using the 13 SDL-derived test cases, 5 erroneous mutants slipped through the
testing procedure: they obtained a verdict pass. Although this experiment was
certainly not significant enough for a fair comparison between the tool TorX
and the commercial tool Autolink, we dare conclude that the ioco-based test
theory as implemented in TorX constitutes a sound, feasible, and practically
applicable approach for conformance testing based on formal methods.

6 Concluding Remarks

We have shown in this paper how formal methods can be used in conformance
testing. It can be concluded that the use of formal methods in testing has many
advantages. These advantages include

– a formal, thus more precise and less ambiguous specification of what should
be tested;

– formal preciseness and clarity in the properties that are being tested;

– formal reasoning about the validity of tests; and

– algorithmic generation of test cases, with the potential of automated test
case derivation.

The first advantage is already present in the testing process even if the testing
process itself is not formal. Analysis of practical testing processes shows that
most of the problems encountered are not due to the testing process itself but
to unclear, imprecise and ambiguous specifications. Formalizing these specifica-
tions helps in reducing testing problems even without any formal testing. This
is also one of the main conclusions of testing in the Bos-project where specifica-
tions were written in Z and Promela and testing was performed systematically
based on these formal specifications, but using manual, conventional techniques
without any formal derivation steps [22].

The third advantage addresses another practical testing problem, viz. that
the occurrence of a fail verdict does not always point to an error in the implemen-
tation. In many cases, sometimes up to 50%, the error is due to an erroneous
test case. Formal reasoning about conformance and about the validity of test
cases may help to alleviate this problem.

The second advantage opens ways to combine verification and testing in a
systematic and precise way. Some properties of a system may be verified while
others are tested.

The fourth advantage has the largest economic implications. By automation
the testing effort in software projects, which may currently take up to 40% of
software development costs, may be reduced significantly. And this can be a good
starting point for the introduction of formal methods in software development:
most likely, more people will invest in using formal methods if test cases are for
free once a formal system specification has been developed.

Formal verification does not make testing superfluous, nor does testing make
formal verification superfluous. They are complementary techniques for analysis
and checking of correctness of systems. While verification aims at proving prop-
erties about systems by formal manipulation on a mathematical model of the
system, testing is performed by exercising the real, executing implementation
(or an executable simulation model). Verification can give certainty about sat-
isfaction of a required property, but this certainty only applies to the model of
the system: any verification is only as good as the validity of the system model.
Testing, being based on observing only a small subset of all possible instances of
system behaviour, can never be complete: testing can only show the presence of
errors, not their absence. But since testing can be applied to the real implemen-
tation, it is useful in those cases when a valid and reliable model of the system
is difficult to build due to complexity, when the complete system is a combina-
tion of formal parts and parts which cannot be formally modelled (e.g., physical
devices), when the model is proprietary (e.g., third party testing), or when the
validity of a constructed model is to be checked with respect to the physical
implementation. Moreover, testing based on a formal specification only makes
sense if this specification can be assumed to be valid, i.e., has been sufficiently
verified.

A crucial point both in formal verification and in formal testing is the link
with the non-formal reality. In verification this occurs when a model of reality is
built for which informal arguments are given that it is a valid modelling of real-

ity. Subsequently, reasoning occurs completely in the formal domain under the
assumption that the formal results will also apply to reality if the model is valid.
In formal testing the link with reality is established using the test hypothesis.
Here, a model is assumed to exist in a particular formal domain. It is not nec-
essary that this model is available (then we could perform formal verification),
nor that we will ever be able to develop it. Moreover, it is assumed that the way
of doing experiments on the real system is modelled in a valid way by the formal
function obs . This incorporates, among others, that test cases are assumed to be
correctly implemented. Whether in formal testing or in verification, somewhere
the link to the non-formal reality has to be made. It is important to be aware
of the assumptions on which this is based, so that results are interpreted in the
right context and with the appropriate precautions.

The formal testing framework of section 3 and its instantiation in section 4
provide a good basis for testing with formal methods. But they also point to
some open problems. One of the most important ones is the problem of test

selection. The algorithm for ioco test derivation, and many other similar algo-
rithms, allow to derive infinitely many sound test cases. But which ones shall be
selected and executed? Can test suites be compared with respect to their error
detecting capabilities? Can measures be assigned to test suites expressing their
quality? Can the quality of an implementation passing a particular test suite
be quantified? To these questions there are not many usable answers, yet. So-
lutions can be sought by defining coverage measures, fault models, quantifying
test hypotheses, etc. [6, 32, 39, 9].

Acknowledgement

Numerous people, in particular the participants in the ISO/ITU-T standardiza-
tion group on “Formal Methods in Conformance Testing”, the partners in the
Côte de Resyste research project, testing engineers at CMG The Hague B.V.
and at CMG Finance B.V., and the members of the Formal Methods and Tools
group at the University of Twente, contributed to the developments described in
this paper by means of stimulating discussions or commenting on earlier papers,
for which I am grateful. Joost Katoen, René de Vries, Axel Belinfante and Jan
Feenstra are thanked for proof-reading.

