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Abstract. Cryptographic techniques have been used intensively in the 
past to show how to play multiparty games in an adversarial scenario. 
We now investigate the cryptographic power of a deck of cards in a 
solitary scenario. In particular, we show how a person can select a random 
permutation satisfying a certain criterion dixree t ly  (without knowing 
which one was picked) using a simple deck of cards. We also show how 
it is possible using cards to play games of partial information such-as 
POKER, BRIDGE and other carda games in solitary. 

1 Introduction 

It’s nearly Christmas time and you have to  buy presents for your family and 
friends. Indeed, among certain families there is a more economical approach to  
this situation than buying one present per person: each member of a group picks 
the name of another member and becomes responsible for buying that  person 
a present. That  way everybody gets something but each person buys a single 
present. Traditionally, the one person each member is responsible for is allocated 
at random using the “names-in-the-hat” technique: each person puts its name 
in a common hat and then everybody picks a name at random from the hat. If 
by accident one picks his own name, he puts it back, otherwise he is responsible 
for the present of the person he picked. To put it abstractly, the goal is for the 
n persons involved to  pick a random permutation T in a way that  each of them 
pi knows nothing but ~ ( i ) .  

Indeed the “names-in-the-hat” technique leaks some information since par- 
ticipant pi  who picks his own name learns that p l ,  ...,pi-l did not pick his name. 
In order for this technique not t o  leak information whatsoever, it is necessary 
to  start from scratch each time someone picks his own name. One can check 
fairly easily that a random permutation of n elements will have no fixed point 
with probability roughly 5. Therefore, a completely secret permutation should 
be found after roughly e trials. 
~ 

* This work was performed while visiting NEC Research Institute in the spring of 1992. 
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Now consider the scenario where the members of this family cannot be gath- 
ered in a room to do the “names-in-the-hat” technique, for instance if some of 
them live abroad in several different countries. How can such a permutation be 
chosen locally, for instance by a single person without that person knowing the 
chosen permutation but knowing that it has no fixed point? 

1.1 Related Work 

Cryptography and card playing have a long history of connections. There has 
been substantial work on implementing card games using cryptography [SRA81, 
GM82, BF83, FM85, Yun85, Cr686, CrC87, GMW87, CCD88, BOGW88, RBI. 
Conversely, a number of researchers have considered mechanisms for implement- 
ing cryptographic primitives based on card games. Winkler [Wintila, Winglb, 
Win831 shows how two bridge players can securely communicate during the bid- 
ding process. More recently, Fischer, Paterson and Rackoff [FPRSl] and Fischer 
and Wright [FW92, FWSS] give a number of secret-key exchange protocols based 
on random card deals. Den Boer (den901 gives a protocol by which two parties 
may securely compute the AND function, based on the ability to  make an obliv- 
ioua cut on a deck of cards. We also base our protocol on oblivious cuts, and use 
a modified form of the secure AND protocol as a subroutine. 

The novel contribution of our work is to provide a new scenario of a single 
person using cryptographic techniques as building blocs for playing sophisticated 
solitary games. 

1.2 The Scenario 

We consider this question in an honest but non-oblivious scenario. One person is 
going to  be responsible for picking this permutation and will do this following 
a protocol we describe (it does not make much sense to  try to  prevent someone 
to  cheat himself). At no point this person will be asked to  forget information 
it has seen or can deduce from what it saw. Nevertheless we assume that an 
operation such as choosing a secret random cyclic shift of a set of objects (you 
may think of randomly cutting a deck of cards) is available t o  that person in 
order to  create (unknown) randomness in his data. We will show how this person 
can pick a random permutation on the numbers 1,2, ..., n and verify that it has 
no fixed point, learning no information whitsoever about which permutation was 
chosen. We qualify this process of “discreet”. We also generalize this problem to  
the extent that  we show how any “solitary game” can be played “discreetly” as 
long as there exist some polynomial size circuit t o  describe it. 

We work with the following alphabet (each value can be thought as a suit in 
a deck of cards): 

{ E Em7m a} 
The value 1_1_1 representing any of the first four but face down on the table. We 
assume that  d copies of one of these 5 elements are indistinguishable from one 
another. We define two notations on the basic elements for the rest of this paper: 
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Definition 1 ( c z c 2  ... c k ) .  For any symbols c 1 ,  c 2 ,  ... C k ,  we write ( C I C ~  ... c k )  to r e p  
resent the elements of { C 1 c 2 . . . C k , C 2 C 3 . . . C k c 1 ,  ..., ckc1 ... C k - l } ,  that is any cyclic 
permutation of c l c 2  ... C k .  

indeed ( C I C 2  ... C k )  is the equivalence class of strings equivalent up to a cyclic 
permutation. 

