
Discreet Solitary Games

Claude CrCpeau’* and Joe Kilian2

LIENS (CNRS URA 1327),
45 rue d’Ulm, 75230 Paris CEDEX 05, FRANCE.

e-mail: crepeauQdmi.ens.fr.
NEC Research Institute,

4 Independence Way, Room 1CO1,
South Brunswick, NJ 08540, USA.
e-mail: joeOresearch.nj .nec.com.

Abstract. Cryptographic techniques have been used intensively in the
past to show how to play multiparty games in an adversarial scenario.
We now investigate the cryptographic power of a deck of cards in a
solitary scenario. In particular, we show how a person can select a random
permutation satisfying a certain criterion dixree t ly (without knowing
which one was picked) using a simple deck of cards. We also show how
it is possible using cards to play games of partial information such-as
POKER, BRIDGE and other carda games in solitary.

1 Introduction

It’s nearly Christmas time and you have to buy presents for your family and
friends. Indeed, among certain families there is a more economical approach to
this situation than buying one present per person: each member of a group picks
the name of another member and becomes responsible for buying that person
a present. That way everybody gets something but each person buys a single
present. Traditionally, the one person each member is responsible for is allocated
at random using the “names-in-the-hat” technique: each person puts its name
in a common hat and then everybody picks a name at random from the hat. If
by accident one picks his own name, he puts it back, otherwise he is responsible
for the present of the person he picked. To put it abstractly, the goal is for the
n persons involved to pick a random permutation T in a way that each of them
pi knows nothing but ~ (i) .

Indeed the “names-in-the-hat” technique leaks some information since par-
ticipant pi who picks his own name learns that p l , ...,pi-l did not pick his name.
In order for this technique not t o leak information whatsoever, it is necessary
to start from scratch each time someone picks his own name. One can check
fairly easily that a random permutation of n elements will have no fixed point
with probability roughly 5. Therefore, a completely secret permutation should
be found after roughly e trials.
~

* This work was performed while visiting NEC Research Institute in the spring of 1992.

D.R. Stinson (Ed.): Advances in Cryptology - CRYPT0 ’93, LNCS 773, pp. 319-330, 1994.
0 Spnnger-Verlag Berlin Heidelberg 1994

32 0

Now consider the scenario where the members of this family cannot be gath-
ered in a room to do the “names-in-the-hat” technique, for instance if some of
them live abroad in several different countries. How can such a permutation be
chosen locally, for instance by a single person without that person knowing the
chosen permutation but knowing that it has no fixed point?

1.1 Related Work

Cryptography and card playing have a long history of connections. There has
been substantial work on implementing card games using cryptography [SRA81,
GM82, BF83, FM85, Yun85, Cr686, CrC87, GMW87, CCD88, BOGW88, RBI.
Conversely, a number of researchers have considered mechanisms for implement-
ing cryptographic primitives based on card games. Winkler [Wintila, Winglb,
Win831 shows how two bridge players can securely communicate during the bid-
ding process. More recently, Fischer, Paterson and Rackoff [FPRSl] and Fischer
and Wright [FW92, FWSS] give a number of secret-key exchange protocols based
on random card deals. Den Boer (den901 gives a protocol by which two parties
may securely compute the AND function, based on the ability to make an obliv-
ioua cut on a deck of cards. We also base our protocol on oblivious cuts, and use
a modified form of the secure AND protocol as a subroutine.

The novel contribution of our work is to provide a new scenario of a single
person using cryptographic techniques as building blocs for playing sophisticated
solitary games.

1.2 The Scenario

We consider this question in an honest but non-oblivious scenario. One person is
going to be responsible for picking this permutation and will do this following
a protocol we describe (it does not make much sense to try to prevent someone
to cheat himself). At no point this person will be asked to forget information
it has seen or can deduce from what it saw. Nevertheless we assume that an
operation such as choosing a secret random cyclic shift of a set of objects (you
may think of randomly cutting a deck of cards) is available t o that person in
order to create (unknown) randomness in his data. We will show how this person
can pick a random permutation on the numbers 1,2, ..., n and verify that it has
no fixed point, learning no information whitsoever about which permutation was
chosen. We qualify this process of “discreet”. We also generalize this problem to
the extent that we show how any “solitary game” can be played “discreetly” as
long as there exist some polynomial size circuit t o describe it.

We work with the following alphabet (each value can be thought as a suit in
a deck of cards):

{ E Em7m a}
The value 1_1_1 representing any of the first four but face down on the table. We
assume that d copies of one of these 5 elements are indistinguishable from one
another. We define two notations on the basic elements for the rest of this paper:

32 1

Definition 1 (c z c 2 ... c k) . For any symbols c 1 , c 2 , ... C k , we write (C I C ~ ... c k) to r e p
resent the elements of { C 1 c 2 . . . C k , C 2 C 3 . . . C k c 1 , ..., ckc1 ... C k - l } , that is any cyclic
permutation of c l c 2 ... C k .

indeed (C I C 2 ... C k) is the equivalence class of strings equivalent up to a cyclic
permutation.

