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Abstract. Shamir presents in [3] a family of cryptographic signature 
schemes baaed on birational permutations of the integers modulo a large 
integer N of unknown factorization. These schemes are attractive be- 
cause of the low computational requirements, both for signature gener- 
ation and signature verification. However, the two schemes presented in 
Shamir's paper are weak. We show here hnw to break the first scheme, 
by first reducing it algebraically to the earlier Ong-Schnorr-Shamir sig- 
nature scheme, and then applying the Pollard solution to that scheme. 
We then show some attacks on the second scheme. These attacks give 
ideas which can be applied to schemes in this general family. 

1 The first scheme 

The public information in Shamir's first scheme consists of a large integer N 
of unknown factorization (even the legitimate users need not know its factor- 
ization), and the coefficients of k - 1 quadratic forms fi, ..- , fk in k variables 
~ 1 ,  - - - , ;Ck each. Each of these quadratic forms can be written as 

where i ranges from 2 to k and the matrix aije is symmetric i.e. a i j e  = aitjm 

The secret information is a pair of linear transformations. One linear transfor- 
mation B relates the quadratic forms fi,. . fk to another sequence of quadratic 
forms 92, - - 4 , gk. The second linear transformation A is a change of coordinates 
that  relates the variables (21,. - , zk) to  a set of "original" variables (yl, * * , yk). 
Denoting by Y the column vector of the original variables and by X the column 
vector of the new variables, we can simply write Y = A X .  

Of course, the coefficients of A and B are known only to  the legitimate user. 
The trap-door requirements are twofold: when expressed in terms of the original 
variables y1, * - , yk, the quadratic form 92 is computed as: 

!I2 = Y l Y 2  (2) 

(3) 

and the subsequent gi's, 3 5 i 5 k are sequentially linearized, i.e. can be written 

gi(!/l,*.',Yk) = l i ( Y l t . " , Y i - l )  x Yi +!Ii(Y~,"*,Yi-l) 
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where l i  is a linear function of its inputs and qi a quadratic form. 
To sign a message M ,  one hashes M t o  a k - 1-tuple ( j z , .  . . , f k )  of integers 

modulo N ,  then finds a sequence (21, - - , z k )  of integers modulo N satisfying 
(1). This is easy from the trap-door. 

We let Ai,  2 i 5 k denote the k x k symmetric matrix of the quadratic 
form f i ,  namely: 

The kernel Ki of g i  is the kernel of the linear mapping whose matrix is Ai. It 
consists of vectors which are orthogonal to all vectors with respect to g i .  The 
rank o f  the quadratic form gi  is the rank of A;. It is the dimension of Ki as 
well as the unique integer r such that gi can be written as a sum of squares 
of r independent linear functionals. Actually, all this is not completely accurate 
as N is not a prime number and therefore Z / N  is not a field. This question is 
addressed at the end the paper and, meanwhile, we ignore the problem. 

An easy computation shows that K, is the subspace defined in terms of the 
original variables by the equations 

Ai = ( % j C ) l  <j<k,l<t?<k (4) 

y1 = . . .  = y i = o  (5) 
It follows from this that 

i) Ki is decreasing 
ii) the dimension of Ki is k - i 
iii] any element o f  Ki-1 not in Ki is an isotropic element wrt g;,  which means 
that the value of gi is zero at this element. 

We will construct a basis bi of the k-dimensional space, such that bi+l , .  - , bk 
spans Ki for z = 2,. . . , k - 1. The main problem we face is the fact that the gi’s 
and therefore the Ki’s are unknown. In place, we know the fj’s. We concentrate 
on the (unknown) coefficient Si of gk in the expression of fj, i.e. we write 

j=2  

As coefficients have been chosen randomly, we may assume that 61, is not zero. Let 
i < k. Consider the quadratic form Qi(A) = fi - A f k .  When A = hi/&, this form 
has a non-trivial kernel and therefore &/6k is a root of the polynomial Pi@) = 
d e t ( Q i ( A ) ) .  This is not enough to recover the correct value of A. Computing 
the matrix of Qi(A) for X i  = 6 ; / 6 k  in the basis corresponding to  the original 
coordinates y1, - + .  , Yk yields the following 

