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Abstract. Authentication codes that permit arbitration are codes 
that unconditionally protect against deceptions from the outsiders and 
additionally also protect against some forms of deceptions from the insid- 
ers. Simmons introduced this authentication model and he also showed 
a way of constructing such codes, called the Cartesian product construc- 
tion. We present a general way of constructing such codes and we also 
derive two specific classes of such codes. One that is perfect in the sense 
that it meets the lower bounds on the size of the transmitter’s and the 
receiver’s keys and one that allows the number of source states to be 
chosen arbitrarily large. 

1 Introduction 

The purpose of traditional authentication codes is to protect the transmitter and 
the receiver from active deceptions from a third party, often called the opponent. 
The attacks are of two different types, impersonation and substitution. A model 
for this case has been developed and many different ways of constructing such 
codes have been proposed, [l] - [7]. However, the model is restricted in the sense 
that the transmitter and the receiver must both trust each other in not cheating, 
since they are using the same key. But it is not always the case that the two 
communicating parties want to  trust each other. In fact, it may be that the 
transmitter sends a message and then later denies having sent it. Or the other 
way around, the receiver may claim to have received a message that was never 
sent by the transmitter. 

Inspired by this problem Simmons has introduced an extended authentication 
model, referred to as the authentication model with arbitration, [8], [9]. Here 
caution is taken both against deceptions from the outsiders (opponent) and also 
against some forms of deceptions from the insiders (transmitter and receiver). 
The model includes a fourth person, called the arbiter. The arbiter has access to 
all key information and is by definition not cheating. Codes which take caution 
against all these kinds of deceptions are called authentication codes that permit 
arbitration, or simply A2-codes. One proposed construction of A2-codes is the 
Cartesian product construction due to Simmons, [8]. In [lo] lower bounds on 
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the probability of success for the different kinds of deceptions were given. Also 
lower bounds on the number of messages and the number of encoding rules for a 
fixed probability of deception were given. The A2-codes which meet these lower 
bounds with equality are referred to as equitably perfect A2-codes. 

It is easily checked that codes obtained from the Cartesian product construc- 
tion are not equitably perfect. In fact, the size of the keys grows exponentially 
with the number of source states. In this paper we consider the problem of 
constructing more efficient classes of A2-codes. In Section 2 we give a detailed 
description of the model of authentication with arbitration. In Section 3 we in- 
troduce a general technique to  construct Az-codes and in Section 4 we use this 
t o  give two constructions, one that is equitably perfect and one that allows the 
number of source states to  be chosen arbitrarily large. 

2 The model of authentication with arbitration 

In this model there are four different participants. These are the transmitter, the 
receiver, the opponent and the arbiter. The transmitter wants to  transmit some 
information, which we call a source state,  to the receiver in such a way that 
the receiver can recover the transmitted source state and also verify that the 
transmitted message came from the legal transmitter. This is done by mapping 
a source state S from the set S of possible source states to a message M from the 
set M of possible messages. The message is then transmitted over the channel. 
The mapping from S t o  M is determined by the transmitters secret encoding 
rule ET chosen from the set &7 of possible encoding rules. Thus we assume that 
the transmitter uses a mapping f such that; 

f : S X E T t M ,  
f ( s ,  e t )  = f(d,  e t )  3 s = d. 

To be able to  uniquely determine the source state from the transmitted message, 
we have property (2). The opponent has access to  the channel in the sense that 
he can either impersonate a message or substitute a transmitted message for 
another. When the receiver receives a message that was transmitted, he must 
check whether this message is valid or not. For this purpose we assume that the 
receiver uses a mapping g from his own secret encoding rule ER taken from the 
set &a of possible encoding rules and from the messages M, that determine if a 
message is valid and if so also the source state. 

g : kf x ER + SU {FRAUD}, 
P(et, e,)  # 0,  f(s, e t )  = m * g(m, e,)  = s. 

(3) 
(4) 

Since all messages generated by the transmitter are valid messages and since 
the receiver must be able to  determine which of the source states that was 
transmitted, the property (4) must hold for all possible pairs (ET, ER). However, 
in general not all pairs (ET,  ER)  will be possible. 
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The arbiter is the supervisory person who has access to  all information, 
including ET and ER. However, he does not take part in any communication 
activities on the channel and his only task is to solve disputes between the 
transmitter and the receiver whenever such occur. As said before, the arbiter 
is by definition not cheating. This is an assumption which can be removed if 
we want t o  consider an even more general model of authentication, where the 
arbiter may also cheat. See (111 and [la] for details. 

