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Abstract. In this paper, we describe novel approaches to secret-key 
agreement. Our schemes are not based on public-key cryptography nor 
number theory. They are extremely efficient implemented in software 
or make use of very simple uuexpeusive hardware. Our technology is 
particularly well-suited for use in cryptographic scenarios like those of 
the Clipper Chip, the recent encryption proposal put forward by the 
Clinton Administration. 

1 Introduction 

1.1 

Private-key cryptosystems are the most common type of cryptosystems; indeed, 
they are also refered to  as “conventional systems.” Their goal is t o  allow two 
parties A and B ,  who have agreed on a common and secret key KAB,  to exchange 
private messages via a network whose communication lines are easy to  tap  by an 
adversary. If properly designed, conventional cryptosystems are extremely f a t ,  
and believed to  be very secure in practice. They are also very attractive from 
a theoretical point of view. In fact, provably-secure conventional cryptosystems 
can be build based on a very mild complexity assumption: the existence of one- 
way functions. (Roughly, these are functions that are easy to  evaluate, but for 
which finding pre-images is hard.) Among so many advantages, these systems 
have a major drawback: agreeing beforehand on a common secret key with every 
one with which we wish to  talk in private is not trivial. Certainly, meeting in a 
secure physical location is not a practical approach to  obtain such an agreement. 
It is the goal of this paper to  forward new, secure, and practical approaches to  
secret-key agreement. Prior to  duscussing our ideas, let us briefly review the 
main approaches that  have been considered so far. 

The Problem of Secret-Key Agreement 

1.2 Prior Approaches 

Most of the protocols currently being used for key agreement are either classified 
or company-confidential. In the public domain, the most popular key-agreement 
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protocols fall into two wide categories: (1) those based on public-key cryptogra- 
phy, and practically implemented with number theory (e.g., the Diffie-Hellman 
[4] and the RSA algorithms), and (2) those based on symmetric-key generation 
and a trusted agent, and practically implemented with some form of polynomial 
or integer arithmetic (e.g., those of Blom [2] and Blundo, De Santis, Herzberg, 
Kutten, Vaccaro, and Yung [3]), Unfortunately, these approaches are somewaht 
wanting both with respect to security and efficiency. 

DRAWBACKS OF THE PUBLIC-KEY APPROACH. Although very elegant, the Diffie- 
Hellman and RSA algorithms require that number theoretic problems such as 
factoring or discrete-log be computationally intractable. In particular, the RSA 
scheme would become insecure if someone discovered a much improved algorithm 
for factoring large integers, and the Diffie-Hellman algorithm would suffer a 
similar fate if an improved algorithm were found for computing discrete logs. If 
either scheme is used to select the session keys for all government traffic, then 
all this traffic would be decipherable to anyone who found improved algorithms 
for these problems. (Although it might be the case that these problems are truly 
intractable, it would be nice if there were a key agreement protocol that was 
secure even if there are algorithmic advances made in number theory in future 
decades.) 

Most likely, similar drawbacks will be suffered by any other proposed solution 
based on the framework of public-key cryptography. This framework is very “dis- 
tributed” in nature; namely, every user A individually chooses a pair of matching 
encryption and decryption keys (EA,  DA) ,  publicizes ED and keeps secret DA-  
Any message encrypted via EA can be easily (and, hopefully, solely) decrypted 
via the corresponding key D A .  Since the E A  is made public, any one can send 
A a private message, because any one can encrypt via key EA,  In this setting, 
it is conceptually very easy for two parties A and B to agree on a common key 
KAB. For instance, B may individually choose KAB at random and, since EA 
is public, send KAB to  A encrypted via EA. This key is common because A can 
decrypt it thanks to his private knowledge of DA.  For KAB to  be secret for ev- 
eryone else, however, several conditions must be met; in particular, DA must not 
be easily computable from EA.  Indeed, public-key cryptography requires very 
strong complexity assumptions: the existence of one-way trap-door predicates or 
that of one-way trapdoor functions. (The latter, roughly, are functions that not 
only are easy to  evaluate and hard to invert, but also possess an associated secret 
whose knowledge allows one to  easily invert them.) Such assumptions appear to 
be much more demanding than existence of a one-way function. Indeed, while 
the existence of one-way functions is widely believed (and plenty of candidates 
are available), trap-door one-way functions may not exist or may be very hard 
to  find (indeed, only a handful of them have been proposed without being imme- 
diately dismissed). In sum, therefore, while one-way functions are sufficient to  
communicate securely in a conventional cryptosystem once a common secret key 
has been established, the process of establishing such a key based on public-key 
cryptography appears t o  require a much stronger type of assumption, thereby 
creating a weaker link in the overall security. 
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In addition to  the above concerns about security, and perhaps of more im- 
mediate importance, key agreement protocols based on public-key cryptography 
and number theory tend to be very expensive to implement. Indeed, the cost 
of building hardware that can quickly perform modular exponentiation is far 
greater than the cost of building encryption devices based on one-way functions. 
Indeed, when providing encryption devices to  a country of the size of the United 
States, the cost of the key-agreement hardware is far from being insignificant. 

SECURITY DRAWBACKS OF THE TRUSTED-AGENT APPROACH. In this approach 
there are three main parameters: N ,  the total number of users in the system, k 
the length of a common secret key, and B ,  a bound on the number of (collab- 
orating) malicious users. The algorithms of [2] and [3] make use of polynomial 
and integer arithmetic for implementing a Symmetric Key-Generation System. 
This consists of computing (from a single, secret, system value K )  a set of n 
secret values, Kl ,  . . . , K,,, which in turn yield n2 quantities, Kij, satisfying the 
following properties. For each a and j the quantity Kij can be computed easily 
either on inputs j and Ki, or on inputs i and Kj. Moreover, given any B in- 
dividual values, K,, , . . . ) K,, , one has no information about the quantity Kij 
whenever i, j # a;, . . . , aB. 

A symmetric key-generation system can be effectively used by trusted agent 
to  enable the users to  provide an elegant solution to the secret-key agreement 
problem. The trusted agent (after choosing the system master secret) simply 
computes n secret values Kl, . . . , K, and assigns to user i value Ki as his indi- 
vidual secret key. The common key between two users i and j will then be Kij, 
which can be easily computed by either one of the two users. This key is secret 
in that no coalition of less than B users, no matter how much computation they 
perform, can infer the common of two other users. While this is a very attractive 
property, relying on a trusted agent for assigning the proper, individual secret 
keys is in itself from a security point of view, a serious drawback. 

F’rom an efficiency point of view, while the algorithms of [2] and [3] require 
small individual keys (i.e., Q ( N k )  bits per user), they do require a fair amount of 
algebraic computation in oreder to  compute common secret keys from individual 
keys. Even if this computation could be sped up in a hardware implementation, 
the cost of this circuitry may not be trivial with respect to that required for 
conventionally encrypting messages via a one-way function, after common secret 
keys have been established. Moreoever, for both security and efficiency reasons, 
conventional encryption schemes are not algebraic; thus the “algebraic hardware” 
necessary for their secret-key agreement represents pure additional cost, since it 
will have very little to  share with the “encrypting hardware.” 