Definition2 ( q c 2  ... c k ) .  For any symbols ~ 1 ~ ~ 2 ,  ... c k ,  we write ( c 1 c 2  ... c k )  to ex- 
press the fact that this string is obtained by a random cyclic shift, meaning that 
it is replaced by a random element of (clc2 ... ck).  

for instance, - ( ~ ) + ~ ~  

2 A Solution to the “no-fixed Point” Problem 

For the solution to our first problem we use the following trivial coding: 

m= o,m= 1. 

A sequcnce of n bits is associated to each participant p i .  Initially, to p;  associate 
the sequence of n except in position i where it is a Lrr_l. 

Then construct a long sequence by putting each of these Bequences side by side, 
separated by markers made of f I . p s  followed by 8 ms 

Apply them a random cyclic shift 

( ~ 1 . . . ~ . . l q q q q q . . l  1 I ? 1 7  I ? I ? t . . D . . M / . . W { . .  
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...(?-qq-q. 
If the first element of the result is a or a It] then hide it and generate another 
random cyclic shift until you find am or LtJ. When the first element is a then 
open values forward until you show f and then enough values backwards 
to  show 5 ms. When you find a first, proceed in the reverse order. 

. . .mi..rqqqqq\. .p-J * .[qq-q-qq ..m\ * , 

. . .m.. .m.. .PI. .-I. .ltl?l?T?1"1.. .n. .[- 
Get rid of the marker and extract the random entry for n(1) located in the n 
d u e s  following the opened marker and associate it to  pl. 

Apply the same process to the remaining values 

. . . [ - q - q q . . ~ \ . . ~ . . [  1 J ? I ? J ? I 1 ~ . . ~ ~ . . p J . . T ; T ; 1 )  

in order to  select a random entry for ~ ( 2 ) .  

742) 

. . .~~ . .pTqqqT/ . . .~ . . .1  7 I ? 14 I 4 I 0 1...m 
Associate this random entry to  p2 

* (a )  

Repeat this process n - 2 more times an obtain values €or 7r(3), ...,7r( n) and 
associate each ~ ( i )  to each p i .  
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a d check that the 

pj : m. ,m. . .m 
p , :  rn..E..1711] 

ermutation T generated has no fixed point by opening the 
diagonal of this table and checking that it contains only I t ] ls 

pi  : a... ...m 
v 

i 

p ,  : rn...E..D 

After doing so, you can put each sequence of values in an envelope and mail 
them out t o  the participants, telling them the correspondence between the n 
possible sequences and the people. You know for sure that nobody will get its 
own name and you know nothing at all about the permutation except for that  
fact. 

3 A More Elaborate Problem: No Short Cycles 

We now generalize the “no-fixed point” problem in non-trivial ways that will 
lead us t o  developing a general theory about what can be done discreetly by 
oneself. 

Suppose that in order to make the exchange more diversified we disallow 
short cycles of length at most k in the permutation, for some constant k. This 
constraint makes the problem much more complicated. We first deal, in an ad 
hoc fashion, with the case k = 2 and build tools useful in the general scenario 
with k > 2. 

It is very easy to  see that for any k < n the probability that  a random 
permutation will have no cycle of length at most k is at least 4. This is because 
the number of permutations with a single cycle of length n is (n - l)!, while the 
total number of permutationsis n!. Therefore we can generate permutations with 
no cycles up to length k simply by picking a random permutation and checking 
it. On average, after at most n trials, one will work. 
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3.1 Detecting Two-Cycles 

The basic observation is that we would like, for each pair i, j, to check whether 
~ ( i )  = j and ~ ( j )  = i without learning these values, of course. Basically, what 
we need is to  be able to  perform the logical “AND” of positions (i, j )  and (j, i) 
from the table above without learning them. This is possible using den Boer’s 
“Match Making” trick [dengo]. To use this we must change our coding to  

This does not change much about what we did so far, except that we use twice 
as many values to do the same job. Wherever, ms and B s  were used in the 
past to represent 0’s and 13,  we use our new coding instead (we also double the 
size of the markers). For instance to check for fixed points now involves opening 
two values per entry 

DenBoer’s trick is used as follows to compute the logical “AND” of two secret 
bits coded as above. 

Let bo and b1 be two secret bits for which we would like to  filld out their 
logical “AND”. Put  bo, bl and a side by side 

After hiding the swap bl’s  values and randomly shift the 5 values cyclically. 

If the resulting sequence has its two B s  side by side, (1-J it means 
that  bo = bl = 1 and otherwise (I + I o I + I o I it means that at least one of 
them was a 0. We can use this trick in order to check whether ~ ( i )  = j and 
n( j )  = i 
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Unfortunately, doing so for a single pair i , j  will destroy the data  in a non- 
recoverable way. Therefore we need a mechanism to duplicate a bit in order to 
compare copies of bits and save some copy for further use. 