There are five different kinds of attacks to  cheat which are possible in this 
model. The attacks are the following: 
I, Impersonation by the Opponent. The opponent sends a message to  the receiver 
and succeeds if the message is accepted by the receiver as authentic. 
S, Substitution by the opponent. The opponent observes a message that is trans- 
mitted and substitutes this message for another. The opponent succeeds if the 
receiver accepts this other message as authentic. 
T, Impersonation by the transmitter. The transmitter sends a message to  the 
receiver. The transmitter succeeds if the message is accepted by the receiver as 
authentic and if the message is not one of those messages that the transmitter 
can generate due to his own encoding rule. 
Ro, Impersonation by the receiver. The receiver claims to have received a mes- 
sage from the transmitter. The receiver succeeds if the message could have been 
generated by the transmitter due to his encoding rule. 
R1, Substitution by the receiver. The receiver receives a message from the trans- 
mitter but claims to  have received another message. The receiver succeeds if this 
other message could have been generated by the transmitter due to  his encoding 
rule. 

In all these possible attacks to  cheat it is understood that the cheating person 
is using an  optimal strategy when choosing a message, or equivalently, that the 
cheating person chooses the message that maximizes his chances of success. For 
each way of cheating, we denote the probability of success with PI, Ps, PT, PRO 
and P R ~ .  The overall probability of deception is denoted PD and is defined to  be 

P D  = max(PI, PS, PT, P& pR1) 

The setup of the encoding rules may be done in several ways. One possible 
way is by letting the receiver choose his own encoding rule ER and then secretly 
pass this on to  the arbiter. The arbiter then constructs the encoding rule ET 
and pass this on t o  the transmitter. Another way is to  do the other way around 
and a third way is t o  allow the arbiter to  construct both the encoding rules. 

A traditional A-code is sometimes denoted A ( S , M , & ,  f ) ,  where f is the 
authentication map f : S x & H M .  In similar manner we denote an A’-code as 
A2(S, M ,  &T, &a, f, g), where f is the transmitter’s map given in (1) and g is the 
receiver’s map given in (3).  In [8] Simmons defined an authentication code to  be 
equitable if the probabilities of success for all types of deceptions are the same, 
i.e., if PI = Ps = PT = PR, = P R ~ .  In [lo] it was shown that if an A2-code 
provides PD = :, then the cardinality of the sets of encoding rules must satisfy 

IERI 2 q3 and (ET( 2 q . 4 



346 

An A2-code with PD = 1 is then defined to  be equitably perfect if [ER] = q3 and 
IETJ = q4. 

P 

3 A general construction of A2-codes 

Let us for a moment consider the problems that occur in authentication with 
arbitration. Consider first the two deceptions from the receiver, & and RI, 
where he claims to  have received a message that the transmitter never sent. We 
can think of a solution to this problem if we assume that the transmitter must 
add a ”signature” to  the source state S, that is to be transmitted. If the receiver 
now claims to  have received a message from the transmitter he must also be able 
to  produce the transmitter’s signature. 

This signature is actually nothing abstract but can be accomplished from 
a traditional A-code without secrecy. This code is a mapping from the source 
states and the encoding rules to  the messages that has the form 

Acode : S x E -+ M = ($,a). 

Let a = a(S ,E)  be the signature. The transmitter maps the source state S 
into another ”source state”, 2, that also includes the signature a. This new 
source state, Z = (S ,a ) ,  can now be transmitted in a second A-code without 
secrecy in order to  protect against impersonation and substitution attacks from 
the opponent. Since this code only has to  protect the original source state we 
can assume that the messages generated by the transmitter are of the form 

= (S,a(S&),B(S,&)) = (S,&,P). 

When the receiver checks a message for authenticity, he only checks whether P 
is correct. If the receiver claims to have received a message that the transmitter 
never sent, then he must be able to  produce the signature a. 