1.3 Our Contribution 

In this paper, we advocate two new approaches to  secret-key exchange, none of 
which is based on public-key cryptography or polynomial/integer arithmetic. 

In the first we introduce a new class of symmetric key-generation systems 
requiring longer individual keys than [2] or [3], but guaranteeing a that cornput- 
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ing common secret keys is absolutely trivial. To enhance the security of these 
algorithms further we recommend using them in conjunction with special hard- 
ware and a set of moderatly trusted agents. This whole approach is described in 
Section 2. 

The second approach requires a simple interaction with moderatly trusted 
agents, and can be impleneted in software with great efficiency and security (and, 
of course, wit great savings). This approach is described in Section 3. 

Both approaches are information-theoretically secure, though they can be 
more convenently impemented if ordinary one-way functions are used. (In any 
case, therefore, they will be immune to attacks baaed on advances in number 
theory.) 

Finally, both of our approaches are capable, if so  wanted by society, of making 
very secure encryption “compatible with law-enforcement;” that is, in case a 
court authorizes tapping the communication lines of users suspected of illegal 
activities (and only in case of these legitimate authorizations), the relevant secret 
keys can be reconstructed by the Police. This is indeed the major feature of two 
recent encryption proposals, Fair cryptosystems, as put forward by the second 
author, and the Clipper Chip as put forward be the Clinton administration. 
To illustrate both this additional important point and the cryptographic use of 
tamper-proof hardware that may enhance the security of our first scheme, let us 
provide a brief introduction to the government proposal. 

1.4 The Clipper Chip Project 

In April, 1993, the Clinton Administration announced its intention to develop 
a cryptographic scheme for widespread use within the government. The scheme 
is centered around a device known as the Clipper Chip which is expected to  
become standardized for encryption and decryption of telephone, fax, email, 
and modem traffic. The Clipper Chip does not offer a solution to the secret-key 
agreement problem; rather, it assumes that such a solution exists. Its goal is 
making conventional cryptosystems compatible with law-enforcement. 

The Clipper Chip will be made using a special VLSI process which is de- 
signed to prevent reverse engineering. In particular, the conventional encryption 
and decryption algorithms used on the Clipper Chip will be classified, but the 
chip itself will not be classified. The Clipper Chip will also contain a protected 
memory for secret keys. The protected memory is designed to prevent anyone 
(even the legitimate user of the chip) from gaining access to the keys contained 
therein. 

According to  the government press release, each Clipper Chip will be equipped 
with a unique secret key Ki that is formed by an irreversible process from two 
pieces of the secret key Kil) and Ki(’). The pieces of the secret keys will be held 
by system-wide trusted agents ‘2i and Z. (Actually, only one of the agents needs 
to be trusted since 5 will hold only the first piece of each secret key and ‘& will 
hold only the second piece.) When two parties wish to communicate using the 
new system, they first agree on a session key S and they enter this key into their 
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respective Clipper Chips. This key is used by the Clipper Chips as an encryp- 
tion/decryption key for the message traffic. In other words, once the session key 
is selected, the Clipper Chips function as a private-key cryptosystem. 

There is a major difference between the Clipper Chips and a conventional 
private-key cryptosystem, however. That is, the Clipper Chips also transmit the 
session key S being used in encrypted form using the secret key for the chip, 
thereby allowing the trusted agents to eavesdrop on the conversation. The reason 
for transmitting the session key in this fashion is so that law enforcement can 
(upon obtaining the relevant court order) obtain the secret key of the user from 
the trusted agents and then decrypt the conversation (thereby preserving cur- 
rent wiretapping capabilities) but no other unauthorized person can eavesdrop 
(thereby providing greater privacy than exists currently for most individuals). 

1.5 Our Contribution to  the Clipper Chip Project 

In the proposed Clipper Chip project, it is assumed that  every pair of users has 
already agreed on a common, secret, (session) key. In practice, therefore, devices 
that incorporate the Clipper Chip will use a specific key-agreement protocol, or 
a crucial link would be Inissing. This, however, has the potential of introducing 
a host of new difficulties. For instance, if public-key cryptography is used for 
providing this missing link, the system might become more vulnerable (since it 
now must rely on stronger -and possibly false- comlexity assumptions) and 
much more costly. 

By contrast, as we shall see, our two schemes can greatly enhance the security 
and the economicity of the Clipper Chip project. In fact, not only can we guar- 
antee compatibility of law-enforcement with strong encryption, but, within the 
same framework (without additional costs or loss of security), also the necessary 
secret-key agreement that was missing in the Administration proposal. 

2 A Hardware-Based Approach 

For simplicity of exposition, the secret-key agreement of this section is described 
in two phases. The first phase consists of a special class of symmetric key- 
generation systems -and thus of a basic scheme for secret-key agreement based 
on a trusted agent. 

In the second phase, we show how to enhance the security of our basic schemes 
assuming the availability of tamper-proof hardware and the existence of a group 
of “only moderately trusted” agents rather than a single, totally trusted one. 

2.1 The First Basic Scheme 

The symmetric key-generation scheme described in this subsection is both very 
efficient and quite natural. We thus expect that  it might have beed already 
discussed in the literature, but we have been unable to  find such reference. w e  
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of course be very grateful to anyone who can provide us with such a piece of 
information. 

Recall that in a symmetric key-generation system there are three relevant pa- 
rameters: N ,  the total number of possible users in the system; B ,  an upperbound 
on the size of a coalition of dishonest users, and k, the number of unpredictable 
bits contained in each common secret key of two honest users (e.g., k = 100). 
For didactic purposes, however, we shall make use of an auxiliary parameter M ,  
and then show that M should be about B3 In N .  

COMPUTING INDIVIDUAL KEYS. On input N , B ,  and k, the trusted agent per- 
forms the following steps: 

- First, he randomly and secretly selects M, k-bit long, system secret keys: 
XI,.. . , XM, where M = O ( B 3  In N )  (the precise constant will be worked 
out in the final paper). 

- Then, he constructs (in poly(N,M) time) a N x M 0 - 1 matrix A = {ai,,} 
with the properties that: 
1) any pair of rows have 0’s in at least F = O ( M 1 / 3  ln2/3 N )  common 

2) any triple of rows all have 0’s in at most G = O(1nN) common columns. 

(We will show how to construct such a matrix shortly.) 
- He then assignes to player i, where i is a logN-bit identifier, the individual 

secret key consisting of the vector ( v i , ~ , . .  . , v u ; , ~ ) ,  where v ; , ~  equals the secret 
system key Mn if ai,n = 0, and the empty word otherwise. 

columns, and 

1. B < rF/G]. 

COMPUTING COMMON SECRET KEYS. The common secret key of users i and j ,  
K i j ,  consists of the M-vector whose nth component equals Mn if a;,n = bj,n = 1, 
and the empty word otherwise. Thus, each user trivially computes his common 
secret key with another user by taking a subset of the system secrets in his 
possession. 

(If so wanted, the size of these common secret keys can be reduced; for 
instance, by evaluating a one-way hash function on them. Such reductions are 
not, however, a concern of this paper.) 