References

1. S. Abramsky. Observational equivalence as a testing equivalence. Theoretical
Computer Science, 53(3):225–241, 1987.

2. R. Alderden. COOPER, the compositional construction of a canonical tester. In
S.T. Vuong, editor, FORTE’89, pages 13–17. North-Holland, 1990.

3. B. Beizer. Software Testing Techniques. Van Nostrand Reinhold, 1990.
4. A. Belinfante, J. Feenstra, R.G. de Vries, J. Tretmans, N. Goga, L. Feijs, S. Mauw,

and L. Heerink. Formal test automation: A simple experiment. In G. Csopaki,
S. Dibuz, and K. Tarnay, editors, 12th Int. Workshop on Testing of Communicating
Systems. Kluwer Academic Publishers, 1999.

5. J.A. Bergstra and J.W. Klop. Algebra of communicating processes with abstrac-
tion. Theoretical Computer Science, 37(1):77–121, 1985.

6. G. Bernot. Testing against formal specifications: A theoretical view. In S. Abram-
sky and T. S. E. Maibaum, editors, TAPSOFT’91, Volume 2, pages 99–119. Lecture
Notes in Computer Science 494, Springer-Verlag, 1991.

7. B. S. Bosik and M. Ü. Uyar. Finite state machine based formal methods in protocol
conformance testing: From theory to implementation. Computer Networks and
ISDN Systems, 22(1):7–33, 1991.

8. E. Brinksma. A theory for the derivation of tests. In S. Aggarwal and K. Sabnani,
editors, Protocol Specification, Testing, and Verification VIII, pages 63–74. North-
Holland, 1988.

9. E. Brinksma. On the coverage of partial validations. In M. Nivat, C.M.I. Rattray,
T. Rus, and G. Scollo, editors, AMAST’93, pages 247–254. BCS-FACS Workshops
in Computing Series, Springer-Verlag, 1993.

10. E. Brinksma, R. Alderden, R. Langerak, J. van de Lagemaat, and J. Tretmans. A
formal approach to conformance testing. In J. de Meer, L. Mackert, and W. Ef-
felsberg, editors, Second Int. Workshop on Protocol Test Systems, pages 349–363.
North-Holland, 1990.

11. E. Brinksma, G. Scollo, and C. Steenbergen. LOTOS specifications, their imple-
mentations and their tests. In G. von Bochmann and B. Sarikaya, editors, Protocol
Specification, Testing, and Verification VI, pages 349–360. North-Holland, 1987.

12. CCITT. Specification and Description Language (SDL). Recommendation Z.100.
ITU-T General Secretariat, Geneve, Switzerland, 1992.

13. M. Clatin. Manuel d’utilisation de TVEDA V3. Manual LAA/EIA/EVP/109,
France Télécom CNET LAA/EIA/EVP, Lannion, France, 1996.

14. R. De Nicola. Extensional equivalences for transition systems. Acta Informatica,
24:211–237, 1987.

15. R. De Nicola and M.C.B. Hennessy. Testing equivalences for processes. Theoretical
Computer Science, 34:83–133, 1984.

16. K. Drira. The refusal graph: a tradeoff between verification and test. In O. Rafiq,
editor, Sixth Int. Workshop on Protocol Test Systems, pages 297–312. North-
Holland, 1994.

17. H. Eertink. The implementation of a test derivation algorithm. Memorandum
INF-87-36, University of Twente, Enschede, The Netherlands, 1987.

18. J.-C. Fernandez, C. Jard, T. Jéron, and C. Viho. An experiment in automatic
generation of test suites for protocols with verification technology. Science of
Computer Programming – Special Issue on COST247, Verification and Validation
Methods for Formal Descriptions, 29(1–2):123–146, 1997.

19. L. Ferreira Pires. Protocol implementation: Manual for practical exercises
1995/1996. Lecture notes, University of Twente, Enschede, The Netherlands, Au-
gust 1995.

20. H. Garavel. Open/Cæsar: An open software architecture for verification, sim-
ulation, and testing. In B. Steffen, editor, Fourth Int. Workshop on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’98), pages 68–
84. Lecture Notes in Computer Science 1384, Springer-Verlag, 1998.

21. M.-C. Gaudel. Testing can be formal, too. In P.D. Mosses, M. Nielsen, and M.I.
Schwartzbach, editors, TAPSOFT’95: Theory and Practice of Software Develop-
ment, pages 82–96. Lecture Notes in Computer Science 915, Springer-Verlag, 1995.

22. W. Geurts, K. Wijbrans, and J. Tretmans. Testing and formal methods — Bos
project case study. In EuroSTAR’98: 6th European Int. Conference on Software

Testing, Analysis & Review, pages 215–229, Munich, Germany, November 30 –
December 1 1998.

23. R.J. van Glabbeek. The linear time – branching time spectrum. In J.C.M. Baeten
and J.W. Klop, editors, CONCUR’90, Lecture Notes in Computer Science 458,
pages 278–297. Springer-Verlag, 1990.