3.2 Copying a Bit 

Here is how one can make secret copies of a bit: Starting from a bit b at the left, 
put an alternation of 6 1I1J)s and B s  to its right. 

After hiding the 6 rightmost values, apply a random cyclic shift t o  them. 

a (I P I 7 I P I 7 I ? I P J) 

Because of the alternation that was put there in the beginning you know that 
each of the 3 pairs on the right represent a same bit b', but no longer know the 
value of b' because of the random cyclic shift. 

Now randomly shift the 4 leftmost values. 

Open the 4 leftmost values; if the sequence you see is alternating then it means 
that b = b' and therefore the 4 rightmost values form 2 copies of b. 

b=b' b b 
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Otherwise, when the sequence you see is not alternating it means that b # b’ 
and therefore the 4 rightmost values form 2 copies of g. 

b f b ’  c i 

In order to  get copies of b, simply swap the values in each of the 2 rightmost 
pairs. 

....A A 

3.3 Detecting k-Cycles 

In order to detect cycles longer than 2, it is necessary to perform more compli- 
cated computations on the secret bits. Indeed, it is nice to  be able to evaluate 
“AND” gates but, as it is, we cannot even use the result of such a gate in a 
further secret computation because the answer is not in the same format as the 
data  (a bit represented by a pair of values). Therefore we now show another tool 
t o  compute a pair of values (discreetly) that will satisfy some relation with two 
original pair of values (for instance the later represents the “AND” of the for- 
mer). Equipped with such a tool, we can easily check for k-cycles of any length 
simply by designing a circuit that checks the length of all the cycles is at least 
k. (this is at most an n3 algorithm) 

3.4 Evaluating Logical Gates 

Starting with two secret bits bo, bl, we show how to create a new secret bit for 
bo A b l .  First, by the result of section 3.2 we can easily make copies of bo, bl  which 
we will use later in order to  preserve the originals. Call 2 0 ,  yo,q,y1 the values 
of copies of bo and bl as follows: 

bo bi -- 
v v w w  
aLi_lLIJn 
20 Y O  21 Y 1  

Then, generate a set of 4 closed values as an alternation of and @ 

101.1.1.1 

co do CI di 

and build two decks as follows: 
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After random cyclic shift of the first four 

two possibilities may occur when opened: 

Repeat random cyclic shifts of the second deck 

until the first value on top is the same as the value following the 
deck: 

in the first 

in the first case or 

bohbi  

in the second case. The next two values after that will contain bo A b l .  

replace 
Similar techniques will also work to  build other gates. To do “OR” gates 

and for “XOR gates by 

dl 21 Y l  c1 y1 2 1  

These operations combined with negation (flipping the values representing a 
bit) will suffice to simulate discreetly our circuit to  check k-cycles. 
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3.5 Property Verifiable with Poly-size Circuits 

It is clear that any similar property that can be described as an easy to evaluate 
circuit can be applied to a random permutation. Our techniques therefore allow 
us to  generate discreetly permutations satisfying a certain condition C as long 
as 

a there is a non-negligible probability of picking a random permutation satis- 

C can be described as an easy to  evaluate boolean circuit. 
fying C 

4 General Results 

The tools that we have developed in section 3 are indeed very powerful. We now 
explain some of the things we can do with them. 

4.1 Generating Permutations 

Let’s first focus on our earlier problem of generating permutations with a specific 
property. 

4.2 Property Constructible wi th  Poly-size Circuits 

An extension of the result of the previous section is that it is possible to  generate 
permutations satisfying certain properties as long as we can find a probabilistic 
boolean circuit that will output such a permutation with the correct distribution. 
What we suggested in the previous section is a particular case of this technique. 
In order to  accomplish this we need one last simple tool: secret random bits. 
(Generating a random bit is simple: apply a random cyclic shift to  a pair of 
hidden lfl and m.) 

4.3 Playing Games 

Finally, we observe that any games such aa POKER, BRIDGE and other card 
games can be played in solitary by describing the strategies of one’s opponents as 
(probabilistic) boolean circuits. The strategies of the opponents can therefore be 
applied discreetly and played against as if playing with real opponents without 
learning extra information. 

Of course, we do not expect anybody to  really implement this idea with cards 
since it would take a tremendous amount of cards ... and time ... 
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5 Remarks and Open Questions 

- A two-symbol alphabet suffices to achieve our result.(with a more complex 
construction) 

- We have considered more general primitives such as shufling but conjecture 
that  the same result is impossible in that model. 

- Another question is about the minimal number of values that must be ran- 
domly shifted through our protocols. We believe 4 suffice (even with a two- 
symbol alphabet). 

- Several of the techniques used in section 3 and 4 are Las Vegas: it may take 
many iterations before the proper condition is met. This can be avoided 
at the price of using much longer sequences. (more details available in the 
final paper) One last open question is to  achieve the same result keeping 
everything efficient. 
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