SECURITY. Assume, for now, that a matrix A as above has been constructed. 
Then, given the individual secret keys of a set of B users, the common secret 
key of two users contains at least k random and unpredictable bits. The proof is 
very simple. By Property 1, above, every common secret key K;,j must contain 
at least F system secrets. By Property 2, however, the individual secret key of a 
user other than i or j contains at most G of these secrets. Hence, a t  least [FIG1 
other individual secret keys are necessary in order to  recover all of the system 
secrets in a common secret key. 

CONSTRUCTING THE MATRIX. Next, let us show that a matrix A satisfying 
Properties 1 and 2 above exists. We do this by showing that such an A can be 
constructed with probability > 0 by the following probabilistic algorithm. 
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Set each entry of A to  0 with probability p = 0 (( 9)1‘3). The probability 
that Property 1 is not satisfied is then at most 

provided that F I Mp2.  Similarly, the probability that Property 2 is not satisfied 
is at most 

Hence, the probability that A fails to  satisfy either property is at most 

By setting p = 2 ( Y ) ’ I 3 ,  F = 1M1I3 ln2/3 N ,  and G = 16e In N ,  we find that if 
M >_ 8 In N ,  then this probability is strictly less than 1, as desired. (It is worth 
noting that substantially better constants can be derived for particular values 
of N and M with a more careful analysis.) 

Finally, let us show that such a matrix A not only exists, hut is also easy 
to  compute deterministically. This is so thanks to  the method of conditional 
probabilities fl]. In fact, it should be noted that the task of evaluating a simple 
upper bound on the probability that either Property 1 or Property 2 is violated 
(as in Equation 1) conditioned on some of the values in A being fixed is easily 
accomplished in polynomial time. 

(Indeed, matrix A needs not t o  be computed “at once,” but can be easily 
computed row-by-row. This way, the cost of a row can be incurred only when 
one more user -of a budgeted total of Nusers- joins the system.) 

In the case when N is small, even better constructions for A exist. For ex- 
ample, when N = we can construct an A for which F = M1/3 and G = 1 
by letting each row of A correspond to a plane through an M1l3 x 
lattice of points modM. By choosing non-parallel planes for the rows of A,  each 
pair of planes will intersect in a line, and each triple of planes will intersect in 
exactly one point, thereby achieving the desired bounds for F and G. In this 
example, it suffices to  have B = M1i3 - 1. 

2 

x 

EFFICIENCY. Given what we have said so far, the bit-length of an individual 
key is about kB3 log N .  An individual key, in fact, consists of a subset of the 
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M =' 8 ( B 3  log N) system secrets. One must observe, however, that the subset 
tends to  be quite sparse. Indeed, we can construct matrices A enjoying also the 
following additional property: 

0) Every row has at most O ( M 2 / 3  N )  0's. 

The number of system secrets entering an individual key is thus about B2 log N. 
Though this is longer than the kB bits of individual key (roughly) needed 

by an individual key in the Blom' algorithm with the same parameters, in our 
case the construction of a common secret key is trivial, since it only consists of 
taking a subset of stored secrets. It is unquestionable that, whether in software 
or in hardware, this operation is much preferable to  computing with B-degree 
polynomials over fields with size-k elements. 

2.2 The Second Basic Scheme. 

Also this scheme should have, in our opinion, been discussed in the litterature. 
Nonetheless, we have not been able to find it. 

In this scheme the trusted agent distributes to  the users longer individual 
secret keys. As we shall see in the subsection after next, however, the scheme 
offers additional advantages if some special hardware is available. This scheme 
too has a perfectly-secure version, but one-way functions can be used in order 
to  shorten the length of the individual secret keys. 

COMPUTING INDIVIDUAL SECRET KEYS. Parameters N,B,k, and hf are as in 
the first scheme. The secod basic scheme has, however, an additional and inde- 
pendent parameter L 2 2. 

In the perfectly secure version, the trusted agent computes individual keys 
as follows. 

- He chooses ML, k-bit long, system secrets, {Xi,*}, where i ranges between 
1 and M, and n between 0 and L - 1. 

- He assigns to  each user in the system an identifier consisting of M random 
values between 1 and L - 1, a = (~1,. . . , a ~ ) .  (In practice, the ai values 
can be generated by applying a proper cryptographic function to the "real 
name" of the user.) 

- Then, he assigns to user ((~1,. . . , QM) the secret key consisting of the (prop- 
erly ordered) subset of system secrets {Xi,* : i E [l, M] ai E [0, L - 11). 

COMPUTING COMMON SECRET KEYS. The common secret key of two users with 
identifiers a = (q, ,  . . , C T M )  and p = (p,. . . ,p) consists of the (properly or- 
dered) set of system values {Xitmazi,. . . , X i , ~ - l - ~ ~ ~ ~  : i E [1,M] maxi = 

(Again, such a key can be substantially reduced in size, if so wanted, but this 
ma4 w , Pi). 

is not a concern of this paper.) 
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THE COMPUTATIONALLY-SECURE VERSION. The above scheme requires quite 
long individual keys. This drawback can be eliminated by using one-way func- 
tions. This, of course, will turn the perfect security of the above scheme into com- 
putational security, but this is quite tolerable, since the conventional encryption 
that follows the key-agreement can be at  most be computationally secure. 

The most straightforward way to use one-way functions to  shorten individ- 
ual key-length in our second basic scheme consists of having the trusted agent 
set Xi,,, = h"(Xi) where Xi is the ith system secret (randomly selected as be- 
fore) and h is a one-way function. The user identifiers are chosen like in the 
perfectly-secure version, but the individual key of user a! = (a l , ,  . . , a~ now is 
(h"l(X~), . . . , heM ( X M ) ) ,  since user a! can reconstruct all other values by eval- 
uating h in the easy direction. This version of our scheme approximates the 
perfectely-secure one in that  the value Xi,n is computationally hard to  predict 
from the values Xi,,,, for m > n. Nonetheless, if the correct value Xi,,, is sup- 
plied, one can verify its correctness by evaluating h sufficiently many times on 
it. 

In most cases, the above approximation can be deemed sufficient. But, though 
this lies beyond the scope of this paper, let us mention that a better way to 
approximate computationally the perfectly-secure, second basic scheme, can be 
obtained by using a slight variation of the pseudo-random function construction 
of Goldreich, Goldwasser, and Micali [5 ] .  In particular, one can guarantee that, 
to  someone who is given Xi++l ,  Xi,, is undistinguishable from a random value 
of the same length. The lenth of an individual key, however, becomes kM log L. 

SECURITY. In order for an adversary to  compute the common secret key of two 
users with identifiers a = ( ( ~ 1 , .  . . , a ~ )  and p = (PI )... ) P M ) ,  he will need to 
obtain enough individual keys so as to  have all system values Xm,p, (Zm = 
hPm(Xm) in the computationally secure scenario) where pm 5 maz(a,, ,Om) for 
1 5 m 5 M .  In order for the system to be secure, then, we would like it t o  be the 
case that  no matter for what set of B users, if the adversary enters in possession 
of the individual keys of those users, he still does not have enough information 
to  recover a common secret key for any other two users in the system. 

