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Abstract 
In 1989, Adi Shamir published a new asymmetric identification scheme, based on 

the intractability of the Permuted Kernel Problem (PKP)  [3]. In 1992, an algorithm 
to solve the P K P  problem was suggested by J.  Georgiades [Z], and also in 1992 T. 
Baritaud, M. Campana, P. Chauvaud and H. Gilbert [l] have independently found 
another algorithm for this problem. These algorithms still need huge amount of 
time and/or memory in order to solve the  PKP problem with the values suggested 
by A. Slianiir. 
In this paper, we will see that i t  is possible to solve the P K P  problem using less 
time that  which was needed in (11 and (21, and much less memory than that  needed 
in 111, 
First we will investigate how the ideas of [l] and  [2] can be combined. This will 
enable us to obtain a little reduction in the time needed. Then, some new ideas will 
enable us to obtain a considerable reduction in the memory required, and another 
small reduction in time. 
Since o u r  new algorithms are quicker and inore practical than previous algorithms 
they confirm the idea stated i n  [I] that  for strong security requirements, the smallest 
values ( n  = 32, m = 16, p = 251) mentioned in [3] are not recommended. 

1 Recall of the algorithms of [l]. 
In this section, we will briefly recall the attack given i n  [l] for the PKP Problem (see [l] for 
more details). Then in the nest  sections, we will study how to improve these algorithms. 
The PKP problem is the following : 

Given : a prime nuliiber p ,  
a ??I x n matrix A = ( u , ~ ) ,  i = 1.. , n7, J = I . .  . n, over Z,, 
a n-vector I/ = (IS), j = I . .  . ? I .  over Z,, 
a permutation r over (1,. . . , n)  such that A * V, = 0, where V ,  = (V,,j,), j = 1,. . . , n. - Find : 

D.R. Stlnson (Ed.): Advances in Cryptology - CRYPT0 '93, LNCS 773, pp. 391-402, 1994. 
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We will assume that A is of rank m and is generated under the form [ A’11] where A’ 
is a fixed rn * (m  - n )  matrix and I the m * m identity matrix. As mentioned in [3] this is 
not restrictive because both the prover and the verifier can apply Gaussian elimination. 
We will use, as far as possible, the notations of [l], and we will denote by (q,.. . ,zn) the 
components of the V, vector. So 

I n-m 

C aiixi  +zn-m+l = 0 (1) 

c a; i2 i+2 ,  = 0 (m) 

i=l 

n-m I :  i=l 

A * V , = O W  

In the algorithms described in [l], one first tries to solve the equations (1) to (k), where 
k is a parameter of the algorithms. In these k equations, there are n - rn + k distinct 
variables zi. These variables are divided into two groups : one group of I variables 
( I  is another parameter of the algorithm) will be written on the right-hand side of the 
equations, and the other n - m + k - I variables will be on the left-hand side of the 
equations. (We will denote by (21,. . . , q) the I variables on the right-hand side). 

So the equations (1) to (k) will be represented in a scheme like this : 

n - m t k - L! 1 variables / 
n - m t k - 1 variables 

Y 
1 variables 

Then the algorithm of [I] proceeds in the following way : 

Step 1 : Precomputation. For each of the & possible values for the I variables 
on the right-hand side, the right-hand side value (of k equations) is calculated. These 
values are stored in a file F1 in such a way that for each of the pk possible values for 
the right-hand side, the list of the corresponding (51, . . , ,x,) can be accessed by very few 

.elementary operations. 

S t e p  2 : Generation and  t e s t  of candidates. For each of the - possible 
values for the (n - k + m - I )  variables on the left-hand side, the left-hand side value (Of 
k equations) is calculated. Then the file F1 of step 1 is used to obtain a list of possible 
(51,. . . , “ 1 )  such that the value on the left-hand side is the same as the value on the right- 
hand side. Then these candidates are tested, by using also the equations (k + 1) to (.). 
(One also has to check that the variables used for the right-hand side are not used on the 
left-hand side). 