Definition2 (q c 2 ... c k) . For any symbols ~ 1 ~ ~ 2 , ... c k , we write (c 1 c 2 ... c k) to ex-
press the fact that this string is obtained by a random cyclic shift, meaning that
it is replaced by a random element of (clc2 ... ck).

for instance, - (~) + ~ ~

2 A Solution to the “no-fixed Point” Problem

For the solution to our first problem we use the following trivial coding:

m= o,m= 1.

A sequcnce of n bits is associated to each participant p i . Initially, to p; associate
the sequence of n except in position i where it is a Lrr_l.

Then construct a long sequence by putting each of these Bequences side by side,
separated by markers made of f I . p s followed by 8 ms

Apply them a random cyclic shift

(~ 1 . . . ~ . . l q q q q q . . l 1 I ? 1 7 I ? I ? t . . D . . M / . . W { . .

322

...(?-qq-q.
If the first element of the result is a or a It] then hide it and generate another
random cyclic shift until you find am or LtJ. When the first element is a then
open values forward until you show f and then enough values backwards
to show 5 ms. When you find a first, proceed in the reverse order.

. . .mi..rqqqqq\. .p-J * .[qq-q-qq ..m\ * ,

. . .m.. .m.. .PI. .-I. .ltl?l?T?1"1.. .n. .[-
Get rid of the marker and extract the random entry for n(1) located in the n
d u e s following the opened marker and associate it to pl.

Apply the same process to the remaining values

. . . [- q - q q . . ~ \ . . ~ . . [1 J ? I ? J ? I 1 ~ . . ~ ~ . . p J . . T ; T ; 1)

in order to select a random entry for ~ (2) .

742)

. . .~~ . .pTqqqT/ . . .~ . . .1 7 I ? 14 I 4 I 0 1...m
Associate this random entry to p2

* (a)

Repeat this process n - 2 more times an obtain values €or 7r(3), ...,7r(n) and
associate each ~ (i) to each p i .

323

a d check that the

pj : m. ,m. . .m
p , : rn..E..1711]

ermutation T generated has no fixed point by opening the
diagonal of this table and checking that it contains only I t] ls

pi : a... ...m
v

i

p , : rn...E..D

After doing so, you can put each sequence of values in an envelope and mail
them out t o the participants, telling them the correspondence between the n
possible sequences and the people. You know for sure that nobody will get its
own name and you know nothing at all about the permutation except for that
fact.

3 A More Elaborate Problem: No Short Cycles

We now generalize the “no-fixed point” problem in non-trivial ways that will
lead us t o developing a general theory about what can be done discreetly by
oneself.

Suppose that in order to make the exchange more diversified we disallow
short cycles of length at most k in the permutation, for some constant k. This
constraint makes the problem much more complicated. We first deal, in an ad
hoc fashion, with the case k = 2 and build tools useful in the general scenario
with k > 2.

It is very easy to see that for any k < n the probability that a random
permutation will have no cycle of length at most k is at least 4. This is because
the number of permutations with a single cycle of length n is (n - l)!, while the
total number of permutationsis n!. Therefore we can generate permutations with
no cycles up to length k simply by picking a random permutation and checking
it. On average, after at most n trials, one will work.

324

3.1 Detecting Two-Cycles

The basic observation is that we would like, for each pair i, j, to check whether
~ (i) = j and ~ (j) = i without learning these values, of course. Basically, what
we need is to be able to perform the logical “AND” of positions (i, j) and (j, i)
from the table above without learning them. This is possible using den Boer’s
“Match Making” trick [dengo]. To use this we must change our coding to

This does not change much about what we did so far, except that we use twice
as many values to do the same job. Wherever, ms and B s were used in the
past to represent 0’s and 13, we use our new coding instead (we also double the
size of the markers). For instance to check for fixed points now involves opening
two values per entry

DenBoer’s trick is used as follows to compute the logical “AND” of two secret
bits coded as above.

Let bo and b1 be two secret bits for which we would like to filld out their
logical “AND”. Put bo, bl and a side by side

After hiding the swap bl’s values and randomly shift the 5 values cyclically.

If the resulting sequence has its two B s side by side, (1-J it means
that bo = bl = 1 and otherwise (I + I o I + I o I it means that at least one of
them was a 0. We can use this trick in order to check whether ~ (i) = j and
n(j) = i

325

Unfortunately, doing so for a single pair i , j will destroy the data in a non-
recoverable way. Therefore we need a mechanism to duplicate a bit in order to
compare copies of bits and save some copy for further use.