To this end, we need to  select the identifier K; = {ai,17 a+, . . . , a j , ~ }  for 
each user i so that for any il,i2,. . . , i ~  E [1,N] and any jl,j2 E [l,N] such that 
i, # j ,  for 1 5 T 5 B and 1 5 s 5 2, there exists an integer t (1 5 t 5 M )  such 
that 

min(air,t} > max{qa,t}. 

In other words, for any pair of users j 1  and j 2  and any set of B users il, i2,. . . , ia 
whose individual keys are learned by the adversary, there needs to  be at least 
one Xt such that  none of the B learned keys contains Xt , ,  (hW(Xt) in the 
computationally-secure scenario) for any w 5 max(aj,,t, a!jaIt). 

Fortunately, it is not too difficult to  find identifiers for the users that satisfy 
the preceding property, For example, if L is a multiple of B and B is about 
( M / e  In N)1/3, then this property is likely to hold if each ai,, is chosen uniformly 

l < r l B  1952 
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at random in [0, L - 11. This is because the probability that 

min {ai,,t} 5 m=(aj . , t } .  
l < r < B  l < S < Z  

for some particular values of i l ,  i 2 , .  . . , i B , j l  , j 2 ,  and t is at most 

L B and a (1 - $) since there is always a & chance that ajl,t,aj,,t < 
that  o i l , t , .  . . ,aig,t 2 3. For B 22, (1 - $) 2 e - % - h  and thus 

chance 

B 

Hence, the probability that Equation 2 holds for all t ,  1 5 t 5 M is at most 

Summing this probability over the 

possible choices for i ~ , i z , .  . . , iB,jl,jZ, we find that the probability that  any pair 
key can be recovered by opening any B other chips is at most 

e-( B - l ) e - l M / B 3  - - ,(B+Z)[ln N+1 -ln(B+2)] -( B-1)e-’  M / B 3  

which becomes small when B is about ( M / e  In N)”3.  
If L is larger than B2, then the preceding sort of analysis can also be used 

to  show that the probability that any pair key can be recovered by opening B 
other chips is small when B is about (2M/lnN)1’3, The key difference is that 
when L is large compared to  B 2 ,  the probability in Equation 3 can be improved 
to  

2 - o( 1) =I-- 
B2 ’ 

(1 - o(1))2B! 
1 -  

(B + 2)! 

which is smaller than 1 - for large B. 

EFFICIENCY. Given what we have said so far, in the computationally secure 
version, the length of an individual key equals that of the first basic scheme: 
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kB3 In N bits. The time needed to  compute a common secret key from an indi- 
vidual one is however slightly longer, consisting of M ( L  - 1) one-way function 
evaluations. Since one-way functions are particularly fast to  evalaute, however, 
this operation, implemented in software, may still be negligible with respect to 
the equivalent one of (21 and [3]. Our common-secret-key computation also is 
more convenient than that of (21 and [3] with respect to hardware implemen- 
tations. Not only because the circuitry needed for one-way function evaluation 
tends to  be simpler than that of polynomial arithmetic, but also because the 
circuitry necessary to  evaluate one-way functions needs to  be present any way, 
in order to  encrypt messages (or session keys) once a common secret key has 
been computed. 

Let us just mention in passing, however, that, like for the first basic scheme, 
the length of an individual key can be reduced to  about B2 log N ,  but the initial 
(omitted) constant can be better than that of the first scheme. (Details will be 
given in the final paper.) 

The real advantage of the second scheme, however, comes in if a special type 
of hardware is available. This advantage is discussed in section 2.5. 

2.3 Optimality of our Basic Schemes 

We now show that the schemes for assigning public keys that were just described 
are a l l  optimal t o  within a logarithmic factor among those where common secret 
keys are constructed as “subsets of common secrets.” In particular, we will show 
that no matter how large L is and no matter how public keys are assigned, then 
there is always a set of €3 = @(M1/310g2/3 M )  chips which, when opened, will 
lead to  the recovery of a pair key for some other pair of users. Because of space 
limitations, we will only sketch the proof in this extended abstract, and we will 
not worry about constant factors. (In fact, the constant hidden behind the 8 is 
quite small.) 

define an N x M matrix A = {a i , j }  as follows: 
Given any set of N public keys {Kill 5 i <_ N} where K,  = {a;,,ll 5 m 5 M}, 

-1 if ai,j is the smallest item in {ar,jll 5 T 5 N } ,  
0 if a;,j is among the next smal)est items in {a,jIl 5 T 5 N } ,  
1 otherwise. 

Ties can be broken arbitrarilv. Thus. each column of A will have one -1, 
*M 0’8, and N - 1 - -+- Nlo I f 3  M 1’s. 

We next use the  pigeonhole principle to  show that there are two rows u and 
v in A such that 

1) neither row u nor row v contains any -l’s, and 
2) there are at most F = €J(M1/’ log2I3 M )  columns for which both rows u and 

v contain a 0. 
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This is because at most M rows contain a -1, and at most 

pairs of rows can both contain a 0 in column j for any j .  Hence, there exists a 
pair of rows satisfying Properties 1 and 2 above if 

Equation 4 is satisfied for F = Q(M'/3  log2j3 M) provided that N 2 2M. 
M) chips which, when opened, can 

be used to  recover the pair key for u and v. The first step towards this goal is to  
find M) rows of A (other than u and v) such that  for each column 
t ,  one of these rows contains a 0 in column t. We can find such a set of rows 
because every column of A has + 0's and at most 2 of these zeros can 
be in rows u and v. In particular, there is always a row in A (besides u and v )  
with at least 

We next show how to find O(M1I3 

N lo ' I 3  M 

- 2 / N  = Q ( M 2 / 3  M )  N i0g1i3 M ( M1i3 ) 
0's. When we remove this row (call i t  il) and any columns j in A for which 
ai,,j = 0, there is still a row with L2(M2/3 log1I3 M) 0's in the remaining columns. 
Continuing in this fashion, we can easily find a collection of O(M1/3/ log1I3 hf) 
rows which collectively have at least one 0 in half of the columns. Continuing 
further, we can find a collection of O(M1l3 10g2/3 M) rows which collectively 
have at least one 0 in each column. By opening the chips corresponding to  these 
O ( M 1 / 3  l ~ g ~ / ~  M) rows, we can then recover the portions of the secret pair key 
for u and t~ corresponding to  columns t for which max{a,,t,a,,t} = 1. 

All that remains is to  open the F = O(M1l3  log2l3 M) chips corresponding 
to  the rows w for which aUtt = -1 where t is one of the F = O(M1/310g2/3 M) 
columns for which aUlt = aVlt = 0. These chips contain the remaining secrets 
necessary to  reproduce the pair key for users u and v. Hence B can be at most 
O ( M 1 / 3  10g2/3 M) if the system is to be secure. 

2.4 

MULTIPLE TRUSTEES. Let us now modify the basic schemes described above So 
that  they no longer need such a strong assumption aa the existence of a trusted 
agent selecting and distributing individual secret keys t o  the users. At the sim- 
plest level, as envisaged in [6] and in the Clipper Chip scenario, this modification 
consists of replacing the trusted agent with a group of agents that are moderatly 
trusted. That  is, trusted collectively, but not necessarily individually. 

Enhancing the Security of the Basic Scheme. 