This concatenation of two normal A-codes gives protection against I, S, Ro 
and R1, but it realizes no protection against cheating from the transmitter. 
The transmitter cheats by sending a message that does not contain his own 
signature and succeeds if the message is accepted as authentic. In order to  make 
this cheating difficult we introduce a modification for the receiver in the second 
A-code. Let this second A-code €or the receiver protect both S and a. Then the 
received messages will have the form 

M =  (S,a,7) = (S,a,Y(Si%ER)). 

This means that the receiver accepts all values of S and a and then checks that 
7 = r(S, a, En) .  If properly generated messages are to be accepted and a is the 
transmitter’s signature, we must have that 

VS, P(S, ET) = r(s, a, ER) ,  if ~ ‘ ( E T ,  ER) # 0. ( 5 )  

Also ET and ER must be chosen in such a way that ( 5 )  always holds when the 
setup of the encoding rules is done. If the transmitter now tries t o  cheat by 
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s 
0 0 0 0  
0 0 1 0  
0 1 0 0  

1 0 0 -  
1 0 1 -  
1 1 0 -  
111-  

ER=(fl,fz,f3)011 

changing his signature he must also determine the change in 7(S,a ,  ER) which 
might be difficult. 

We give a concrete example of these arguments. 

Ezample 1. This example is based on the signature function Q(S) = as+b, where 
u, b, s E S. Assume that S = s, ET = (el, e2,e3,e4) and ER = ( f ~ ,  fi, fa) where 
s, ei, fi E IF2. Let the transmitter's signature function be a(S, ET)  = el + se2 
and let P(S ,ET)  = e3 + se4. Thus the transmitter generates messages as M = 
(+?,el + s e 2 , ~  + se4). For the receiver, let y(S,ar ,ER) = fi + afi + sf3. The 
receiver then accepts messages of the form M = Is, a, f1 + afz + sf3). Also, the 
encoding rules must have been chosen in such a way that p(S, ET) = 7(S, a, ER) ,  
or 

e3 + se4 = fi + (el + sez)f2 + sf3.  (6) 
Equivalently, this can be written 

Message M = (9, a, f1 + afz + s f3)  

000 001 010 011 100 101 110 111 
- 0 - 1 - 1 - 
- 0 - - 1 - 1 

0 - - 0 - 1 1  - 
0 - 0 - 1 - 1 
0 - 0 1 - 1 - 
0 0 - - 1 1  - 
0 0 - 1 - - 1 

- - 0 ' 1  - - 1 

4 Some specific constructions of Aa-codes 

We have described an abstract way of modeling the problems in authentication 
with arbitration. We now deal with the problem of giving specific constructions 
of A2-codes. Let us first give some preliminary definitions and results in the 
construction of traditional authentication codes. We consider first the case when 



~ S ~ P D  5 1. Let IS1 = q", [MI = q"+m and I & (  = q2m, where n 5 m. Let S = s 
and let the messages and the encoding rules consist of two parts, 

We now wsume that  s,ml  E lFqn and m2,el,e2 E Fgm: Define an arbitrary 
injective mapping 4 such that it maps a source state s from IFqn to  F q m ,  

f$ : !Fq- H F g m ,  #(s) = b, 

where s E lFqn and d E IFqm. 
From these definitions we can state the following: 

Theorem 1. Let a traditional authentication code generate messages M of the 
form M = (ml, mz), where ml  = s and m2 = el+Oez. This A-code is Cartesian 
(no secrecy) and provide PI = Ps = 2- i fn  5 m. Moreover, it has parameters 

qm 

IS) = qn, IA41 = qn+m, I€ /  = q2m. 

Proof. The fact that the code is Cartesian is clear and the cardinality psrsmcters 
are obvious. We have to prove that PI = Ps = *. 

Impersonation: A message M can be written as the sum of two independent 
parts, M = (9, Be2) + (0, el) .  Thus success in impersonation is equivalent to  the 
problem of guessing the correct value of e l ,  which is done with probability q-m. 

Substitution: The opponent has observed the message M = (s, el +ieZ). Now 
he replaces this with another message MI, which must correspond to another 
source state s'. Then s' = SSC, where c # 0, and since the mapping is injective 
we have that 2 = b + 2, where i. # 0. We can write the message M' aa 

4 M' = (s', el + s e z )  = (s, el + ie2) + (c, te2) = M + (c, 0) + (0,2e2). 

Thus success in substitution is equivalent t o  the problem of guessing the value 
of i.ez for any 2. # 0. But since i.ez runs through IFqbm for 2 # 0 as e2 runs through 

0 lFq- , the correct value is guessed with probability q-m. 

