
23 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Interpretations of Extensible Objects and Types

Publisher:

Published version:

DOI:10.1007/3-540-48321-7_8

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Springer-Verlag

This is the author's manuscript

This version is available http://hdl.handle.net/2318/115010 since 2015-10-09T16:25:38Z



Interpretations of Extensible Objects and Types

Viviana Bono Michele Bugliesi
School of Computer Science Dipartimento di Informatica

The University of Birmingham Universit�a �Ca� Foscari� di Venezia
Edgbaston� Birmingham� B��	 TT� UK Via Torino ���� I
���
� Mestre� Italy

V�Bono�cs�bham�ac�uk michele�dsi�unive�it

Abstract� We present a type�theoretic encoding of extensible objects
and types� The ambient theory is a higher�order ��calculus with poly�
morphic types� recursive types and operators� and subtyping� Using this
theory� we give a type preserving and computationally adequate transla�
tion of a full��edged object calculus that includes object extension and
override� The translation specializes to calculi of nonextensible objects
and validates the expected subtyping relationships�

� Introduction

The attempt to reduce object
oriented programming to procedural or functional
programming is motivated by the desire to give sound and formal foundations
to object
oriented languages and their speci�c constructs and techniques� The
research in this area initiated with Cook�s work �Coo�
�Coo��� on the generator
model� and Kamin�s self�application semantics �Kam���� Re�ned formulations of
the generator model were later proposed by Bruce �Bru��� to give interpreta

tions of class�based object calculi� A number of encodings for object�based calculi
have then been formulated by Pierce and Turner �PT���� Abadi� Cardelli and
Viswanathan �AC���ACV���Vis���� Bruce� Pierce and Cardelli �BCP�
�� and by
Crary �Cra���� These interpretations apply to a rich variety of object calculi with
primitives of object formation� message send and �functional� method override�
they succeed in validating the operational semantics of these calculi as well as
the expected subtyping relations�

None of these proposals� however� scales to calculi of extensible objects� where
primitives are provided for modifying the size of an object with the addition
of new methods� Method addition poses two major problems� the �rst is the
need for MyType polymorphic typing of methods� to allow method types to be
specialized when methods are inherited� the second arises from the combination
of subtyping and object extension �FM����

The interpretation we present in this paper addresses both these problems�
Our source calculus features extensible objects in the spirit of the Lambda Cal�
culus of Objects �FHM��� and subsequent calculi �FM���BL���BB���� MyType
polymorphism is rendered via match
bounded polymorphism� as in the system
we developed in �BB���� Subtyping� is accounted for by distinguishing extensible
from nonextensible objects as suggested by Fisher and Mitchell in �FM����

As in other papers on encodings� our interpretation is a translation of the
source object calculus into a polymorphic �
calculus with recursive types and

�



�higher
order� subtyping� In the encoding� extensible objects are represented as
recursive records that include �selectable� methods� �method updaters� invoked
upon override� as well as �method generators� that reinstall selectable methods
upon extension� The contributions of our approach can be summarized as follows�

Firstly� it constitutes the �rst� interpretation of extensible objects into a fully
formal functional calculus� The interpretation is faithful to the source calculus�
as it is computationally adequate and validates the typing of terms�

Secondly� the translation specializes to the case of nonextensible objects� val

idating the expected subtypings� although we focus on one particular calculus �
speci�cally� on one approach to combining object extension with subtyping � the
translation is general enough to capture other notions of subtyping over object
types �notably� the notions of covariant and invariant subtyping of �AC�����

The rest of the paper is organized as follows� In Sections 	 and � we review
the object and functional calculi used in the translation� In Sections � and � we
describe the translation of extensible objects� In Section � we discuss the inter

pretation of nonextensible objects and various forms of subtyping relationships�
In Section 
 we discuss related work and some �nal remarks�

� Ob
�� Extensible Objects and Types

The source calculus of our translation� called Ob�� is essentially a typed version of
the Lambda Calculus of Objects of �FHM���� There are two di�erences from the
original proposal of �FHM���� �i� the syntax of Ob� is typed� and �ii� methods
are �
abstractions instead of the �
abstractions of �FHM���� The typed syntax
is useful in the translation� as it ensures that well
typed objects have unique
types� The choice of �
binders makes the syntax of Ob� a proper extension of the
the typed �
calculus of �AC���� and thus it facilitates comparisons with previous
translations in the literature�

Types and Terms� An object type has the form pro�X�hhmi�BifXgi�����n�ii� it de

notes the collection of objects with methods m�� � � � �mn that� when invoked�
return values of types B�� � � � � Bn� respectively� with every free occurrence of X
substituted by the pro
type itself� Types include type variables� denoted by X�
U� � � �� The syntax of terms is de�ned by the following productions�

a� b ��� x� variable

� �U� A�hmi � ��x � U�biii�����n� object �mi distinct�
a�� m�� �U� A���x � U�b object extension
a�m�� �U� A���x � U�b method override
a� m method invocation

An object is a collection of labelled methods� each method has a bound variable
that represents self� and a body� In the above productions� the type A is the type
of the object� and the type variable U is MyType� the type of self� This format

� But see �BDZ��� in these proceedings� for a similar approach�

	



of terms is inspired by �Rem�
� and �Liq�
�� Unlike those proposals� however�
we use two operators for overriding and extension� this choice is well motivated�
as the two operations are distinguished by our interpretation� The construct for
extension allows the addition of a single method� a simple generalization of the
syntax �and of the typing rules� would allow multiple simultaneous additions�
The relation of top
level reduction �cf� App� A� extends the reduction relation of
�AC���� with a clause for method additions �this clause simpli�es the correspond

ing clause used in �Rem�
��� The re�exive and transitive congruence generated

by reduction is denoted by
obj
����� results are terms in object form �cf� App� A��

We say that a closed term a converges � written a �obj � if there exists a result

v such that a
obj
���� v�

Type System� The type system of Ob� relies on the same form of �implicit� match

bounded polymorphism we studied in �BB��� for the Lambda Calculus of Objects
�FHM���� The typing rules �cf� App A� generalize the corresponding typing rules
of �AC��� for nonextensible objects� �Val Extend� requires the object a being
extended to be a pro
type� method addition is thus typed with exact knowledge
of the type of a� �Val Send� and �Val Override�� instead� are both structural�
in the sense of �ACV���� In both rules� the type A may either unknown �i�e� a
type variable�� or a pro
type� When A is a pro
type� the operation �invocation
or override� is external� when it is a type variable� the operation is self�in�icted�
in both cases� A� �hence the object a�� is required to have a method m with type
B� In �Val Override�� the typing of the method ensures that the new body has
the same type as the original method� the bound for the type variable U� denoted
by � hAi� is either A� if A is a pro
type� or the current bound for A declared in
the context � �

� The Functional Calculus F����

The target calculus of the translation is F����� a variant of the omega
order poly

morphic �
calculus F�

�� with �higher
order� subtyping� extended with recursive
types and operators� recursive functions and records� and local de�nitions� Types
and type operators are collectively called constructors� A type operator is a func

tion from types to types� The notation A �� K indicates that the constructor A

has kind K� where K is either T� the kind of types� or K� K� the kind of type
operators� The typing rules are standard �see �AC���� Chap� 	��� The following
notation is used throughout� Op stands for the kind T � T� A � B denotes
subtyping over type operators� if A is a constructor of kind Op� A � denotes the
�xed point ��X�A �X� of A � dually� for A �� T 	 ��X�B �X�� A op is the type opera

tor ��X�B �X� �� Op corresponding to A � The syntax of types and terms� and the

reduction rules for F���� are standard �cf� App� B�� Evaluation� denoted by
fun
�����

is the transitive and re�exive congruence generated by reduction� results include
�
abstractions and records� We say that a closed term a converges � written