For instance, there may be a set o f t  independent trustees, each one of which 
acts as the trusted agent of Sections 2.1 and 2.2. Thus, denoting by KCj the secret 
common key between users i and j relative to  the nth trustee, the overall secret 
common key between i and j, Ki,j, will be the XOR of the Ktj’s. It is easily 
seen that  this does not effect the security and the all the relevant properties of 
the trusted agent scenario. In addition, if society so wants, this way of operating 
also allows one to  make cryptography compatible with law enforcement. In fact, 
the two trusted agents can give, when presented with a court order, the two 
individual secret keys of a suspected user i, K! and K:, to the Police. Thus the 
Police will be allowed, in case of a court order, to  understand any message sent 
or received by i, because it can easily compute all possible common secret keys 
between i and other users. 

SECURE CHIPS. A second modification that may greatly enhance the security 
of our basic schemes depends on the availability of secure chips, Recall that 
these are chips whose memory (or parts of it) cannot be read from the outside, 
and that  cannot be tampered with without destroying their content. Given such 
chips, each of the trustees can then store the individual key of a user into a 
secure chip. Once a chip has all the required individual keys (i.e., t if there are t 
trustees), is given to its proper user. We further recommend that he should not 
see any of the common secret keys enabling him to communicate privately with 
other users. In fact, we recommend that the only way for one to  use his own chip 
consists of entering the chip a message and a recipient identity and that the only 
action taken in response by the chip consists of (1) internally (and thus secretly) 
compute the right common secret key, and then (2) outputting the encryption 
of that message with that key. (In particular, if the input to the chip is not of 
the proper form, the chip will take no action, but it will never output part of a 
secret key, nor will it answer in any way to  any “input request” about a secret 

This step makes it harder for a coalition of malicious users to compute the 
common secret key of two honest users. In fact, malicious users no longer know 
their own individual keys. Even if one assumes that, with a lot of effort and 
with a substantial investment in sophisticated equipment, one may succeed in 
reading the content of at most A chips, by selecting the individual keys with 
parameter B > A,  one can guarantee that no common secret key between two 
uncompromised chips can be computed. 

The inability of computing common secret keys does not, however, quite coin- 
cide with the inability of eavesdropping. Indeed, Yuliang Zheng [8] has observed 
that, if B = 0, then there may exist a single chip w whose individual secret key 
allows one to compute the common secret key, Ka,p, of two other chips a and 
0, and that, if this is the case, chip w can be used (without opening it) in order 
to  eavesdrop communications between cr and p. (He also shows, however, that 
by having the common secret key of two users also depend from their identifiers 
makes eavesdropping impossible even in that special case. It would be nice to 
know, by the way, where are such special cases exist, or to have a formal proof 
that no other sich a case exist.) 

key. 1 
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ENHANCING THE SECURITY OF PRIOR KEY-DISTRIBUTION SCHEMES. These en- 
hancements can also be used to improve the security of the algebraic schemes of 
Blom [2] and Blundo et al. [3]. Namely, assume that there are two (for simplicity) 
trustees, 71 and 7 2 ,  at least one of which is honest. Then, each trustee 7; can pro- 
duce up to  n secret values Kr’s, and store KF in the protected memory of chip 
of user i a his secret individual key, without revealing its value to him. Then, 
the common secret key of two users i and j can be easily computed (without 
interaction) by either of their tamper-proof chips as a fixed combination of K:j 
&e., their common secret key as if 71 were the only trusted agent) and K& (i.e., 
their common secret key as if 7 2  were the only trusted agent. This way, gather- 
ing together more than B secret individual keys is harder (because all such keys 
are stored in protected hardware and are not known to the users) and, at the 
same time, one no longer relies on a single trusted agent. In addition, also these 
so modified schemes may make, if so wanted, encryption and law enforcement 
compatible. 

These security-enhanced schemes, however, will be less efficient and more 
expensive than our enhanced ones. 

2.5 Partially-Openable Chips 

So far we have assumed that an adversary who succeeds in opening the protected 
memory of a chip, succeeds in reading all of this memory. It may be more real- 
istic, however, to  assume that, by tampering with a properly protected chip, an 
adversary can obtain at most a few bits from the protected memory of each chip 
before he destroys the rest of the bits. In this case, our second basic scheme may, 
by using a large parameter L,  make the adversary’s work dramatically difficult. 
This is so because learning -say- 5 bits of hn(Xm) for different values of n 

will be of little help to  the adversary. Thus the ability of opening random chips 
no longer is very useful: the adversary must open many chips with exactly the 
same portion of the secret key if he wants t o  obtain “useful information.” But, 
when L is large, even the simple step of getting hold of a large number of chips 
with such identifiers (and thus such secret keys) may be overwhelmingly hard. 
In fact, in the cases of the first basic scheme and the second one with L = 2, the 
adversary needs to  partially open about B(B2 log N)lc/5 chips (if at most 5 bits 
can be recovered from such an opened chip) in order to compute the individual 
keys of B chips. By contrast, in the second basic scheme, when the parameters 
L increases (and all other parameters remain fixed), the number of chips that 
need to  be opened tends to LB(B2 log N ) k / 5 .  It then becomes clear that even 
for reasonable values of L, in most applications there will not be that  many 
chips in the system. Thus no adversary has a realistic chance of computing the 
common secret key of two uncompromised chips even if he gets hold and par- 
tially opens all the other ones. This is even more true if one assumes (like it 
may be realistic to  do) that before succeeding in partially opening a chip the 
adversary is expected to destroy a few chips in the process. In fact, many more 
than LB(B2  logN)k/5 chips are needed in this case. 



470 

Additional protection can be obtained if chips are initialized with users iden- 
tifiers that  are chosen as an unpredictable function of the names of their users. 

Security Hierarchies The previous scheme can be easily modified for use in a 
scenario where there are various gradations of security. For example, assume that 
the users are categorized into S security levels 1,2,. . . , S, where level 1 is the 
highest level of security, and level S is the lowest level of security. Then, we can 
use the same scheme as before except that the public key for a user at security 
level g is selected so that  am is a random integer in the range [1+ (q  - 1)L, pL ]  
for 1 5 m 5 qMIS.  

The modification increases the time to  compute a pair key by a factor of 
at most S, but it has the nice feature that conversations between users will 
always take place at the highest (Lea, most secure) common level of security. In 
particular, in order for an adversary to  recover the pair key for a conversation 
between users at security level q or better, the adversary will need to  open at 
least B chips of security level q or better where B is as defined above (with M 
decreased by S). Since there are likely to  be fewer chips a t  the higher security 
level, and since they are likely to  be guarded more closely, it will be much more 
difficult for an adversary to obtain such chips, and he will have to  open more 
of them before being able to  recover a pair key (since we can replace N by the 
number of users with that level of security, which is smaller). 

3 A Software-Based Approach 

Let us now describe a scheme for exchanging keys that does not rely on any 
protected hardware at all. The scheme is very simple and, in its basic version, 
only relies on a trusted agent. (We shall describe how to implement the scheme 
with multiple trustees later.) 

Again, it seems to  us that this very scheme should have been considered 
before, but we have not been able to  find it in the literature. Our software- 
based approach shares, however, some similarities with that of Needham and 
Schroeder, and it is actually useful to  to  contrast the two of them. 