We now have a simple construction of A-codes, which in fact is the best 
possible for this case. Our aim is to generalize this construction in such a way 
that we obtain A2-codes. Assume that we want to construct an A2-code with 
IS1 = qn and PD = -L Assume that n 5 m. Let the parameters for the A2-code 
be the following: 

9" * 

IS1 = q", IA4I = qn+2m, lE2-l = q4m, 1&1 = q 3 y  

Consider the message and the encoding rules as consisting of several parts. Write 
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where ~ , m l  E F,p and m2,m3,el,eares,e4,f1,f2,f3 E IFqm. 

Construction I: Let an A2-code with n 5 m be constructed as follows: The 
transmitter generates messages of the form M = (ml,mz,m3), where ml = s, 
m2 = el  + F;ez and m3 = e3 + Be4. The receiver accepts all messages M = 
(ml,m2,m3) which has m3 = f1 + & l f 2  + m2 f3. The encoding rules have been 
chosen in such a way that 

or equivalently, 

From the way the encoding rules are chosen we check the following properties, 

Lemma2. Let &I o &R denote the set of all possible pairs of encoding rules 
(ET,ER) .  Then 

/&TO Ex/ = q5". 

Also the tTansmitter has n o  knowledge about f3 and the receiver has no knowl- 
edge about the pair ( e l ,  e2). Expressed in t e r n s  of entropy we have H ( F ~ ~ E T )  = 
mlogq and H ( & , & ~ E R )  = 2mlogq. 

Let us give the parameters of this construction. 

Theorem 3. Construction I gives a Cartesian A2-code which has the following 
parameters for  n 5 m: 

1st = qn, = Q , q3", I&/ = q4m. n+2m 

The probabilities of deceptions are 

PI=Ps  = PR, =PR1 =PT = L. 
qm 

Proof. The cardinality of the different sets is the number of possible values and 
is thus easily checked. Also, the code is Cartesian. Let us find the probabilities 
of success for the different kinds of deceptions. 

Impersonation by the opponent, I: The opponent sends a message M and 
hopes for it to be authentic. The messages accepted by the receiver can be 
written in independent parts as 

= (.? ;f2 + a f 3 )  (O7 O ,  fl). 

In order t o  succeed the opponent must guess the value of f 1  and this is done 
with probability q-m. Thus PI = q-m. 

Substitution by the opponent, S: The opponent has observed a message M 
and substitutes this for another message M'. The substitution attack must in- 
clude a change of the source state. Assume that the new source state is s', which 
can be written as s' = s + c, where c # 0. Since the map c$ is injective we also 
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have that 8' = s  ̂ + El where 2 # 0. The observed message can be written as 
M = ( s ,  a, f l  + i f 2  3- a f3) ,  where a E I F p .  The message M' is then of the form 

M' = (s + c, a + c', f1 + (j' + t ) f z  + (a + C')f3) , 

M' = M + (c, c', c'f3) + (0, 0 , ? f 2 )  . 
where c' E l F q g m .  This can be rewritten in independent parts as 

Since 2 # 0 and the last part is independent of the other two parts we have that 
success in substitution is equivalent to the problem of guessing the value of 2 f i  
for any 2 # 0. But t f 2  runs through F,p as f2 runs through IFqm, so the correct 
value is guessed with probability qem. Thus Ps = Q - ~ .  

Impersonation by the receiver, &: The receiver claims to  have received the 
message M .  He succeeds if the signature Q is correct. From Theorem 1 and 
Lemma 2 it follows that the probability of success is PR, = q-". 

Substitution by the receiver, R1: The receiver receives the message M but 
claims to have received another message M' corresponding to  another source 
state s'. As before he succeeds if the signature Q in M' is correct. From Theo- 
rem 1 and Lemma 2 it again follows that the probability of success is P R ~  = qVm. 