393 

Example  1 : Algorithm AO. 
For a PKP (16,32), that is to say with n = 32, rn = 16, p = 251, let us choose (as 

suggested in [l]) k = 6 and I = 10. Then step 1 needs z 247.7 10-uples of memory. 
Since 247.7 < 2516, in step 2 on average less than one candidate for the right-hand side will 
have to be checked for each candidate for the left-hand side. But there are 12 variables 
on the left-hand side, so the time for the step 2 will be about M 2'"' multiplications 
by A. We will call this algorithm AO. More generally, in this paper we will call by Ai, 
i=O,l,.. some algorithms with k = 6. A0 was the quickest algorithm described in [l] but 
it needs a huge amount of memory(about 1300 Terabytes). 
Bemarks. 
1. To memorize a 10-uple one can use 10 bytes (since each value is modulo 251) or lG 
5-bits (since there are only 32 possible values for each q). 
2. The unit of time is, in first evaluation, the time for a multiplication by A. But it is 
possible to show that on average it will be appreciably less. This is because when the 
value of only one z; changes (or a few xi), the new value of A+ V, can be quickly calculated 
from the old value of A t V,. 
These two remarks will be true for all the algorithms we are studying. 

Example 2 : Algorithm BO. 
If we choose k = 3 and 1 = 5 then we will need about ZZ4 5-uples to memorize and 

Z65.1 in time for calculation. We will call this algorithm BO. More generally, in this paper 
we will call by Bi, i=O, l,.. some algorithms with k = 3. 
In the following paragraphs we will show how to modify A0 and BO in order to improve 
these algorithms. 

2 How to combine the ideas of [l] and [2]. 
In (21, J. Georgiades pointed out that we can add some equations in the system (1) to (n )  
of equations such that A * V, = 0. As a matter of fact, V = (vlr.. . , vn) is known, and V, 
= (q, .. . , z,,) is a permutation of V ,  so every symmetrical function of the 2; is known. 

So we can add : 

where a1 = C:='=, v, mod p ,  a2 = Cy='=l v;' mod p etc . . 
For us, equation (Gl) will be very useful due to the fact that (GI) is of the first degree. 

So with (Gl) we can apply Gaussian elimination with one more equation. Then we will 
be able to use the algorithms of [I] but with one variable less. (We will obtain in this 
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way new algorithms which combine the ideas of 111 and [2] in a straightforward way!) 
Let us call "Algorithm Al" the modified version of algorithm A0 where the Gaussian 
reduction takes (Gl) into account, and "Algorithm B1" the modified version of algorithm 
BO where the Gaussian reduction takes (Gl) into account. It is easy to see that algorithm 
A1 (k = 6,1 = lo), needs 25'.2 in time (instead of 2% for AO), for the same memory as 
A0 (247.7 10-uples). The algorithm B1 (k = 3,1 = 5), needs Z60.9 in time (instead of Z65.') 
for the same memory as BO (!?' 5-uples). 

Remark. In order to defend PKP, one may consider to choose the A matrix and the vector 
V in such a way that the equation (Gl) will be just a consequence of the equations (1) 
to (m). But this idea doesn't work because the number m of equations has been chosen 
in such a way that there is about one solution ?r for A * V, = 0. So rn is chosen such that 
n! M p" as explained in (31. But for all the permutations x ,  (GI) is satisfied. So (Gl) 
does not restrict the permutations solutions. So ( G l )  is really a "free" equation for the 
attack. 

So we have obtained a small reduction of the time needed. 

HOW can we use equation (G2)? In [Z], J Georgiades was able to use the equation (G2) 
in his algorithm. Nevertheless we didn't see how to use it in a combined algorithm with 
the algorithms of [l]. This is because ( G 2 )  uses all the x;  and we eliminate &me of them 
with the other equations (as we did for(G1)). Thus we willobtain, in general, an equation 
of the second degree which seems impossible to split in two groups of distinct variables 
(some variables on the right-hand side of the  equation and the others on the left-hand 
side), because we will have all the double products. So we do not use (G2), (G3) etc.., in 
our algorithms. 