3.1 

THE NEEDHAM-SCHROEDER PARADIGM. Outside the public-key cryptography 
framework, the most popular approaches to secret-key agreement follow a paradigm 
put forward by Needham and Schroeder [7], whose essential features are sum- 
marized below. 

A trusted agent T assigns to  each user i in the system an individual secret 
key Ki. This key is thus a common secret between the user and T. Whenever a 
user i wishes to talk in private to  another user j ,  i sends T a message (in the 
clear) specifying his own identity and that of the recipient, j .  The trusted agent 
answers this request by selecting a new session key S and sending i a global 

The Needham-Schroeder Approach Versus Ours 
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message, encrypted with key Ki, consisting of two values: S and E ,  where E is 
an encryption of S with key Kj. User i ,  after recovering S and E ,  sends j two 
values: his intended message encrypted with S, and E. User j, thanks to  his 
knowledge of Kj ,  recovers S from E ,  and then recovers the message. 

(After this basic step, i and j also engage in another protocol to  check that 
indeed S is a common key to  both of them. We have decided to ignore thcsc 
additional protocols in this paper.) 

CRITIQUE OF THE NEEDHAM-SCHROEDER PARADIGM. Many objections can be 
and have been moved to the above paradigm for secret-key exchange; in partic- 
ular: 

1. It requires tha t  t he  trusted agent be cont inuously  available. 
Indeed, if the communication link between a user and the trusted agent is 
down, then that  user is deprived of the possibility of communicate privately. 

2. It exposes  arbitrarily m a n y  cleartext-ciphertezt  pairs .  Indeed, whenever user 
z requests to  speak to user j he will receive, for free, a session key S and its 
encryption (with j ’ s  secret key). 

Assume that  the encryption between i and T consists of exclusive-oring 
messages with a one-time pseudo-random pad generated on input Ki. Also 
assume that it is an enemy (instead of T) who send i the global message, 
and that he chooses it to  consist of two random values: Q and p. Then, i will 
compute the decryptions, S and R, of, respectively, Q and p .  Of course, it is 
very unlikely that R will be an encryption of S with key K,. Thus a message 
sent by i to  j encrypted with S will not be understood by j. But i has no way 
to realize this without engaging in an additional protocol with j .  Thus, even 
if a good encryption scheme (such as exclnsive-oring with a pseudo-random 
pad) is used in the Needham-Schroeder approach, an additional interactive 
protocol between users becomes more of a necessity than an option. This is 
a pity, because now their approach stops from being very simple, and is also 
made less efficient. Moreover, such additional protocols need to  be secure, 
something that  it is not trivial to  achieve -at least if one wishes to keep 
them very simple, 
(Indeed, as we have already mentioned, such an additional protocol was rec- 
ommended in the original paper, though it did not quite achieve its intended 
goal. Things, in fact, are not that simple. Not only should i and j verify that 
they share a common key, but they also better verify that this key is the one 
chosen by T for this particular session -a task further complicated by the 
fact that an enemy may impersonate both T and j in order to fool i.) 
Do such complications arise because xoring with a pseudo-random pad is 
not a secure encryption algorithm? The answer is no: xoring with a pseudo- 
random pad is a very secure encryption scheme. But the Needham-Schroeder 
paradigm derives its attractive simplicity from the assumption that encryp- 
tion schemes can guarantee both privacy and authentication. When T sends 
i the two values S and E ,  it would be desirable both that (u)  only i will 

3. It requires encryp t ion  t o  provide authentication. 
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understand them, and that (b)  user i can be guaranteed that it is T who is 
sending them. Now, encryption schemes are traditionally designed so as to 
guarantee property (a),  but not property ( b ) .  Indeed, it should be realized 
that  the problems just discussed, which are evident in the case of one-time- 
pad encryption, may become harder to see, but not necessarily disappear, 
if more complex block-ciphers are used. Property ( b )  can instead be guar- 
anteed -say- by digital signature schemes, but requiring their explicit use 
would deprive the Needham-Schroeder approach of its attractive simplicity, 
and would substantially increase its efficiency and the cost of its hardware 
implementations. (In fact, each user should then be given the additional 
circuitry necessary for digital signature verification.) 

ADVANTAGES OF OUR APPROACH. Even before relaxing the assumption of 
a trusted agent, our approach offers significant advantages. 
First, it is very simple, efficient, and easy to implement. In particular, it does 
not require that i and j engage in additional protocols for guaranteeing i 
that he and j share the same secret key. 
Second, the security of our scheme does not depend from complicated as- 
sumptions (such as the existence of -hopefully efficient- encryption schemes 
that  possess additional and little-understood properties); rather, our scheme 
solely requires that ordinary one-way functions exist, 
Finally, for talking in private to an user j, user i needs to access the trusted 
party only the first time that such a conversation is desired; the responsibility 
of choosing session keys is the users’; and no undue stress (such as revealing 
an arbitrary number of cleartext-ciphertext pairs for free) is imposed on the 
secret encryption keys. 

3.2 Our Software-Based, Trusted-Agent Scheme. 

To analize this scheme we only consider two parameters: N ,  the total number of 
users, and Ic the length of the common secret keys. (As we shall see, in fact, a big 
advantage of this approach is that an adversary cannot eavesdrop conversations 
between two honest users no matter how many other users he may compromise.) 

The high-level mechanics.of the scheme are as follows. The trusted agent, 
T, gives to  each user i two secret individual keys: an exchange key Ki and an 
authentication key Kj. (Using two keys considerably simplifies the description 
and the analysis of the scheme.) In addition, upon request, T can quckly compute 
and make available a pair  key Pi,j for each pair of users i and j. To send an 
encrypted message to  user j, i uses K; and the pair key Pi,j. To decrypt the 
resulting ciphertext, j only uses his own individual key Kj .  The scheme possesses 
two important properties: 

1. Without knowledge of Ki or Kj, the pair key Pi,j (and any other pair key 
as well) is useless for deciphering the encrypted communications between i 
a n d j ;  and 

2. Learning the individual keys of any number of users does not help in eaves- 
dropping the conversations between any other two users. 
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The first property guarantees that there is no need to  protect the pair keys, 
something that greatly accounts for the simplicity of our scheme. Indeed, though 
this would be quite inefficient, all N 2  of them could be made public, in which 
case there would be no need to  call the trusted party. 

The second property implies that, differently from the hardware-based ap- 
proach of Section 2, there is nothing to  be gained by preventing a user from 
knowing his own key. Of course, each user should not loose or divulge his in- 
dividual key (since the secrecy of his communications depend on it), but the 
scheme is such that compromising a user’s individual key is only useful to un- 
derstand the communications relative to that user alone. This greatly simplifies 
the logistic requirements of our scheme, and allows it t o  be implemented with a 
very unexpensive apparatus. 

PSEUDO-RANDOM FUNCTIONS. Also the present secret-key agreement has a 
perfectly-secure version, but given that it is both rather inefficient and easily 
derivable from the computationally secure one, it is only the latter version that 
we shall describe below. 