LII 0 
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In the same basis, the matrix of Qi(X)  for any A, can be written as 

’1 0 

We observe that Ux is linear in A and vanishes at A;. Since determinants can 
be computed up to a multiplicative constant in any basis, it follows that (A - X i ) ’  

factors out in Pi(A). Thus the correct value of A ;  can be found by observing that 
it is a double root of the polynomial equation Pi(X) = 0. This double root is 
disclosed by taking the g.c.d. (mod N )  of P; and P,! with respect to A. We 
find a linear equation in A, from which we easily compute Xi.  

Once all coefficients Xi have been recovered, we set for i = 2, - .  + ,  k - 1 

f ;=  f i - A i f k  Z < k  (7) 
and f k  = f k .  w e  note that d l  quadratic forms f i  have kernel K k - 1 .  This allows 
tQ pick a non-zero vector b k  in K k - 1 .  The construction can then go on inductively 
in the quotient space of the k-dimensional space by the vector spanned by { b b }  

with f2,-..,fk-l in place of f 2 , . - . ,  f k .  
At the end of the recursive construction, we obtain a sequence bi, 3 5 i 5 k 

such that - b i + l L -  . , b k  spans Ki for a = 2, * .  * , k - 1 and a sequence of quadratic 
forms f2,. . - , fk such that 
i) has kernel Ki 
ii) bi is an isotropic element wrt fi 
Choosing b l ,  b2  at  random, we get another set of coordinates zl,. - - , %k such that 
i) f2 is a quadratic form in the coordinates 21, 22 
ii) f3, - . , f;c is sequentially linearized 

The rest is easy. From a sequence of prescribed values for f 2 , a . a  , f k ,  we 
can compute the corresponding values of f 2 , a - s  , f k .  Next, we can find values 
of { z 1 , 2 2 }  achieving a given value of f”z (mod N )  in exactly the same way 
as the Pollard solution of the Ong-Schnorr-Shamir scheme [2]. Then, values for 
2 3 ,  . , zk achieving given values of f3, . . . , f k  are found by successively solving 
k - 2 linear equations. Finally, the values of 21 ,  a .  , z k  can be translated into 
values of s1,*--,sk. 

Example. In Shamir’s paper [3], an example is given with N = 101. (We use 101 
to  maintain consistency with Shamir’s paper, even though 101 is prime, while 
N should be composite. We treat 101 as a number of unknown factorization; in 
particular we never solve nonlinear equations mod 101.) 

- - 

212 = 78s: + 372; + 62;  + 5 4 x 1 2 2  + 19x123 + 1 1 ~ 2 2 3  (mod 101) 
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213 = 842: + 71x22 + 482: + 4 4 2 1 x 2  + 3321x3 + 83x223 (mod 101) 

Matrices of f 2 ,  f 3  are as follows 

We get: 

P’(A) = X2 + 50X + 52 (9) 

gcd(P,P‘) = X - 63 (10) 

f 2  = fz - 63f3 ; fs = f3 (11) 
We let 

The kernel of fz is spanned by vector b3 = (31,12, We pick b2 = (0,1, O ) t  
and bl = (1,31,0)‘. We get, in the corresponding coordinates zl, z2, z3: 

iz = 26%; + 8%; ; 13 = ~ ~ ( 2 6 x 1  + 2022) + 90%; + 22122 + 7lz; (12) 

2 The second scheme 

We now treat Shamir’s [3] second scheme. The ideas developed in this section 
will have general applicability. 