Impersonation by the transmitter, T: The transmitter sends a message 
and then denies having sent it. He succeeds if the message contains a different 
signature from his own and is accepted by the receiver as authentic. The message 
received can be written as 

= ( S ,  a -4- c', fi 4- i f 2  4- d 3 )  i- (o,o, c ' f3 )  , 
where c' # 0. As before, the correct value of c'f3 is guessed with probability 

0 q-ml  i.e., PT = q-m. 

CorolIary4. Construction I is an equitably perfect A2-code .  

Remark: A construction very similar to  this was also found in [12], where the 

Let us give an example of how this construction works. 
construction additionally also protected against attacks from the arbiter. 

ExampIe2. Assume that we want to construct an A2-code with the properties 
that IS( = 2 and Po = $. Following Construction I we find that IFqhm = lF22 and 
that IFq- = I&. Let the mapping $ map the elements of Fz to the subfield {O, 1) 
in I & ,  i.e., 0 maps to 0 and 1 maps to 1. The encoding rules are chosen in such 
a way that (14) holds. The transmitter generates messages as 

M = (ml,mz,mJ) = (s,el + i e a , e 3 + S e r ) .  

The receiver receives messages of the form M = (ml,  m 2 ,  m3) and checks that 

m3 = fi +7&ilf2 +mzf3. 

The number of messages and the number of encoding rules are 

/MI = 32, I&[ = 64, l € i l=  256. 
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We have obtained a general construction for the case n 5 m. If we consider 
the same construction for the case n > m we see that it is now not possible for 
the map 4 to  be injective. If 4 is not injective there exist two source states S ,  S' 

that  map to  the same 5 .  These two source states would have the same last part 
in the message for all encoding rules and thus the probability of substitution 
becomes 1. However, with some modifications we can get a construction that 
can be used for the case n > m. In order for the construction to  provide the 
same probability of deception we must increase the number of encoding rules. 
Thus the construction for the case n > m will not be perfect. 

As before we first give a construction of a traditional authentication code 
where n 2 m. We use the same notation as in (9)-(lo), but now s , m l , e z  E JFqn 

and mz, el E Fqm. Also we need a mapping 4, 6 : IF,p H Fqm with the property 
that  the number of z E IFqn such that 4(x) = y is the same for all y E Fqm. We 
also assume that 4 has the homomorphism property that +(z)++(z') = $(z+z'). 
Then we state the following: 

Theorem5. Let a traditional authentication code with n 2 m generate mes- 
sages M of the f o r m  M = (m1,mz) where ml = s and mz = el + 4(se2) .  This 
A-code as Cartesian (no secrecy) and provide PI = Ps = 2. Moreover, it has 
param e t ers 

IS1 = q", IMI = qn+m, [El = qn+m. 

Proof. The cardinality parameters are obvious and the A-code is Cartesian. For 
the different kinds of deceptions we have: 

Impersonation, I: Write the message as M = (s, $(seZ)) + (0, e l ) .  The value 
of el is guessed with probability q-m. Thus PI = q-m. 

Substitution, S: The opponent has observed M = ( s ,e l  + 4(se2)) .  Now he 
substitutes this message for another message, which has s' # s. The message M' 
is then written as 

qm 

M' = (&el + 4(s'ez)) = (3, el + 4 ( = 2 ) ) +  (c, 4(ce2))  = M +  (c ,  0) + (0, 4(cez))  - 

guessed with probability q-m. Thus Ps = q-m. 
Since c # 0, ce;! take any value in IFqn with the same probability and 4(ce2) is 

0 
We now give a construction of A2-codes with n 2 m. We make one simpli- 

fication, namely that rn = 1. The notation is the same as in (11)-(13), but for 
this case we have s , rn l ,ez ,es , f2  E IF+ and m ~ , m 3 , e 1 , e g , f ~ , f 3  E IFq. We also 
need a mapping 4, 9 : IFqn H IFq with the property that  the number of z E IFqn 

such that  $(x) = y is the same for all y E IFq. We choose a specific 9. 
Since Fqn is an extension field of IFq any element x E Fqn can be written as 

2 = T O + T ~ ( Y +  ... +r,-1an-', where ri E I F q ,  2 = O , l , .  .. ,n- 1, and a is a root 
of an irreducible polynomial of degree n over IFq. Define 4 as 

4 : T O  + r1a + . . . + r,_lan--l H To .  