a �fun v � if there exists a result v such that a
fun
���� v�

�



� Overview of the Translation

Looking at the typing rules of Ob�� we may identify two distinguished views
of methods� the internal view� in which methods are concrete values� and the
external view where methods may be seen as �abstract services� that can be
accessed via message sends� The polymorphic typing of methods re�ects the
internal view� while the external view is provided by the types of methods in the
object types� Based on this observation� our translation splits methods into two
parts� in ways similar to� but di�erent from� the translation of �ACV���� Each

method mi is represented by two components� mpoly
i � associated with the actual

method body� and msel
i which is selected by a message send�

Given A 	 pro�X�hhmi � BifXgii
i�����n�� the msel

i components are collected in
the abstract interface associated with A� which is represented by the type opera

tor A in 	 ��X��msel

i � B ifXg�i�����n� �here� and below� B i is the translation of Bi��

The type A� instead� is represented as the recursive record type A � ��X��mpoly
i �


�U � A
in�U��B ifU

�g� msel
i � B ifXg�

i�����n�� Note that the polymorphic compo

nents are exposed in the type� as they will be needed in the interpretation of
object extension� The translation of objects parallels this interpretation of object
types� Letting A

op 	 ��X��mpoly
i � 
�U � A

in�U��B ifU�g� msel
i � B ifXg�i�����n��

the translation of an object � �X� A�hmi � ��x � X�biii�����n� is the recursive

record satisfying the equation a � �mpoly
i � ��U � A

in ���x � U�� �� bi �� �m
sel
i �

a�m
poly
i �A op ��a��i�����n�� where �� bi �� is the translation of the body bi� Method

bodies� labelled by the mpoly
i �s� are represented as polymorphic functions of the

self parameter� whose type is U�� the �xed point of the type operator U� The
constraint U � A

in ensures that U� contains all the msel
i �s� thus allowing each

method to invoke its sibling methods via self� The msel
i components� in turn� are

formed by self
application� method invocation for each mi may then safely be
interpreted as record selection on msel

i �

Method Override� Method override is accounted for by extending the interpreta

tion of objects with a collection of updaters� as in �ACV���� In the new transla


tion� each method mi is split in three parts� introducing the updater mupd
i � The

function of the updater is to take the method body supplied in the override and
return a new object with the new body installed in place of the original� overrid

ingmi is thus translated by a simple call tomupd

i � The typing of updaters requires
a di�erent� and more complex de�nition of the abstract interface� The problem
arises from self
in�icted overrides� if a self
in�icted override is to be translated
as a call to the updater� the updater itself must be exposed in the interface
A
in used in the type of the polymorphic components� But then� since the poly


morphic components and the updaters must be typed consistently� the updaters
must be exposed in the interface A in used in the type of the updaters themselves�
This leads to a de�nition of the interface as the type operator that satis�es the
equation A