3.2 Copying a Bit

Here is how one can make secret copies of a bit: Starting from a bit b at the left,
put an alternation of 6 1I1J)s and B s to its right.

After hiding the 6 rightmost values, apply a random cyclic shift t o them.

a (I P I 7 I P I 7 I ? I P J)

Because of the alternation that was put there in the beginning you know that
each of the 3 pairs on the right represent a same bit b', but no longer know the
value of b' because of the random cyclic shift.

Now randomly shift the 4 leftmost values.

Open the 4 leftmost values; if the sequence you see is alternating then it means
that b = b' and therefore the 4 rightmost values form 2 copies of b.

b=b' b b

326

Otherwise, when the sequence you see is not alternating it means that b # b’
and therefore the 4 rightmost values form 2 copies of g.

b f b ’ c i

In order to get copies of b, simply swap the values in each of the 2 rightmost
pairs.

....A A

3.3 Detecting k-Cycles

In order to detect cycles longer than 2, it is necessary to perform more compli-
cated computations on the secret bits. Indeed, it is nice to be able to evaluate
“AND” gates but, as it is, we cannot even use the result of such a gate in a
further secret computation because the answer is not in the same format as the
data (a bit represented by a pair of values). Therefore we now show another tool
t o compute a pair of values (discreetly) that will satisfy some relation with two
original pair of values (for instance the later represents the “AND” of the for-
mer). Equipped with such a tool, we can easily check for k-cycles of any length
simply by designing a circuit that checks the length of all the cycles is at least
k. (this is at most an n3 algorithm)

3.4 Evaluating Logical Gates

Starting with two secret bits bo, bl, we show how to create a new secret bit for
bo A b l . First, by the result of section 3.2 we can easily make copies of bo, bl which
we will use later in order to preserve the originals. Call 2 0 , yo,q,y1 the values
of copies of bo and bl as follows:

bo bi --
v v w w
aLi_lLIJn
20 Y O 21 Y 1

Then, generate a set of 4 closed values as an alternation of and @

101.1.1.1

co do CI di

and build two decks as follows:

327

After random cyclic shift of the first four

two possibilities may occur when opened:

Repeat random cyclic shifts of the second deck

until the first value on top is the same as the value following the
deck:

in the first

in the first case or

bohbi

in the second case. The next two values after that will contain bo A b l .

replace
Similar techniques will also work to build other gates. To do “OR” gates

and for “XOR gates by

dl 21 Y l c1 y1 2 1

These operations combined with negation (flipping the values representing a
bit) will suffice to simulate discreetly our circuit to check k-cycles.

328

3.5 Property Verifiable with Poly-size Circuits

It is clear that any similar property that can be described as an easy to evaluate
circuit can be applied to a random permutation. Our techniques therefore allow
us to generate discreetly permutations satisfying a certain condition C as long
as

a there is a non-negligible probability of picking a random permutation satis-

C can be described as an easy to evaluate boolean circuit.
fying C

4 General Results

The tools that we have developed in section 3 are indeed very powerful. We now
explain some of the things we can do with them.

4.1 Generating Permutations

Let’s first focus on our earlier problem of generating permutations with a specific
property.

4.2 Property Constructible wi th Poly-size Circuits

An extension of the result of the previous section is that it is possible to generate
permutations satisfying certain properties as long as we can find a probabilistic
boolean circuit that will output such a permutation with the correct distribution.
What we suggested in the previous section is a particular case of this technique.
In order to accomplish this we need one last simple tool: secret random bits.
(Generating a random bit is simple: apply a random cyclic shift to a pair of
hidden lfl and m.)

4.3 Playing Games

Finally, we observe that any games such aa POKER, BRIDGE and other card
games can be played in solitary by describing the strategies of one’s opponents as
(probabilistic) boolean circuits. The strategies of the opponents can therefore be
applied discreetly and played against as if playing with real opponents without
learning extra information.

Of course, we do not expect anybody to really implement this idea with cards
since it would take a tremendous amount of cards ... and time ...

329

5 Remarks and Open Questions

- A two-symbol alphabet suffices to achieve our result.(with a more complex
construction)

- We have considered more general primitives such as shufling but conjecture
that the same result is impossible in that model.

- Another question is about the minimal number of values that must be ran-
domly shifted through our protocols. We believe 4 suffice (even with a two-
symbol alphabet).

- Several of the techniques used in section 3 and 4 are Las Vegas: it may take
many iterations before the proper condition is met. This can be avoided
at the price of using much longer sequences. (more details available in the
final paper) One last open question is to achieve the same result keeping
everything efficient.

Acknowledgments

Claude would like to thank Glaire Kenyon, whose family-in-law, spread around
the world, inspired this research. We would like to thank Charles H. Bennett for
his highest enthusiasm in the early days of our result.