From these definitions we can verify the homomorphism property. Assume that 
x,x' E Fqn and y E IFq. Then 

4 b )  + 4 ( 4  = 4 b  + x'), (17) 
4(.)Y = 4(.?/)* (18) 
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We give the promised construction: 
Construction 11: Let an A2-code with n 2 m be constructed as follows: The 

transmitter generates messages of the form M = (ml,mz,m3), where ml = s, 
m2 = el + 4(se2) and m3 = e3 + q5(se4). The receiver accepts all messages 
M = (ml,mzrm3) which have m3 = fl + 4(sf2) + mn f3 .  The encoding rules 
have been chosen in such a way that 

e3 3- $be41 = fl + 4(Sfz)  + (el + $(se2)) f 3 ,  (19) 

or equivalently, 

e3 = fl + elf37 

d(se4) = d(sf2) + 4 ( s e 2 ) f 3  

But from the properties (17) and (18) this is the same as 

e3 = fl + elf33 
$(se4) = 4 (s(fZ + eZf3)) * 

If we choose the encoding rules as 

e3 = fl + elf3, 

e4 = fi + e2f3 ,  

we know that (19) holds. 

Lemma6. If the encoding rules are chosen as in  (20) and (21) then 

2n+3 I & o & R [ = ~  . 
Also, the transmitter has no knowledge about f3 and the receiver has no knowl- 
edge about the pair (el, e z ) ,  

Theorem 7 .  Construction 11 gives a Cartesian A2-code with the following pa- 
rameters for n > m: 

2nf2 IS1 = qn, [MI = qn'2, IERI = Q"", [&TI = Q . 
The probabilities of deceptions are 

PI= Ps = PR, = PR, = P* = 1. 

Proof. We determine the probabilities of success for the different kinds of de- 
ceptions. 

Impersonation by the opponent, I: The message M received by the receiver 
can be written as 

= QI, f l  + W 2 )  + af3) = (%a, $(sfz) + 4 3 )  + (0, fl) . 
The probability of guessing the correct value of f1 is q-l  and thus PI = q-'. 
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Substitution by the opponent, S: The opponent has observed the message 
M = ( s ,  a,  fi + $(sf’) + af3). Now the opponent substitutes this for another 
message M’ which correspond to  a source state s‘, where s’ # s. Write s’ as 
s’ = s + c,  where c # 0 and c E IFp . The message M’ is written as 

M’ = ( s t ,  + c’, fl  + +(S’f’) + (a  + c‘)f3)  

where c’ E IFq. But this is rewritten in independent parts as 

M’= ( S + C , @ + C ’ , f l  + + ( ( s + c ) f z ) +  ( a + c ’ ) f 3 )  = M + ( c , c ’ , c ’ f 3 ) + ( o , o , $ ( ~ f 2 ) ) .  

The probability of guessing the correct value of $(c f2 )  is q - l .  
Impersonation by the receiver, &: The receiver claims to  have received the 

message M = (s ,cy ,p )  and succeeds if a is correct. The message generated by 
the transmitter is written as 

M = (s, el + 4(sez), m3) = (s, +(.e2), m3) + (0, e l ,  0). 

By Lemma 6, the probability of guessing the value of el is q-l  and PR, = q-’. 
Substitution by the receiver, R1: The receiver receives a message M but 

claims to  have received another message M‘ with another source state. If M = 
(s ,e l  + $(se2),m3) we can write M‘ as 

M’ = M + (c,O, m6 - m3) + (0, $(cez) ,  0 )  

where c # 0 and c E IFq” . As before, the value of $(cez)  is guessed with proba- 
bility q-’, i.e. P R ~  = q - l .  

Impersonation by the transmitter, T: The transmitter is able to  generate a 
message M but sends the message M’ with a different signature a’. The signature 
is written as a’ = a + c‘ where c’ # 0 and c’ E IFq. Then M’ can be written in 
independent parts as 

M’ = (s, + c‘, fi + $(sfz) + ( a  + c’)f3) = M + (0, c‘, ~ ’ f 3 ) .  

The value of c’f3 is by Lemma 6 guessed with probability q-l  and PT = q-‘. 0 
We end this section by giving a small example of how the last construction 

works. 