Throughout, we will pretend we are working in Z i p  rather than Z / N .  
We treat first the cwe s = 1. We begin with k variables y1, yz,. . . ,yk, with 

k odd. These are subjected to  a secret linear change of variables which gives 
Ui = Cj aijYj,i = 1,2 , .  . . , k, with the matrix A = (a ; j )  secret, The products 
~ i ~ i + l ,  including U k U 1 ,  are subjected to  a second secret linear transformation 
B = (bij) ,  so that ui = cj b + p j + l , i  = 1,2, .  . . , k - 1. The public key is 
the set of coefficients ( c i j ~ )  expressing vi in terms of pairwise products yjye, for 
l < i < k - l ,  

vi = C cijfvjye, 1 5 i 5 k - 1, cijc = ciej (13) 
j$ 

(Here i is ranging to k - 1, so we have discarded s = 1 of the vi.)  
The first step in our solution: linear combinations of the vi are linear combi- 

nations of the U i U i + l ,  but they form only a subspace of dimension k - 1. Some 
linear combinations of the wi, 
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will be quadratic forms in the y; of rank 2. A computation shows that the only 
linear combinations of the products uiui+l of rank 2 are of the form 

~ i U i - l U i  + piuau;+1 = Ui(CyiUi-1 + /%Ui+l),  (15) 

for any values of ai,&,i. Because the v j  span a subspace of codimension 1, and 
because we are further restricting to  one lower dimension by the choice of the 
multiplier 1 for v1 in the linear combination, we find that for each i there will 
be one pair (a,,Pi) and one set of coefficients ( 6 , ~ j )  such that 

The condition of being rank 2 is an algebraic condition: setting 

35jLk-1 i j  

with r i j  = Tji, we find that each 3 x 3 submatrix of the (r,j) has vanishing 
determinant. Each of these determinants is a polynomial equation in 6,ej. Use 
resultants to  eliminate cj  from this family of polynomial equations (in the ring 
Z/N) and find a single polynomial F of degree k satisfied by 6. We also find € j  

as polynomials in 6, by returning to the original equations and eliminating the 
variables e i ,  i # j. 

Thus each solution 6 to  F ( S )  = 0 gives rise to  a linear combination of vj 
which is of rank 2. The root 6 corresponds to  that index i for which 

211 + 6 ~ 2  + 1 Ejvj = u i ( ~ i u i - ~ +  Piui+l). (18) 
3 1 j 5 k - l  

We will indicate this correspondence by writing 6 = 6i. 

Y(6i) = 

u;, 74-2, and (a;-1u+z +P;-lui). So 

For each solution 6 = 6,, the rows of the resulting matrix (rij) span a subspace 

Observe that ui, u i + 2 ,  and (cr;+~ui + pi+lu;+2) are linearly related, as are 
of Z i  of rank 2; namely, Y, is spanned by ui and aiui-1 +Piui+l. 

ui E K n ( K + ~  + K + ~ )  n ( K - ~  + K - ~ )  (19) 

This is an algebraic relation among 6i-2, 6;-1, 6i, &+l, and 6i+2. 

We formulate the relation as the vanishing of several determinants, and re- 
duce the resulting ideal by factoring out any occurrences of (6; - 6j) , i  # j to 
assure that 6i, 6 j  are really two different solutions. That is, we consider the ideal 
formed by F(&), ( F ( & )  - F(6j)) / (6i  - 6j), etc., and the various determinants. 
We apply the Groebner basis and the Euclidean algorithm to  this ideal to  find 
a basis. 

Only multiples of some u; satisfy such a relation (19) over Z / p ,  namely, two 
different linear relations. We fix a multiple of each u, by normalizing ui to  have 
first coordinate 1. The linear relations serve to define ui in terms of 6;. 
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By similar argument, there is a quadratic equation expressing &+I in terms 
of Si ,  whose two solutions are and 6i-1. The algebraic condition is that the 
corresponding spaces Yt, K+I are in two different triples of subspaces enjoying 
linear relations: 

Tank(Y,  + &l+ K+2) = W k ( &  + K+1 + E-1) = 5 (20) 

We represent the solution of the quadratic equation by 7, and say that (6,r) 
generates a pair of ‘adjacent’ elements (ui ,Ui+l)  (elements which are multiplied 
together in the original signature). We think of 6 as generating an extension of de- 
gree lc over Z/N, and r as generating an extension of degree 2 over Z/N[S]/F(S). 
The ability to  distinguish the unordered pairs of ‘adjacent’ roots {&, makes 
the system similar, in spirit, to  a Galois extension of Q whose Galois group is 
the dihedral group on k elements. We will call on this analogy later. (Remark: 
it is only an analogy, because 6 and T really are elements of the ground fields.) 