A critical building block for our computationally-secure version is the notion 
of a pseudo-random function generator, as defined by Goldreich, Goldwasser, and 
Micali (51. Roughly said, such a generator is a easy to compute function h(. , . )  
mapping pairs of -say- k-bit strings into k-bit strings. When the first argument 
is fixed to  a randomly and secretly chosen value K ,  then the resulting single- 
argument pseudo-random function f ~ ( z )  = h(K,  z) passesses all polynomial- 
time statistical tests for functions. That is, any poZy(k)-time observer who asks 
for and receives function values at inputs of his choice (but does not know the 
initial value K )  cannot distinguish the case when his questions are consistently 
answered by means of the specially-constructed pseudo-random function h(K, a ) ,  

or by means of a function f(.) randomly selected among all possible ones mapping 
k-bit strings to  k-bit strings. We stress that only the random initial value K needs 
to  be kept secret; the program for h is instead assumed to be public knowledge. 
The authors of [5] also show that (good) pseudo-random function generators 
can be constructed given any (good) pseudo-random number generator. (Thus 
pseudo-random functions in their sense exist if a and only if ordinary one-way 
functions exist.) The cost of one evaluation of such a pseudo-random function 
fK equals that of generating 2k2 pseudo-random bits (with a k-bit seed), and is 
thus essentially negligible. 

In practice, one might prefer to use a one-way hash function 

a : (0, 1}2k + (0, l}k 

as his pseudo-random function generator. In this case, h(K, z) = H(Klz)  will be 
his chosen pseudo-random function, where the symbol L‘J” denotes concatenation. 
Such pseudo-random function generators will be even faster t o  evaluate. 

In any case, in describing our scheme with inputs N and k, we assume that 
a pseudo-random function generator h : { O , l } k  x { O , l } k  --f { O , l } k  has been 
publically agreed-upon. We also assume that the number of possible users is 
upperbounded by a small polynomial in k. 
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COMPUTING INDIVIDUAL KEYS AND PAIR KEYS. The trusted agent randomly 
and secretly selects two k-bit m a s t e r  secret keys K and K’. He then privately 
gives to  user i, as his individual exchange key, the value Ki = h ( K , i ) ,  and ;ls 
his individual authentication key the value Kj = h(K’,i). Whenever user i asks 
him for the pair key of two users a and j ,  the trusted agent computes and sends 
him the k-bit value value 

together with the k-bit authentication value 

&,j  = h(K,’, h(K.j,i)). 

COMPUTING COMMON SECRET KEYS. The common secret key used by user i 
to  send a private message to  user j is Ki,j = h(Kj,i). User i computes this 
key by retrieving the pair key P;,j from his personal directory (if he has spoken 
privately to  j in the past) or by asking the trusted agent for it (if it is the first 
time he wishes to  speak privately to  j). Then i computes V = Pj,j @ h(Ki , j )  
(which is easy for user i because he knows his individual key and the name of the 
intended recipient) and checks whether h(K,’, V) = d,j. If so, he then randomly 
selects a session key S and sends to  j an encryption of S with key V. 

To read the session key sent by i, j simply computes the common secret 
key V = h(Kj, i ) ,  from the sender’s name and his own individud key (no table 
lookup is needed for receiving) and then decrypts i’s ciphertext with V SO to  
obtain S. 

(Notice that the common secret key by which i sends private messages to 
j does not coincide with that by which j sends messages to i, but this does 
not cause any problems with respect to  their ability of communicating with one 
another. Also notice that while we guarantee i that 

ENCRYPTING MESSAGES. While we recommend the use of session keys, recom- 
mendation of a particular conventiond encryption scheme is beyond the gods 
of this paper. Whether the common secret key computation occurs within a se- 
cure chip or an ordinary personal computer, we insist that it should not become 
“known” to the user. That is, in the case of a sender i ,  the key Ki,j should 
reside within i’s computer. User i can access only indirectly, by giving his own 
computing device a message string m that needs to  be encrypted with Ki,j. 

EXTENDING OUR SCHEME. In the scheme above, in order to  provide a fairer 
comparison between our approach and that  of Needham and Schroeder, we have 
addressed, with better results, (after all, technical advances should occur after 
15 years) essentially the same security concerns as in the summarized Needham- 
Schroeder scenario. However, it should be realized (and we wi l l  explicitly show 
it in the final paper) that our techniques easily extend to  include much tighter 
security requirements. For instance, we c m  accomplish that whenever user i asks 
the trusted party for the pair key with user j, the trusted agent can check that 



475 

this request indeed comes from i .  As for another example, we can accomplish 
that once both i and j have computed a common secret (session) key, the recipi- 
ent of a message encrypted with it can be sure that that particular message was 
indeed sent by i. Details about this will be given in the final paper. We would like 
to  stress from now, however, that like in the simpler setting below, no authen- 
ticating step needs to  be interactive (like in a challenge-response mechanism), 
which makes also these secure protocols simple and efficient. 

SECURITY. Let us briefly sketch the security of the above scheme in an itemized 
manner. 

- Unpredictabdity of individual keys. Because the k-bit string K is random 
and secret, and because h(., .) is a pseudo-random function generator, the 
individual key of a user i ,  h ( K , i ) ,  is unpredictable to  an adversary. In fact, 
fx(.) = h(K,  .) is poly(k)-time undistinguishable from a truly random, secret 
function f from k-bit strings to k-bit strings. Thus, f K ( i )  is polynomial-time 
unpredictable because f ( i )  would be totally unpredictable. (This argument 
actually shows that individual keys are more than unpredictable, they are 
undistinguishable from random numbers even when their values are actually 
revealed -provided that the secret master key is still secret. These are im- 
portant differences, but we shall not discuss them in detail in this abstract.) 
Further, because f ( i )  would be totally urnpredictable even given the value 
of f at any other number of inputs, Ki = f ~ ( i )  remains poly(k)-time un- 
predictable even if all other individual keys become known. 