3 Introducing a set E on the left (or right) hand 
side. 

In this section, we describe a new algorithm, which we will call : algorithm "B2". Like 
Bl and BO, our algorithm B2 will first be used for k=3 equations. But here, the new idea 
is that we will take into account the fact that the variables on the left-hand side cannot 
be used on the right-hand side, 
After the Gaussian reduction with (GI) (as described in Section 2); there are 15+3=18 
variables left in our equations. Here we split these variables with 1=6. 
This is represented schematically as follows : 

/ \ 
12 variables 6 variables 
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The new idea is that we will distinguish C:: cases : one for each possible value for the 
set E of the 12 variables on the left-hand side. For every such case we do : 
Step 1 : Precomputa t ion  compatible with E. 
For each of the 3 M 224.7 possible values for the 6 variables on the right-hand side (when 
E is given), the right-hand side value is calculated and stored in a file F 1  with the corre- 
sponding 6 variables. 
Step 2 : Genera t ion  and  test of a candidate. 
For each of the 12! z 228.s possible values for the 12 variables on the left-hand side (when 
E is given) the left-hand side value is calculated. Then the file F 1  of step 1 is used to 
obtain a list of possible (21, ..., 1 6 )  values. On average 1.76 such candidates will be given 
by F1 (because 3 M 1.76* (251)3). All these candidates will be immmediately tested (as 
usual) with more equations. 

Total t i m e  for this algorithm B2 : C,li * (224.7 + 228.8 * 1.76) M 257.4. 
Total memory  : P4.' 6-uples. 

For each new set E the new file F 1  can use bhe memory of the old file F1 because 
we can forget the old file F1. So this algorithm B2 is quicker than B1 and needs about 
the same amount of memory. 
Remark : This idea to fix the set E of the variables used on the left-hand side can be 
generalized for values of the parameter other than the k = 3 and 1 = 6 that we have given. 
By convention, in our diagrams, the values that we will store during the precomputation 
phase are the values of the right-hand side. However, we can choose to fix the set E of 
these variables (with a higher value of I ) ,  or we can choose to fix the set E of the variables 
of the left-hand side (as we did in algorithm S2) .  In this paper, we will only describe 
some of the best algorithms that we have obtained. 

4 Introducing some "middle values". 
The idea given in paragraph 3 (fixing a set E in order to take into account the fact that 
the variables on the left-hand side cannot be used on the right-hand side) was useful to 
improve algorithm B1, because we were able to split the 18 variables in a group with 
much more variables (12) than in the other group (6). -However, it is not possible to do 
this in order to improve algorithm A1 because here to minimize the time we have to split 
the 21 variables in two groups of about the same number of variables. So the idea of 
paragraph 3 does not work for algorithm A l .  
Nevertheless, we will describe here another idea that will allow us to reduce the memory 
needed in A1 by (251)3 without significative loss of time! We will call this algorithm 
"A2". Here k=6 and 1=10 (as for Al) ,  we have 15+6=21 variables after reduction with 
G1, but we will introduce the middle values C I , C ~ , Q  of the first three equations. 
This is represented schematically as follows : 
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9 variables 

j b:; 
10 variables 

Here the new idea is that, in order to need less memory, we will try to find the solutions 
with a given (cl,c2, c3) .  So, our algorithm A2 will proceed in (251)3 cases : one for each 
possible value for (c,, c2, c3). For each such cases we do : 
Step 1 : Precomputa t ion  compatible with (cl,cz, c3). 
The aim of this step is to calculate and store in a file F1 all the possible values for the 
right-hand side of equations (4), (5), (6), (with the corresponding 10 variables of the 
right-hand side) when the right-hand side of equations (l), (2), (3) is (cI ,cz ,c~) .  The 
problem is that we do not want to do that in time but in time - (because we 
will have to do that (251)3 times). For that purpose, we first notice that the right-hand 
side of (I), (2), (3) gives us three equations with 9 variables, when (cl, c2, c3) is fixed. We 
will write these equations with 5 variables on the left and 4 variables on the right. We 
denote by (A) this system of three equations. (A)  depends on cl, c2, g. 
This is represented schematically as follows : 