We can get the missing kth equation 

1 

The coefficients of v; in terms of yjyt ostensibly depend on bi and on the pairings 
(&,&+I), or equivalently on (6,~). But the coefficients would come out the same 
no matter which solution (6,~) were chosen, that is, no matter whether we 
assigned the ordering (1 ,2 ,3 , .  . . , k) or (3,2,1, k, k - 1,. . . ,4) to the solutions ui. 

This means that the coefficients will be in fact independent of (6,~). They will 
be expressible in terms of only the coefficients of the original ui, 1 5 i 5 k. This 
is because they are symmetric (up to dihedral symmetry) in the solutions 6i. 

The arguments here are analogous to those of Galois theory. Each coefficient 
c of vi is expressed as 

c =  C Wij6irj (22) 
O<i<k,O<j<l 

For each of 2k different choices of (6,~) the value of c comes out the same. 
Treating (22) as 2k linear equations in the 2k unknowns wij, with coefficients 
given by for various choices of ( b , ~ ) ,  we must find (if the mat& has full 
rank) that  WOO = c, and wij  = 0 for ( i , j )  # ( o , ~ ) .  

and we assign an arbitrary value to v:. w e  have the equations relating vi to 
NOW we wish to  solve a particular signature. We are given the values v1,. . . , ~ k - 1 ,  

UjUj+lz 

where b:j depends on bj. Select (symbolically) one pair ( 6 , ~ )  t o  fix the firsf, 
two solutions (ul,~~), and compute the others in terms of (6,~). Then we have 
b:jujuj+l depending only on (6,~). 

Invert this matrix b’ to solve for ujuj+l in terms of the &ven vUi and (6,7).  
Now assign 

‘1L1 = t ,  (24) 
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where E is an unknown. Compute 

(ulU2)(%u4). . . ( " k u l )  , . . . ,U] = <('k?u3) (Ulu2) (u3u4) 
,u3 = -,u4 = u2 = - ( w 2 )  

t (UIU2) <(u2u3) ((u2u3) * * * (uk-Iuk) 
( 2 5 )  

The last equation gives a quadratic equation which < must satisfy: 

We do not solve for E (we cannot). So now we have three algebraic unknowns: 
6, T, E ,  of successive degrees k, 2,2. 

These equations give ui in terms of 6,r ,c .  Notice that each ui is an odd 
function of (: either E times a function of (6,~) or 6-l times a function of ( 6 , ~ ) .  
We also have u, as linear combinations of yj with coefficients depending on (6, T ) .  

Solve for yj in terms of ( ~ , T , J ) ,  and note that yj is again an odd function of [. 
Now each product yjyr will be a function only on (6, T ) ,  since it will be an even 

function o f f ,  and we know E 2  in terms of ( 6 , ~ ) .  But again the value yjyf will be 
independent of the dihedral ordering (1,2,3,. . . , k) versus (3,2,1, k, k- 1,. . . ,4), 
and thus independent of the choice of solutions (6, T) .  That  means, by standard 
Galois theory arguments, that ( 6 , ~ )  will not appear in the expressions of 'yjy~. 

So we have found the products YjYe in terms of the given coefficients, the 
given values v1,v2..  . . , V k - l ,  and the assumed value v;. We have given a valid 
signature. 

3 Comments and extensions 

3.1 Working mod N versus working mod p 

Some justification is needed to go from calculations modp to calculations mod 
N .  In section 1, we basically use tools from linear algebra such as Gaussian 
elimination or determinants. Thus all computations go through regardless the 
fact that  N is composite. The situation is a bit more subtle in section 2. For 
instance, F has k solutions modp but k2 solutions mocW, each obtained by 
mixing some solution modp. with some solution modg. But if we consider only 
the image, modp, of our calculations mod N ,  things are all right: the symmetric 
functions of the k roots of a polynomial are expressible in terms of the coefficients 
of the polynomial, and the expressions of the products yjy~ in terms of the 
coefficients of the public key are valid modp. They are also valid modp, and the 
Chinese remainder theorem suffices to  make them valid m o W .  This in spite 
of the fact that a solution 6 of F mod N might well mix different solutions 
6i modp and 6 j  mod g. Since we never explicitly solve for 6, but only work with 
it symbolically and use the fact that F(6)  = 0 mod N ,  we never are in danger 
of factoring N .  
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3.2 Extension to the case 8 > 1 (Sketch) 