24. R.J. van Glabbeek. The linear time – branching time spectrum II (The semantics
of sequential systems with silent moves). In E. Best, editor, CONCUR’93, Lecture
Notes in Computer Science 715, pages 66–81. Springer-Verlag, 1993.

25. L. Heerink. Ins and Outs in Refusal Testing. PhD thesis, University of Twente,
Enschede, The Netherlands, 1998.

26. L. Heerink and J. Tretmans. Formal methods in conformance testing: A probabilis-
tic refinement. In B. Baumgarten, H.-J. Burkhardt, and A. Giessler, editors, Ninth
Int. Workshop on Testing of Communicating Systems, pages 261–276. Chapman
& Hall, 1996.

27. L. Heerink and J. Tretmans. Refusal testing for classes of transition systems with
inputs and outputs. In T. Mizuno, N. Shiratori, T. Higashino, and A. Togashi,
editors, Formal Desciption Techniques and Protocol Specification, Testing and Ver-
ification FORTE X /PSTV XVII ’97, pages 23–38. Chapman & Hall, 1997.

28. C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
29. G. J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall Inc.,

1991.
30. ISO. Information Processing Systems, Open Systems Interconnection, LOTOS - A

Formal Description Technique Based on the Temporal Ordering of Observational
Behaviour. International Standard IS-8807. ISO, Geneve, 1989.

31. ISO. Information Technology, Open Systems Interconnection, Conformance Test-
ing Methodology and Framework. International Standard IS-9646. ISO, Geneve,
1991. Also: CCITT X.290–X.294.

32. ISO/IEC JTC1/SC21 WG7, ITU-T SG 10/Q.8. Information Retrieval, Transfer
and Management for OSI; Framework: Formal Methods in Conformance Testing.
Committee Draft CD 13245-1, ITU-T proposed recommendation Z.500. ISO – ITU-
T, Geneve, 1996.

33. R. Langerak. A testing theory for LOTOS using deadlock detection. In
E. Brinksma, G. Scollo, and C. A. Vissers, editors, Protocol Specification, Test-
ing, and Verification IX, pages 87–98. North-Holland, 1990.

34. G. Leduc. A framework based on implementation relations for implementing LO-
TOS specifications. Computer Networks and ISDN Systems, 25(1):23–41, 1992.

35. D. Lee and M. Yannakakis. Principles and methods for testing finite state machines.
The Proceedings of the IEEE, August 1996.

36. N.A. Lynch and M.R. Tuttle. An introduction to Input/Output Automata. CWI
Quarterly, 2(3):219–246, 1989.

37. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
38. G.J. Myers. The Art of Software Testing. John Wiley & Sons Inc, 1979.
39. M. Phalippou. Relations d’Implantation et Hypothèses de Test sur des Automates

à Entrées et Sorties. PhD thesis, L’Université de Bordeaux I, France, 1994.
40. I. Phillips. Refusal testing. Theoretical Computer Science, 50(2):241–284, 1987.
41. D. H. Pitt and D. Freestone. The derivation of conformance tests from LOTOS

specifications. IEEE Transactions on Software Engineering, 16(12):1337–1343,
1990.

42. R. Segala. Quiescence, fairness, testing, and the notion of implementation. In
E. Best, editor, CONCUR’93, pages 324–338. Lecture Notes in Computer Science
715, Springer-Verlag, 1993.

43. Telelogic. Tau SDL Tool Set Documentation. Telelogic AB, Malmö, Sweden, 1998.
44. J. Tretmans. A formal approach to conformance testing. In O. Rafiq, editor, Sixth

Int. Workshop on Protocol Test Systems, number C-19 in IFIP Transactions, pages
257–276. North-Holland, 1994.

45. J. Tretmans. Test generation with inputs, outputs and repetitive quiescence.
Software—Concepts and Tools, 17(3):103–120, 1996.

46. F. Vaandrager. On the relationship between process algebra and Input/Output
Automata. In Logic in Computer Science, pages 387–398. Sixth Annual IEEE
Symposium, IEEE Computer Society Press, 1991.

47. L. Verhaard, J. Tretmans, P. Kars, and E. Brinksma. On asynchronous testing.
In G. von Bochmann, R. Dssouli, and A. Das, editors, Fifth Int. Workshop on
Protocol Test Systems, IFIP Transactions. North-Holland, 1993.

48. R.G. de Vries and J. Tretmans. On-the-Fly Conformance Testing using Spin.
In G. Holzmann, E. Najm, and A. Serhrouchni, editors, Fourth Workshop on
Automata Theoretic Verification with the Spin Model Checker, ENST 98 S 002,
pages 115–128, Paris, France, November 2 1998. Ecole Nationale Supérieure des
Télécommunications. Also to appear in Software Tools for Technology Transfer.

49. C. D. Wezeman. The CO-OP method for compositional derivation of conformance
testers. In E. Brinksma, G. Scollo, and C. A. Vissers, editors, Protocol Specification,
Testing, and Verification IX, pages 145–158. North-Holland, 1990.