Example$. Assume that we want to  construct an A’-code with the properties 
that IS1 = 2’ and PD = f. The elements of IFp are written as T O  + ~ 1 a ,  where 
T O ,  T I  E IF2 and a’ +a+ 1 = 0. Assume that the encoding rules have the following 
values, 

fi = f 3  = el = 1, fi = e2 = 1 +a. 
From (20) we have that  

e3 = f1 + e l f3  = 1 + 1 * 1 = 0 ,  

and from (21) it follows that 

e4 = f2  + ezf3  = (1 + a )  + (1 + a )  * 1 = 0. 
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Assume that the transmitter wishes to  communicate the source state s = a. He 
then generates the message 

M = (s, el + 4(sez),e3 + 4(seq)) = (a,  1 + $(a ( l+  a) ) ,  O + d(a * 0)) = (a, 0,O). 

When the receiver receives this message he checks that 

m3 = fl + $(mlf2) + m2f3 = 1 f $(a(1+ a)) + +(o * 1) = 0. 

Since m3 was correct the message is accepted as authentic as it should be. a 

5 Acknowledgement 

Y. Desmedt is greatly acknowledged for making the author pay attention to [12]. 

References 

1. E.N. Gilbert, F.J. MacWihms and N.J.A. Sloane, “Codes which detect deception”, 
Bell Syst. Tech. J., Vol. 53,  1974, pp. 405424. 

2. G.J. Simmons, ‘Authentication theory/coding theory”, in Advances in Cryptology, 
Proceeding8 of CRYPT0 84, G.R. Blakley and D. Chaum, Eds. Lecture notes in 
Computer Science, No. 196. New York, NY: Springer, 1985, pp. 411431. 

3. J,L. Massey,“Contemporary Cryptology, An Introduction”, in Contemporary Cryp- 
tology, The Scdence ofhformation Integrity, G.J Simmons , Ed., IEEE Press, 1991, 
pp. 3-39. 

4. G.J. Simmons, ‘A survey of Information Authentication”, in Contemporary Cryp- 
tology, The science of information integrity, ed. G.J. Simmons, IEEE Press, New 
York, 1992. 

5. D.R. Stinson, “The combinatorics of authentication and secrecy codes”, Journal of 
Cryptology, Vol. 2, no 1, 1990, pp. 23-49. 

6. D. R. Stinson, “Universal hashing and authentication codes” Proceedings of Crypi0 
91, Santa Barbara, USA, 1991, pp 74-85. 

7. T. Johansson, G. Kabatianskii, B. Smeets, ”On the relation between A-codes and 
codes correcting independent errors” Proceeding8 Euroc rypt ’99, to appear. 

8. G.J. Simmons,“A Cartesian Product Construction for Unconditionally Secure Au- 
thentication Codes that Permit Arbitration”, in Journal of Cryptology, Vol. 2, no. 

9. G.J. Simmons, “Message authentication with arbitration of transmitter/receiver 
disputesn, in Proceeding8 of Eurocrypt ’87, D. Chaum and W.L. Price, Eds., Ams- 
terdam, The Netherlands, April 13-15, 1987, pp, 151-165. Berlin: Springer-Verlag, 
1988. 

10. T. Johansson, “Lower Bounds on the Probability of Deception in Authentication 
with Arbitration”, in Proceeding8 of 1999 IEEE International Symposium on Infor- 
mation Theory, San Antonio, USA, January 17-22, 1993, p. 231. 

11. E.F. Brickell D.R. Stinson, “Authentication codes with multiple arbiters”, in Proc- 
ceedings of Eurocrypt ’88, C.G Giinter, Ed., Davos , Switzerland, May 25-27,1988, 
pp. 51-55, Berlin: Springer-Verlag, 1988. 

12. Y. Desmedt, M. Yung, ‘Asymmetric and Securely-Arbitrated Unconditional Au- 
thentication Systems”, submitted to IEEE aanSaCtiOnS on Information Theory. A 
part of this paper was presented at Crypto’90. 

2, 1990, pp. 77-104. 


	On the Construction ofPerfect Authentication Codesthat Permit Arbitration
	1 Introduction
	2 The model of authentication with arbitration
	3 A general construction of A2-codes
	4 Some specific constructions of Aa-codes
	5 Acknowledgement
	References