The case s > 1 is more complicated. Suppose again that we have k variables 
y1, yz, . . . , Y k ,  with k odd, whose pairwise products constitute the signature, and 
that the hashed message has k - s quantities 211,212,. . . ,Vk-#, together with 
coefficients c;jt expressing u; in terms of yjye. Suppose for simplicity that s > 1 
is odd, so that  k - s is even. 

Some linear combinations of the k - s quadratic forms v; will have rank sf  1. 
Namely, for each index set I E {1,2, .  . . , k} of size (s + 1)/2 such that V i , j  E I: 
I i - j I> 2, there is such a linear combination of the form 

The number of such index sets I is 

k k - y  F( 9 )  
There are more than k linear combinations, leading to increased complication. 
The space YI, spanned by rows of the corresponding quadratic form, contains 
ui for each index i E I .  So each ui is in the intersection of a large number of 
subspaces Yr, and hopefully only multiples of ui will be in such an intersection. 
This algebraic condition should distinguish the u;, hopefully indexing them by 
the roots 6 of some polynomial F ( 6 )  of degree k. Pairs {ui ,  u;+z} of solutions with 
index differing by 2 should be distinguished by appearing together in many dif- 
ferent subspaces YI. Using this we would be able to  distinguish pairs {ui, u ~ + I } .  
We would fabricate the missing equations: for j = k - 3 + 1,. . , , k, let be a 
multiple of ui, normalized to have a 1 in position j, and set v; = xi u! . u'. 

*(I) x + W .  

3.3 The case k=3, s=l 

In the special case k: = 3, s = 1, where we must satisfy two quadratic equations 
in three variables, we can employ an ad hoc method, since the methods outlined 
above don't work. Take a linear transformation of the two quadratic equations 
so that the right-hand side of one equation vanishes; that is, if the given values 
are v1 and v2, take v2 times the first equation minus v1 times the second. This 
gives a homogeneous quadratic equation in three variables y1, yz, y3: 

The second equation is inhomogeneous: 
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By setting 21 = yl/y3, z2 = y2/y3 in (29), we obtain an inhomogeneous quadratic 
equation in two variables z1 , 22. We can easily find an affine change of basis from 
z1,z2 to  z i ,  zi which transforms the equation to  the form 

and a further linear change of variables to .zy, 2; yielding 

z112 + cII z112 11 1 22 =c{modN 

which can be solved by the Pollard [2] attack on the Ong-Schnorr-Shamir [l] 
scheme. We find from this a set of ratios yj/y3, and, by extension, a set of ratios 
yiyj/y$, satisfying (29). Setting yi = A, the second equation (30) becomes a 
linear equation in A. Thus we find a consistent set of pairwise products yiyj 
satisfying the desired equations (29), (30). 

3.4 Open questions 

The birational permutation signature scheme has many instances, of which we 
have attacked only the first few examples. For a more complex instance of the 
scheme, the ideas of the present paper will still apply: the trap door conditions 
lead to  algebraic equations on the coefficients of the transformations, and we 
hope t o  gather enough such equations to  make it possible to  solve them by g.c.d. 
or Groebner basis methods. But, for any specific instance, it remains to  see 
whether the ideas of the present paper would be sufficient t o  mount an attack. 

One general theme is that  when solutions of the algebraic equations enjoy a 
symmetry, it makes the equations harder to solve, but we don’t need to  solve 
them, since the final solution will enjoy the same symmetry, and quantities sym- 
metric in the roots of the equation can be expressed in terms of the coefficients 
of the equation alone, not in terms of the roots. When the roots fail to enjoy a 
symmetry, they can be distinguished by algebraic conditions, which yield further 
algebraic equations, and the Groebner basis methods have more to  work with. 
This gives us hope that  the methods outlined in this paper will apply with some 
generality to  many instances of the birational permutation signature scheme. 
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