/ 
5 variables 

All the possible values for the right-hand side of (A) are calculated and stored in a 
file FO. So FO contains 32 * 31 t 30 * 29 values z 0.055 * (251)3. We can notice that 
if c1, cZ,c3 are put on the left-hand side, then the file FO can be precomputed once and 
for all : it does not depend on (cI,cz,c3). Then for each of the 5 possible variables on 
the left-hand side of (A),  the value of the left-hand side of (A) is calculated (this value 
depends on c1, c2, cg) .  Then file FO is used to obtain suitable values of the right-hand side 
variables (if any). If values are formed, and i f  all the 9 variables are distinct then the 
variable number 10 is introduced (there are 32-9=23 possible values for this variable) and 
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the 23 corresponding values for the right-hand side of (4), (5), (6) are stored in F1 with 
the corresponding 10 variables. So, the time to generate F1 will be about M 224.5 plus 
the number of values stored in F1,  that is to say about 224.5 +- - x 225.2. This will 
be done (251)3 times. The memory needed is about 219.’ 4-uples for FO and Y3.* 10-uples 
for F1. 
Step 2 : Generation of a candidate compatible with (cl,c2,c3). 
When (cl, c2, c3) is given, the left-hand side of equations ( l ) ,  (2), (3) gives three equations 
with 9 variables. We will denote by (B) this system of equations. We will write (as in 
step 1) these equations with 5 variables on the left and 4 on the right. 
This is represented schematically as follows : 

5 variables D Q 4 variables ( B )  

All the possible values for the right-hand side of ( B )  are calculated and stored in a file 
F’O. Then a candidate compatible with (cl,c2,c3) values is quickly generated as follows : 
( i ) .  Choose values for the 5 variables on the left-hand side of (B). 
(ii). Then look in the file F‘O to see whether there are any 4 variables compatible with 
these 5 variables. 
(iii). If (ii) provides 9 variables which are all distinct, then introduce variables 10 and 11 
of the left-hand side of equations (4), ( 5 ) ,  (6) and for each possible value calculate the 
left-hand side of (4), ( 5 ) ,  (6). 
(iv). Then look in the file F1 to see whether there are any 10 variables compatible with 
these 11 variables. 
(v). If (iv) provides 21 variables which are all distincts then quickly test this candidate 
as usual with extra equations. 
(vi). If the test proves negative then retry (i) with a new choice for the 5 variables. 

Finally, there are $$ x 
We will generate about & x 228.3 candidates for the 11 variables compatible with 
(q, c2, c3). So the total time for step 2 is about 224.5 +- P4. The memory needed for the 
file F’O is x 219.7 4-uples. 
Conclusion : The total time for this algorithm A2 is : (251)3.(225.2 + 228.4) M 252.4. The 
total memory is about 224 10-uples (files FO + F‘O + Fl). So A2 is a great improvement 
on A l :  with about the same time we need (251)3 times less memory. 
This idea to fix some “middle values” is very useful in order to improve the algorithms of 
[l]. We can use it also to improve the algorithm B2 of section 3 : it is possible to reduce 
the memory needed by making 2 5 1 . C ~ ~  cases ; one for each value of c1 and E.  We will 

values for the 5 variables on the left-hand side of (B). 
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call this algorithm B3. We will not go into details for B3 because we will now introduce 
another idea to improve B3 and we will explain in details the algorithm 8 4  obtained. 

5 Introducing precomputation on the A matrix. 
In algorithms B2 and B3 we had I: = 3, and in the first three equations we had 15+3 = 
18 variables (after Gaussian reduction with Gl). We will now see that if  the variables are 
carefully chosen we can do even better and have only 17 variables in three independent 
equations. For this, the idea is that we can choose a particularly convenient Gaussian re- 
duction. When the 17 variables that we want to keep in the equations are chosen, we will 
try to eliminate the other variables by Gaussian reduction. For three equations there are 
on average about C$'/(251)3 x 36 non equivalent possible choices for the set of variables 
providing three independent equations. 
Note : For six equations the probability that we could have only 20 variables instead of 21 
is only about C::/(251)6 which is less than We have to be careful in the evaluation 
of this probability : when the 20 variables that we want to have in the six equations are 
fixed, there are a lot of ways to eliminate the 12 other variables. But if one succeeds they 
all succeed, and if one fails they all fail. So for six equations the probability to eliminate 
one variable in this way is very small. If it happens, it gives us an algorithm in time 248 
instead of 252. However for k = 3 equations we can easily eliminate one variable. The 
probability of success is close to 100% , and we can quickly find a good system of three 
equations : we will have to do at  most Cj; M 229 Gaussian reductions (this is negligible 
as compared with the time of the algorithm). With a program of Gaussian elimination 
on a PC we have made simulations, and we were able to find such equations quite easily. 
We will now describe an "algorithm B4", which will use such equations. 
Algorithm B4 : 