- Unpredictability of common sec~et  keys .  When user i wishes to  talk to user 
j in privatc, he does so by mcans of the common secret key h ( K j , i ) .  User 
i can compute this key thanks to  the special help given him by the trusted 
agent (i.e., thanks to  the particular way in which the trusted agent chooses 
the pair key Pi,j based on i’s individual key). But Ki,j is unpredictable to 
any number of other users, that is, unpredictable given all possible individual 
and pair keys in the system except the individual keys of i and j .  The un- 
predictability of h ( K j ,  i) can be proved in two steps. First, fxj (.) = h ( K j ,  .) 
passes all poly(k)-time statistical tests for functions in the sense of 151 when- 
ever Ki is random and secret. This is not sufficient, however, because key 
Kj, though secret, is not random, but poly(k)-time undistingushable from 
a truly random number. In fact, Kj = fx(j) and thus we are not exactly 
within the hypothesis of [5 ] .  But given that K is random and secret to all 
users, we can apply a kind of “transitivity property” for poly(k) undistin- 
guishability. Namely, if h(Kj,i) were predictable, being Kj secret and h a 
pseudo-random function generator, then this would imply the predictability 
of Kj = f ~ ( j ) .  But, since K is random and secret, this would contradict 
the undistinguishability of f~ from a random function. It should be noticed 
that  the this basic argument for the unpredictability of h ( K j , i )  keeps on 
holding when the adversary also knows additional information, such as the 
individual keys of users x other than i and j. This is so because (u) for a truly 
random and secretly selected function f (.), the value of f on input i is un- 
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predictable no matter for how many other inputs z the value of f becomes 
known, and ( b )  the undistinguishability (in poly(k)-time) of h(Kj,  -) from 
such an  f. This argument can be extended so as to take in consideration the 
case in which all possible pair keys in the system and their authenticating 
values are also known to the adversary (e.g., because he has eavesdropped all 
possible requests for pair keys). Full details will be given in the final paper. 
In addition, the authenticating value d , , j  provided by the trusted agent 
does not help an adversary who has not compromised the individual keys 
of i and j to  predict Ki,j. In fact, even if he knew the value of the 
authenticating value would undistinguishable from a truly random number 
to  him. Indeed, d,,j = h(Kl,Ki, j) ,  and the key K: is secret and undis- 
tinguishable from a truly random number. Thus, the function h(Ki,.) is 
poly(k)-time undistinguishable from a function f(-) truly randomly and se- 
cretly selected among those mapping &bit strings to  L-bit strings. But be- 
cause for such a function the value f (Ki , j )  cannot possibly betray Ki,j, the 
same is true for h(Ki’, Ki,j).  (To be precise, for any users a, b, . . . for which i 
asks and obtains pair keys, the adversary also sees the authenticating values 
h(Ki, Ki,,), h(Ki, Zlfi ,b),  . . .. But these additional values are practically use- 
less. In  fact, in the case of a truly random and secretly selected function f, 
the values f (Kit,),  f(Ki,b),  . . . would be useless because random and inde- 
pendent of f (Ki, j) ,  and h(K:, -) is poly(k)-time undistinguishable from such 
a function.) 

- Requesting pair keys. In requesting the pair key P;,j, a user i does not need 
to  autheticate himself t o  the trusted agent. Indeed, there is no need for the 
trusted agent to  ensure that the request of P;,j comes from i. This is so 
because, ag we have already said, even if all the pair keys were to be made 
public, no group of malicious users can compute the common secret key of 
two honest users. 

- Authenticating pair keys. We have already argued that the authenticating 
values produced by the trusted agent do not betray the common secret keys. 
We must now argue that they prevent an adversary z, who cuts off the 
communication line between i and the trusted agent and tries to  impersonate 
the latter, from finding a false pair key FPi,j and a false authenticating value 
34,j such that honest user i accepts as valid 

as his common secret key with j .  What is immediate to argue is that z can- 
not mislead i into accepting a false secret key FKi,j known to z. This is so 
because Ki is unkown and unpredictable to  z and h is a pseudo-random func- 
tion generator; thus, the function h(K,!, a )  is undistinguishable from a truly- 
random secret function, and the necessary authenticating value h(K,’, FV) 
is unpredictable to  z .  We must also argue, however, ‘that z does not have a 
realistic chance of authenticating a false common secret key that he does not 
know. The reason for this is that the pseudo-random functions h(Ki, .) and 
h(K;, .) not only “behave randomly” (because each of Ki and K; is random 
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and secret), but also behave as independent functions, because the values 
K,  and Ki are independent random values. Details will be given in the final 
paper. 

REMARK. Notice that this is not a public-key approach not only because each 
user does not choose his own keys, but also because no user has a public key. 
Pair keys not only are associated to  pairs of users and are chosen by an external 
party, but do not need to be made public for the scheme to work. Rather, the 
scheme remains secure even if they become public. 

EFFICIENCY AND OTHER CONSIDERATIONS. The scheme above described is most 
efficient. 

For the users, computing common secret keys from pair keys is quite trivial. 
Moreover, user i needs to  ask the trusted agent for pair key P;,j only when 
he wants to  talk to user j in private for the first time, In fact, Ki,j is then 
stored by i for future use. It is important to notice that if also its associated 
authenticating value is stored alongside with it, this pair key needs not t o  be 
stored in a protected memory. Indeed, it can be stored outside the user’s own 
computer. Indeed, the user needs to  keep secret only two k-bit values: Ki and 
Kl. Since no particular precaution needs to be applied to the pair keys and 
authenticating values, the user can easily store them all. Thus, if the link to  the 
trusted party is down, users still can (very much as in the public-key scenario) 
talk in private with every other user with which they did so in the past. 

Moreover, since our scheme does not depend on any interactive authenti- 
cation protocols, the initial effort of calling up the trusted party is negligible. 
Indeed, obtaining the necessary two k-bit values from the trusted party can be 
handled much as we currently handle a call to 411 (information) in the phone 
system today. In fact, the whole process can be easily automated-the caller 
dials in his own identity and that of j and then receive two 10-byte values in 
response. 

Our scheme is also most convenient from the trusted agent point of view. 
Indeed, computing an individual key consists of a single pseudo-random function 
evaluation, which is trivial todo whether or not one uses a one-way hash function 
in practice. Also handling a request for a pair key is trivial. In fact, even if decides 
t o  securely store only his lc-bit master secret key K ,  the trusted party can satisfy 
a pair-key request by making 5 pseudo-random function evaluations and one sum 
modulo 2. 

3.3 The Multiple-Trustee Scenario 

Also our software-based scheme can be easily adapted for use with multiple 
trusted agents, only one of whom needs to  be honest. For example, if there are 
two trustees, we can make 2 copies of the preceding scheme (one for each trustee) 
thus there will be two individual secret keys, two individual secret authentication 
keys, and two pair keys for each pair of users. There will be only one common 
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secret key for each pair of user, however, set to  be the sum modulo 2 of the two 
common secret keys relative to  each trustee. 

Once again, not only does this decrease the amount of trust required, but 
allows our scheme to make strong encryption compatible with law enforcement. 

It should also be realized that, though not needed, secure chips can be useful 
in this approach too. First, storing individual keys in secure chips cannot but be 
useful. Second, in the multiple-trustee scenario, each of the trustees can inbed 
his own k-bit master secret key in a number of secure chips, and then gives these 
chips to  the phone company. Thus, the phone companies need not to  be trusted 
with respect to  user privacy (or law enforcement) but only to  deliver efficiently 
pair keys on request in a 411-like manner, something that they are set up to  
do quite well. In fact, once a pair key internally computed by a secure chip is 
output, it can be handled without other privacy concerns, 

Thus, like our first approach, this one too succeeds in simultaneously accom- 
plishing two tasks: (1) making law enforcement compatible with encryption like 
in the Clipper Chip scenario, and (2) providing the secret-key agreement missing 
in the Clipper Chip. Moreover, the present approach succeeds in achieving an 
additional important goal; namely, (3) being very economical. Our second ap- 
proach, in fact, can be totally and securely implemented in software. Indeed, the 
only operation required from a user consists in summing two numbers modulo 2 
-which, rather than in software, can actually be done by hand. 

4 Conclusions 

In this paper, we have described two simple schemes for key agreement which 
offer significant advantages in terms of cost and (potentially) security over tra- 
ditional number-theoretic schemes such as Diffie-Hellman and RSA. The new 
schemes are also particularly well-suited for use with the emerging Clipper Chip 
technology proposed by the Clinton Administration, and with Kerborous. 
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