in � ��X��mupd
i � �
�U � A

in�U��B ifU�g��X� msel
i � B ifXg��

�



� The Translation� Formally

The translation is given parametrically on contexts� Parameterization on con

texts is required to ensure a well
de�ned translation of type variables�

Table �� Translation of Types

A � pro�X	hhmi � BifXgiii�����n�

��� �� X�
A�� �� � X �� in
�
� X

��� � A �� in
�
� ��Y	��X	� mupd

i
� ���U � Y	U�� ���� X � BifXg �� tyfX��U�g	�X�

msel
i � ���� X � BifXg ��

ty�i�����n�	

��� �� X�
A�� �� � X ��op
�
� X

��� � A ��op
�
� ��X	� ext � ��U � ��� � A �� in	U��U�

mpoly
i � ��U � ��� � A �� in	U�� ���� X � BifXg ��

tyfX��U�g�

mupd
i

� ���U � ��� � A �� in	U�� ���� X � BifXg �� tyfX��U�g	�X�

msel
i � ���� X � BifXg ��

ty�i�����n�

��� �� X� � �� � X �� ty
�
� X

��� �� X�
A�� �� � X �� ty
�
� X�

��� � A �� ty
�
� ��X	� ext � ��U � ��� � A �� in	U��U�

mpoly
i � ��U � ��� � A �� in	U�� ���� X � BifXg ��

tyfX��U�g�

mupd
i

� ���U � ��� � A �� in	U�� ���� X � BifXg �� tyfX��U�g	�X�

msel
i � ���� X � BifXg ��

ty�i�����n�

The translation of types is by structural induction� As in �AC���� the treatment of
object types depends on the context where they are used� in certain contexts they
are interpreted as type operators� while in other contexts they are interpreted as
types� From the translation of contexts and judgments �cf� Table ��� we see that
�� � �� in and �� � �� ty are used� respectively� in typing statements of the form a � A�
and matching statements of the form A��B� The translation �� � �� op is used in
the translation of terms in Table 	 below� which also explains the presence of
the ext �eld in �� � �� ty and �� � �� op�

For the translation of terms� we �rst introduce a recursive function that forms
the �recursive fold of� the record with the m

poly
i � msel

i and m
upd
i components�

together with the ext �eld needed to encode object extension� There is one such
function for each type object type A�

letrec mkobjA�fi � ��U � ��� � A 		 in
U��B ifU
�gi�����n�
 � ��� � A 		 ty �

let SELF � ��� � A 		 ty � mkobjA�f�
 � � � �fn
 in
fold� ��� � A 		 ty�

�ext � ��U � ��� � A 		 in
��x � U�
x

mpoly
i � fi�

mupd
i � ��g � ��U � ��� � A 		 in
U��B ifU

�g
mkobjA�f�
 � � � �g
 � � � �fn
�

msel
i � unfold�SELF
�mpoly

i � ��� � A 		 op
�SELF
	i�����n�


where A � pro�X
hhmi � BifXgii
i�����n�� and B ifU

�g � ���� X � BifXg 		
tyfX��U�g�

�



Table �� Translation of Terms

��� � � �U� A	hmi � ��x � U	bii
i�����n� ��

�
�

mkobjA�	�U � ��� � A �� in	��s � U�	 ���� U�
A� s � U � bi �� i�����n�	

where A � pro�X	hhmi � BifXgiii�����n�

��� � a�� mn�� � � �U� A�	��x � U	b ��
�
�

a
ext � ��� � A ��op	 �mkobjA� �a
m�
poly	 � � � �a
mn

poly	 �	�U � ��� � A� �� in	b		

where A � pro�X	hhmi � BifXgii
i�����n�� A� � pro�X	hhmi � BifXgii

i�����n����

a � ��� � a �� � and b � ��x�U�	 ���� U�
A�� x�U � b ��

��� � a� m � � �U� A	��x � U	b ��
�
�

unfold� ��� � a �� 	
mupd�	�U � ��� � � hAi �� in	��x � U�	 ���� U�
� hAi� x�U � b �� 	

��� � a� m ��
�
� unfold� ��� � a �� 	
msel

In the clause for object formation� the typing of the msel
i components requires

the relation ��� 	 A �� op�� ��� 	 A �� in� which is derived by �rst unrolling the
�xed
point� and then applying the rules for constructor subtyping�

A method addition forms a new object by applying mkobjA� �A� is the
type of the extended object� to the �translation of� the method bodies of the
original object a� and to the newly added method� Selecting the ext �eld from
a� � the object being extended � guarantees that a is evaluated prior to the
extension� this is required for computational adequacy as the reduction rules of
Ob� do require a to be in object form prior to reducing a method addition� The
call to mkobjA� is well typed� as every mpoly

i � 
�U � A
in�U��B ifU�g may be

given� by subsumption� the type 
�U � �A � �in�U��B ifU�g� using ��� 	 A
� �� in �

��� 	 A �� in� which holds as ��� 	 A �� in is covariant in the bound variable Y�
The translation of method invocation and override on a method m are trans


lated by a call to the corresponding components� msel or mupd� In both cases� a
recursive unfold is required prior to accessing the desired component�

The translation of contexts and judgments is obtained directly from the trans

lation of types and terms�

Table �� Translation of Contexts and Judgments

��� � 	 ��
�
� ��� �� � 
 ��� � A�
B ��

�
� ��� �� � ��� � A �� in � ��� � B �� in

��� � A ��
�
� ��� �� � ��� � A �� ty ��� � a � A ��

�
� ��� �� � ��� � a �� � ��� � A �� ty

We note that the translation of a judgment does not depend on its derivation in
Ob�� as in �ACV���� we can thus avoid coherence issues in our proofs�

Theorem � �Validation of Typing�� If � � a is derivable in Ob�� then�

�� ��� �� � ��� 	 a �� � ��� 	 A �� ty is derivable in F�����

�� if a
obj
���� b� then ��� 	 a ��

fun
���� ��� 	 b �� �

Theorem � �Computational Adequacy�� Let a be an Ob� term such that

 � a � A is derivable in Ob�� Then a �obj if and only if �� 
 	 a �� �fun�

�



� Subtyping and Nonextensible Objects

The combination of object extension with subtyping has been studied from two
orthogonal points of view in the literature� either limit subtyping in the presence
of object extension� or distinguish extensible from nonextensible objects and
disallow subtyping on the former while allowing it on the latter� Below� we focus
on the second approach� deferring a discussion on the �rst to the full paper�

The idea of distinguishing between extensible and nonextensible objects was
�rst proposed by Fisher and Mitchell in �FM���� to which the reader is referred
to for details� Below� instead� we show that this idea allows di�erent subtype
relations to be formalized uniformly within the same framework�

Nonextensible objects are accounted for in Ob� by introducing new types�
contexts� and judgments as in the system Ob

�
�� �cf� Appendix A��

Table �� Translation for Ob����

Types and Contexts Judgments

����� X��A�� �� � X �� ty
�
� X ��� � A��B ��

�
� ��� �� � ��� � A �� ty�� ��� � B �� ty

���� X��A ��
�
� ��� �� � X�� ��� � A �� ty

A further clause handles the translation of nonextensible object types� the format
of this clause depends on how these types and the corresponding subtyping
relation are de�ned� Below� we illustrate two cases�

Covariant Subtyping 	a la Fisher 
 Mitchell��
� The new types have the form
obj�X�hhmi�BifXgiii�����n�� and their reading is similar to that of the pro
types
of Section 	� unlike pro
typed objects� however� obj
typed objects may not be
modi�ed or extended from the outside� pro and obj types are ordered by sub

typing� as established by the rule �Sub probj FM��� �in Appendix�� Informally�
pro
types may only be promoted to obj
types� not to other pro
types� hence
only re�exive subtyping is available for pro
type� as required for the sound

ness of method addition and override� This subtyping rule allows subtyping
both in width and depth� since elements of obj
types may not be overridden
or extended� this powerful form of subtyping is sound� We note that the covari

ance condition �� Y� X�� Y � BifXg��B�

ifYg is required also for the subtyping
pro�X�hhmi�BifXgiii�����n��� obj�Y�hhmi�BifYgiii�����n�� as discussed in �FM��� co

variance is crucial for subject
reduction� our translation� given below� explains
why it is generally required for soundness�

Translation for obj types�

��� � obj�X	hhmi � BifXgiii�����n� �� ty
�
� ��X	�msel

i � ���� X � BifXg �� ty�i�����n�

The translation �which coincides with the standard recursive
record encod

ing� explains why obj
typed objects may not be extended or overridden� this is
easily seen once we note that their type hides the polymorphic methods and






the updaters� Self
in�icted updates� instead� are still allowed� as in �FM����
This also explains why subtyping between pro and obj types is only allowed
to covariant occurrences of the recursion variable� To exemplify� consider a term
e� � �� pro�x�hhm � X�Bii �� ty� and assume that we allow e� to be viewed as an
element of �� obj�x�hhm � X�Bii �� ty� Now� given e� � �� obj�x�hhm � X�Bii �� ty� the
interpretation of e� � m�e�� is not sound� as the code of m in e� could use a
self�in�icted update that is not available in the code for m in e� �consider that
e� may not have the polymorphic methods available in e���

Theorem � �Validation of Fisher�Mitchell Subtyping�� If � � A��B is
derivable in Ob