Step 0 : Find three independent equations with only 17 variabIes. (This is 
done as described above with Gaussian reduction with G1 and a good choice of the 17 
variables). Then these are written with 1=6, that is to say with 11 variables on the left 
and 6 on the right-hand side. Now the algorithm proceeds in Cii w 226.9 cases, one case 
for each possible value in the set E of the 11 variables on the left-hand side. Each cases 
is separated in 251 subcases : one for each possible value of the "middle value" c1, 

described in the following diagram : 

9 variables 

- - J 1 = I Q:; 
11 variables 6 variables 
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For each of the 251 * C:: x Z’.’ subcases we perform the following steps 1, 2 and 3. 

Step 1 : Precomputa t ion  compatible with E a n d  cl. The aim of this step 1 is 
to calculate and store in a file F1 all the possible values for the right-hand side of equa- 
tions (2) and (3) (with the corresponding 6 variables) when the right-hand side of equation 
(1) is c1 and when the set E of the 11 variables on the left-hand side is known. The prob- 
lem is that we want to do that not in time but in about - time. For that purpose, 
we first notice that the right-hand side of (1) gives us one equation with six variables 
when c1 is fixed. We will call this equation (A) and we will write (A) with 4 variables on 
the left and 2 variables on the right. A file FO of the possible value for the right-hand side 
of (A) is calculated, so FO contains 21 * 20 x 1.67 * 251 values. Now for all possible values 
for the 4 left variables of ( A ) ,  this file FO will be used in order to find the corresponding 
2 variables and to store in F1 all the solutions such that the 6 variables are distinct. The 
time to generate F1 will be then about 1.67 * 21 * 20 * 19 * 18 x ‘Z17.9. F1 will contain 
about - x 2.47 * 2512 x 217,3 values. 

Step 2 : Genera t ion  of a candidate compatible wi th  E and  cl. 
The left-hand side of (1) gives us one equation with nine variables when c1 is fixed. We 
will call this equation (B) and we will write (B) with 5 variables on the right-hand side and 
4 variables on the left-hand side. Now we will distinguish C,S, = 462 more subcases (for 
each cases for E and cl), one for each possible value for the 5 variables on the right-hand 
side of (B) .  As usual, a file F’O of the 5! possible values for the right-hand side of (B) is 
introduced. Then for all possible values for the 4 left variables of (B) this file F‘O will be 
used in order to find whether there is a corresponding set of 5 variables (the probability 
is about 5!/251 M 0.48 for each attempt). If this is the case, then variables number 10 
and 11 of the left-hand side are introduced ( E  is fixed so we will have only 2 possible 
values for these variables when the first 9 variables are known). Then the left-hand side 
of equations (2) and (3) are calculated for this 11-variable candidate. Then the file F1 of 
step 1 is used in order to add 6 variables to our candidate. (In average, we will have 2.47 
solutions for these 6 more variables). Then these 17-variable candidate is quickly tested 
as we will describe in step 3. 

Step 3 : t e s t  of a 17-variable candidate. 
At the end of step 2 we have obtained a 17-variable solution of equations (l), (Z), 
(3). As usual we will now test this candidate with more equations. But the problem 
here is that when introducing one more equation, we introduce two more variables (be- 
cause of the special equations ( l) ,  (2), (3) chosen with 17 variables instead of 18 vari- 
ables). We want to test a candidate very quickly. In order to do this, we will first 
add only two equations that we call equations (4) and(5). These equations are written 
with the variables of (l), (2), (3) on the left and the three new variables on the right. 
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"old" variables 3 new variables 

Once and for all at  the beginning of this algorithm, a file F"0 with the possible values 
for the right-hand side of (4) and ( 5 )  has been stored. So F"0 contains 32 * 31 * 30 x 
0.47(251)' values. Now with F"0 a 17-variable candidate is immediately transformed to 
a 20-variable candidate which will be tested as usual with more equations (each extra 
equation needs only one additional variable). 

Conclusion : The total time of this algorithm B4 is about C;: * 251 * (Z1'.' + 462 * 
(5 !  + 6 * 5 * 4 * 3 * 0.48 * 2 * 2.47)) x 254. The total memory is about 217 6-uples (files F'O 
and F"O requiring negligible memory in comparison with F1). 