References

[BF83] I. B k h y and Z. Fiiredi. Mental poker with three or more players. Infor-

[BOGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for
mation and Control, 59:84-93, 1983.

[CCD88]

[Crk86]

[CrC87]

[den901

[FM85]

fault-tolerant distributed computing. In Proc. 20th A C M Symposium on
Theory of Computing, pages 1-10, Chicago, 1988. ACM.
D. Chaum, C. Crkpeau, and I. DamgGd. Multi-party unconditionally se-
cure protocols. In PTOC. 20th ACM Symposium on Theory of Computing,
Chicago, 1988. ACM.
C. Crkpeau. A secure poker protocol that minimizes the effects of player
coalitions. In H. c. Williams, editor, Advances in CTyptOlOgy: Proceedings
of Crypt0 '85, volume 218 of Lectnre Notes in Computer Science, pages
73-86. Springer-Verlag, 1986.
C. Crdpeau. A zero-knowledge poker protocol that achieves confidentiality
of the players' strategy or how to achieve an electronic poker face. In A. M.
Odlyzko, editor, Advances in Cryptology: Proceedings of Crypt0 '86, volume
263 of Lecture Notes in Computer Science, pages 239-247. Springer-Verlag,
1987.
B. denBoer. More efficient match-making and satisfiability: The five card
trick. In Advances in Cryptology: Proceedings of Ewrocrypt '89, volume
434 of Lecture Notes in Computer Science, pages 208-217. Springer-Verlag,
1990.
S. Fortune and M. Merrit. Poker protocols. In G. R. Blakley and D. C.
Chaum, editors, Advances an Cryptology: Proceedings of Crypto '84, volume

330

[F P R9 1)

[FW92]

(FW931

[GM82]

[GMW87]

[RBI

[SRABl]

[Yun85]

[Winbla]

[Win8 1 b)

(Win831

196 of Lecture Notes in Computer Science, pages 454-464. Springer-Verlag,
1985.
M. 3. Fischer, M. S. Paterson, and C. Rackoff. Secret bit transmission
using a random deal of cards. In Distributed Computing and Cryptography,
pages 173-181. American Mathematical Society, 1991.
M. J. Fischer and R. N. Wright. Multiparty secret exchange using a ran-
dom deal of cards. In Advances in Cryptology: Proceedings of Crypto '91,
volume 576 of Lecture Notes in Computer Science, pages 141-155. Springer-
Verlag, 1992.
M. J. Fischer and R. N. Wright. A n Efficient Protocol for Unconditionally
Secure Secret Key Exchange, In Proc. 4th Annual Symposium on Discrete
Algorithm, January, 1993,475483.
S. Goldwasser and S. Micali. Probabilistic encryption and how to play
mental poker keeping secret all partial information. In PTOC. 14th ACM
Sympo&m on Theory of Computing, pages 365-377, san Francisco, 1982.
ACM.
0. Goldreich, S. Micali, and A. Wigderson. How to play any mental game,
or: A completeness theorem for protocols with honest majority. In PTOC.
19th ACM Symposium on Theory of Computing, pages 218-229, New York
City, 1987. ACM.
T. Rabin and M. Ben-Or. Verifiable Secret Sharing and Multiparty Proto-
cols with Honest Majority, In PTOC., 21st ACM Symposium on Theory of
Compzlting, 1989.
A. Shamir, R. L. Rivest, and L. M. Adleman. Mental poker. In D. Klarner,
editor, The Mathematical Gardner, pages 3743. Wadsworth, Belmont, Cd-
ifornia, 1981.
M. Yung. Cryptoprotocols: Subscription to a public key, the secret block-
ing and the multi-player mental poker game. In G. R. Blakley and D. C.
C h a w , editors, Advances in Cryptology: Proceedings of Crypto '84, volume
196 of Lecture Notes in Computer Science, pages 439453. Springer-Verlag,
1985.
P. Winkler. Cryptologic techniques in bidding and defense: Parts I, 11, 111
and IV. In Bridge Magazine, April-July 1981.
P. Winkler. My night at the Cryppie club. In Bridge Magazine, 60-63,
August 1981.
P. Winkler. The advent of cryptology in the game of bridge. In Cryptologia,
7(4):327-332, October 1983.

	Discreet Solitary Games
	1 Introduction
	1.1 Related Work
	1.2 The Scenario

	2 A Solution to the “no-fixed Point” Problem
	3 A More Elaborate Problem: No Short Cycles
	3.1 Detecting Two-Cycles
	3.2 Copying a Bit
	3.3 Detecting k-Cycles
	3.4 Evaluating Logical Gates
	3.5 Property Verifiable with Poly-size Circuits

	4 General Results
	4.1 Generating Permutations
	4.2 Property Constructible with Poly-size Circuits
	4.3 Playing Games

	5 Remarks and Open Questions
	References
	Acknowledgments