�
��� �using �Sub probj FM��� for object subtyping� then the judg�

ment ��� �� � ��� 	 A �� ty�� ��� 	 B �� ty is derivable in F�����

Invariant Subtyping for Covariant Self Types 	a la Abadi 
 Cardelli���� Covari

ant Self Types� denoted here by the type expression objAC�X�hhmi � BifXgii

i�����n�

are described in �AC��� �cf� Chaps� ��� ���� They share several features with the
obj
types of �FM���� notably the fact that both describe collections of nonex

tensible objects� However� they have important speci�cities� �i� method override
is a legal operation on elements of objAC types� and �ii� subtyping over objAC
types is only allowed in width� and de�ned by the rule �Sub probj AC��� �cf�
Appendix�� A translation that validates that rule is given below�

Translation of objAC Types

Let A � objAC�X	hhmi � BifXgiii�����n�� and let ��� � A �� in be de
ned as in Table ��

��� � A �� ty
�
� ��X	� mupd

i � ���U � ��� � A �� in	U�� ���� X � BifXg ��
tyfX��U�g	�X�

msel
i � ���� X � BifXg �� ty�i�����n�

Note how the updaters are exposed by the translation� thus making the trans

lation of overrides well typed� Each of the component Bi is invariant in the
translated type� as a result of a contravariant occurrence in the updater�s type�
and of a covariant occurrence in the selector�s type�

Theorem � �Validation of Abadi�Cardelli Subtyping�� If � � A��B is
derivable in Ob

�
��� �using �Sub probj AC��� for object subtyping� then the judg�

ment ��� �� � ��� 	 A �� ty�� ��� 	 B �� ty is derivable in F�����

Invariant Subtyping� In �ACV���� an encoding is presented that validates in

variant subtyping for object types� without requiring the covariance restriction
for the component types� However� as discussed in �AC���� covariance is critical
for sound method invocations� brie�y� the problem arises with binary methods�
since the use of bounded abstraction in the coding of the binder objAC makes
the type of self unique� hence di�erent from any other type� The same prob

lem a�ects the coding of �ACV���� only covariant methods may be e�ectively
invoked�

�



An interpretation with the same properties may be obtained from our trans

lation� Given the type objAC�X�hhmi�BifXgiii�����n�� invariant subtyping may be
rendered by exposing the updaters of all the mi�s methods� while hiding the se

lectors of all the mi�s whose type Bi is not covariant in the bound variable� This
translation would be the exact equivalent of that proposed in �ACV���� it would
validate invariant subtyping� and allow invocation only for covariant methods�

	 Related Work

The idea to split methods into di�erent components is inspired by the object en

coding of �ACV���� That translation applies only to nonextensible objects� which
are encoded by a combined use of recursive and bounded existential types� subse

quently named ORBE encoding �BCP�
�� Our translation� instead� uses a combi

nation of recursion and universal quanti�cation to render MyType polymorphism�
We are then able to obtain a corresponding translation for nonextensible objects
with essentially equivalent results as �ACV����

A variant of the ORBE encoding that does not use existential types is proposed
in �AC��� �Chap� ���� our translation can be viewed as an extension of that
encoding to handle primitives of method addition�

Other� more recent papers have studied object encodings� In �Cra���� Crary
proposed a simpler alternative to the ORBE encoding for nonextensible objects
based on a combination of existential and intersection types� In �Vis��� Vis

vanathan gives a full
abstract translation for �rst
order objects with recursive
types �but no Self Types�� Again� the translation does not handle extensible ob

jects� In �BDZ���� Boudol and Dal
Zilio study an encoding for extensible objects
that relies on essentially the same idea used in our interpretation� namely the
representation of extensible objects as a pair of a generator and a non extensi

ble object� The di�erence is that �BDZ��� uses extensible records in the target
calculus to model object generators in ways similar to �Coo����

References

�AC�
	 M� Abadi and L� Cardelli� On Subtyping and Matching� In Proceedings of

ECOOP���� European Conference on Object�Oriented Programming� volume
�
� of LNCS� pages ��
����� Springer�Verlag� August ���
�

�AC��	 M� Abadi and L� Cardelli� A Theory of Objects� Monographs in Computer
Science� Springer� �����

�ACV��	 M� Abadi� L� Cardelli� and R� Viswanathan� An Iterpretation of Objects and
Object Types� In Proc� of POPL���� pages �������� �����

�BB��	 V� Bono and M� Bugliesi� Matching for the Lambda Calculus of Objects�
Theoretical Computer Science� ����� To appear�

�BCP��	 K� Bruce� L� Cardelli� and B� Pierce� Comparing Object Encodings� In Proc�

of TACS��	� volume ���� of Lecture Notes in Computer Science� pages ��
�
���� Springer�Verlag� �����

�BDZ��	 G� Boudol and S� Dal�Zilio� An interpretation of extensible objects� In Pro�

ceedings of FCT���� �����

�



�BL�
	 V� Bono and L� Liquori� A Subtyping for the Fisher�Honsell�Mitchell Lambda
Calculus of Objects� In Proc� of CSL� volume ��� of Lecture Notes in Com�

puter Science� pages ������ Springer�Verlag� ���
�

�Bru��	 K�B� Bruce� A Paradigmatic Object�Oriented Programming Language� De�
sign� Static Typing and Semantcs� Journal of Functional Programming�
���
��������� �����

�Coo��	 W� Cook� A Self�ish Model of Inheritance� Manuscript� �����

�Coo��	 W�R� Cook� A Denotational Semantics of Inheritance� PhD thesis� Brown
University� �����

�Cra��	 K� Crary� Simple� e�cient object encoding using intersection types� Technical
report� Cornell University� April �����

�FHM��	 K� Fisher� F� Honsell� and J� C� Mitchell� A Lambda Calculus of Objects
and Method Specialization� Nordic Journal of Computing� ���
������ �����

�FM�
	 K� Fisher and J� C� Mitchell� A Delegation�based Object Calculus with Sub�
typing� In Proc� of FCT� volume ��
 of Lecture Notes in Computer Science�
pages ������ Springer�Verlag� ���
�

�Kam��	 S� Kamin� Inheritance in Smalltalk���� a denotational de�nition� In Proc� of

POPL�

� pages ������ ACM Press� �����

�Liq��	 L� Liquori� An Extended Theory of Primitive Objects� First Oder System� In
Proc� of ECOOP� volume ���� of Lecture Notes in Computer Science� pages
�������� Springer�Verlag� �����

�PT��	 B� Pierce and D� Turner� Simple type�theoretic foundations for object�
oriented programming� Journal of Functional Programming� ���
���������
�����

�Rem��	 D� Remy� From classes to objects� via subsumption� Technical report� INRIA�
����� Also in Proceeding of ESOP����

�Vis��	 R� Viswanathan� Full abstraction for �rst�order objects with recursive types
and subtyping� In Proc� of LICS��
� pages �������� �����

A The Source Calculus

Reduction
a � � �U� A
hmi � ��x � U
bii

i�����n�

�Call
 �j � ����n	

a� mj � �a�x	bj
�Extend
 mn�� �� fm�� ��� mng

a	� mn�� � � �U� A�
��x � U
b � � �U� A�
hmi � ��x � U
bii
i�����n���

�Override
 �j � ����n	


a	 mj � � �U� A
��x � U
b � � �U� A
hmi � ��x � U
bi�mj � ��x � U
bii�����n��fjg

Results v ��� � �U� A	hmi � ��x � U	bii
i�����n�

Context Formation � Ob�

�Ctx �	

� � �

�Ctx x	

� � A x �� Dom�� 	

�� x � A � �

�Ctx Match	

� � A U �� Dom�� 	

�� U�
A � �

�Ctx X	

� � � X �� Dom�� 	

�� X � �

��



Type formation � Ob�

�Type Match U	

� �� U�
A�� �� � �

� �� U�
A�� �� � U

�Type X	

� �� X� � �� � �

� �� X� � �� � X

�Type pro	

�� X � Ai

� � pro�X	hhmi�Aiii
i�I

Term Formation � Ob� The notation � hAi in �Val Override	 is de�ned as follows�

� hAi � A if A is a pro�type

� hAi � A� if A � U� and U��
A� � � �

�Val x	

� �� x � A�� �� � �

� �� x � A�� �� � x � A

�Val Override	

� � a � A � � A�
 pro�X	hhm � BfXgii

�� U�
� hAi� x � U � b � BfUg

� � a	 m�� �U� A	��x � U	b � A

�Val Send	

� � e � A
� � A�
 pro�X	hhm�BfXgii

� � e 
 m � BfAg

�Val Extend	

�A � pro�X	hhmi�BifXgii
i�����n�

A� � pro�X	hhmi�BifXgii
i�����n���	

� � a � A �� U�
Aext� x � U � b � Bn��fUg

� � a	� � �U� A�	mn�� � ��x � U	b � A�

�Val Object	

�A � pro�X	hhmi�BifXgii
i�����n�	

�� U�
A� x � U � bi � BifUg �i � ����n�

� � � �U� A	hmi � ��x � U	bii
i�����n� � A

Matching � Ob�

�Match U	

� �� U�
A�� �� � �

� �� U�
A�� �� � U�
A

�Match Re�	

� �� U�
A�� �� � U

� �� U�
A�� �� � U�
 U

�Match Trans	

� � u�
B � � B�
A

� � U�
A

�Match pro	

� � pro�X	hhmi�BifXgii
i�����n�k�

� � pro�X	hhmi�BifXgii
i�����n�k��
 pro�X	hhmi�BifXgii

i�����n�

Context and Type Formation � Ob���

�Ctx Sub	

� � A U �� Dom�� 	

�� U��A � �

�Type obj	

�� X � Bi �i � ����n�

� � obj�X	hhmi�Biii
i�����n�

Term Formation � Ob���

�Val Send Obj	

� � e � A �A � obj�X	hhmi�BifXgii
i�����n�� j � ����n�	

� � e 
 mj � BjfAg

�Val Subsumption	

� � e � A � � A��B

� � e � B

��



Subtyping � Ob
�
��

�Sub U	

� �� U��A�� �� � �

� �� U��A�� �� � U��A

�Sub Re�	

� � A

� � A��A

�Sub Trans	

� � A���A� � � A� ��A�

� � A� ��A�

�Sub probj FM��	

�� Y� X�� Y � B�

ifXg��BifYg �i � ����n�

� � probj�X	hhmi�B
�

ifXgii
i�����n�k��� obj�Y	hhBifYgii

i�����n�

�Sub probj AC��	

�� X � BifXg Bi covariant in X �i � ����n� k�

� � probjAC�X	hhmi � BifXgii
i�����n�k��� objAC�X	hhmi � BifXgii

i�����n�

B The Target Calculus F����

Syntax

K ��� Kinds

T types
K
 K type operators

A � B ��� Constructors

X constructor variable
� greatest constructor of kind T
A�B function type
�m� � B � � � � �mk � B 	 record type
��X	� A �� K
A bounded universal type

�X
A recursive type
��X �� K
B operator
B �A 
 operator application

e ��� Expressions

x variables
��x � A 
 e abstraction
e� e� application
��X	� A �� K
 e type�abstraction
e A type�application
�m� � e�� � � � � mk � ek	 record
e�m record selection
fold�A � e
 recursive fold
unfold�e
 recursive unfold
let x � e� in e� local de�nition
letrec f�x � A 
 � B � e� in e� recursive local de�nition

Reduction

���	 ���x � A 	e� 	 e� � �e��x� e� �select	 �mi � ei�i�����n�
mj � ej �j � ��

n�	

���	 �	�X � A 	e� 	 B � �B �X� e� �unfold	 unfold�fold�A � e		 � e

Results v ��� 	�x � A 	 e j �m� � e�� � � � �mk � ek� j fold�A � e	 j 
�X��A ��K	 e

�	