Note : As an algorithm with k = 3, the total time of B4 is near from optimal because 
there are about $.& = 253.5 solutions for 3 equations and 17 variables. So an algorithm 
with k = 3 will need at least this time. 

6 Introducing a special equation (1). 
In the first note of paragraph 5 we have seen that with a small probability (less than 

we can have an algorithm in time 248 instead of 252 and it is possible to know if 
this algorithm will be convenient after only C:,O x Z2* gaussian reductions. Here we will 
see that there is also an algorithm in time 248 with a probability of about 0.057 of success 
(or about 1/18). It is possible to know if this algorithm will be convenient after only 
Ci; 228 gaussian reductions. 
The algorithm. 

Step 0 : First, we have to find an equation with only 12 variables (instead of 16). 
The probability to find such an equation is about Cji.& M 0.0569. If it exists, then 
we will find it after at most C:: gaussian reductions. If we find such an equation, call it 
equation (1). Then we introduce 6 more equations. The 12 variables of (1) are written 
on the left-hand side, the 10 more variables are written on the right-hand side. This is 
represented schematically as follows. ,J=I = 

- - 

12 variables 10 variables 
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Memory 
Negligible 

Step1 : precomputation. For each possible values for the 10 variables of the right 
hand side, the right-hand side value is calculated. By introducing middle values, like in 
paragraph 4 ,  it is possible to reduce the memory needed. We do not give details since we 
are mainly interested in the time here. 

Step2 : Equation (1) is written with 10 variables on the left-hand side, and 2 variables 
on the right-hand side. Now the algorithm proceeds in steps : one for each 
possible value for the set E of the 10 variables on the left side of (1). At the beginning of 
each such step, a file F2 of the possible values for the right-hand side of (1) is stored. SO 
there is 22.21 = 462 values in F2. Then, each possible value for the left-hand 10 variables 
is tested, F 2  gives then in average 462/251 = 1.84 solutions for variables 11 and 12. Then 
F1 gives variables 13 to 20 and this 20-variable candidate is tested as usual with more 
equation. 

Conclusion: The total time is only C~~.10! . (1 .84)  w 24s.6. But the probability that 
this algorithm works is only about 0.057. 

For PKP (37,64) a similar algorithm with k = 15 and 1 = 21 works. In this case the 
probability to find an equation (1) with 21 variables instead of 27 is closed to 100 per 
cent, because C::/25l6 NN 164. It gives the fastest algorithm we found for PKP(37,64) 
with 211' in time. 

x 

Time Name 
'2" J. Georgiades (cf[2]) 

7 Conclusion 

Memory 
2l' (6 - uples)  

We have investigated different ideas in order to improve the algorithms for the PKP prob- 
lem. Let us recall the numerical results that we have obtained for the PKP (16,32), with 
a probability of success of about 100 per cent, 

Time Name 
2s4 Algorithm B4 

Previous algorithms for PKP(16,32) 

1 :2 :: 1 tq~qdl;: 1 5 1 see [I] with k=3 

see [I] with k=5 

see [l] with k=6 248 (10 - 

Our algorithms for PKP(16,32) : 

224 (10 - uples) I Z5' I Algorithm A2 
: Numeric values show that algorithm B4 needs only about 600 kbytes of memory 

and algorithm A2 about 100 Megabytes of memory, instead of about 1300 Terabytes for 
(11 with k=6, for example. 
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Now we summarize some results for PKP(37,64) (with a probability of success of about 
100 per cent). 

Previous algorithms for PKP(37,64) : 

Memory 
227 

252 

265 

Time Name 
2i23 k=7, 1=19, one variable eliminated, E on the right, c1 to c4 fixed 

k=14, 1=20, c1 to cs fixed 

k=15, 1=21, equation (1) with 21 variables, c2 to CT fixed 

2119 

2116 

As we can see, our algorithms are still impracticable for PKP (37,64). However, although 
they need a lot of time, they are not completely unrealistic for PKP(16,32). Furthermore, 
the times given above are for sequential algorithms. Nevertheless, all our algorithms are 
very easy to implement in parallel, since they are not only designed in independent cases, 
but the memory needed in each of these cases is moderate. 
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