
Secret-Key Agreement without Public-Key
Cryptography

(Extended Abstract)

Tom Leighton1>2 and Silvio Micali2

Mathematics Department and
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Abstract. In this paper, we describe novel approaches to secret-key
agreement. Our schemes are not based on public-key cryptography nor
number theory. They are extremely efficient implemented in software
or make use of very simple uuexpeusive hardware. Our technology is
particularly well-suited for use in cryptographic scenarios like those of
the Clipper Chip, the recent encryption proposal put forward by the
Clinton Administration.

1 Introduction

1.1

Private-key cryptosystems are the most common type of cryptosystems; indeed,
they are also refered to as “conventional systems.” Their goal is t o allow two
parties A and B , who have agreed on a common and secret key KAB, to exchange
private messages via a network whose communication lines are easy to tap by an
adversary. If properly designed, conventional cryptosystems are extremely f a t ,
and believed to be very secure in practice. They are also very attractive from
a theoretical point of view. In fact, provably-secure conventional cryptosystems
can be build based on a very mild complexity assumption: the existence of one-
way functions. (Roughly, these are functions that are easy to evaluate, but for
which finding pre-images is hard.) Among so many advantages, these systems
have a major drawback: agreeing beforehand on a common secret key with every
one with which we wish to talk in private is not trivial. Certainly, meeting in a
secure physical location is not a practical approach to obtain such an agreement.
It is the goal of this paper to forward new, secure, and practical approaches to
secret-key agreement. Prior to duscussing our ideas, let us briefly review the
main approaches that have been considered so far.

The Problem of Secret-Key Agreement

1.2 Prior Approaches

Most of the protocols currently being used for key agreement are either classified
or company-confidential. In the public domain, the most popular key-agreement

D.R. Stinson (Ed.): Advances in Cryptology - CRYPT0 ’93, LNCS 773, pp. 456-479. 1994.
0 Spnnger-Verlag Berlin Heidelberg 1994

457

protocols fall into two wide categories: (1) those based on public-key cryptogra-
phy, and practically implemented with number theory (e.g., the Diffie-Hellman
[4] and the RSA algorithms), and (2) those based on symmetric-key generation
and a trusted agent, and practically implemented with some form of polynomial
or integer arithmetic (e.g., those of Blom [2] and Blundo, De Santis, Herzberg,
Kutten, Vaccaro, and Yung [3]), Unfortunately, these approaches are somewaht
wanting both with respect to security and efficiency.

DRAWBACKS OF THE PUBLIC-KEY APPROACH. Although very elegant, the Diffie-
Hellman and RSA algorithms require that number theoretic problems such as
factoring or discrete-log be computationally intractable. In particular, the RSA
scheme would become insecure if someone discovered a much improved algorithm
for factoring large integers, and the Diffie-Hellman algorithm would suffer a
similar fate if an improved algorithm were found for computing discrete logs. If
either scheme is used to select the session keys for all government traffic, then
all this traffic would be decipherable to anyone who found improved algorithms
for these problems. (Although it might be the case that these problems are truly
intractable, it would be nice if there were a key agreement protocol that was
secure even if there are algorithmic advances made in number theory in future
decades.)

Most likely, similar drawbacks will be suffered by any other proposed solution
based on the framework of public-key cryptography. This framework is very “dis-
tributed” in nature; namely, every user A individually chooses a pair of matching
encryption and decryption keys (EA, DA) , publicizes ED and keeps secret DA-
Any message encrypted via EA can be easily (and, hopefully, solely) decrypted
via the corresponding key D A . Since the E A is made public, any one can send
A a private message, because any one can encrypt via key EA, In this setting,
it is conceptually very easy for two parties A and B to agree on a common key
KAB. For instance, B may individually choose KAB at random and, since EA
is public, send KAB to A encrypted via EA. This key is common because A can
decrypt it thanks to his private knowledge of DA. For KAB to be secret for ev-
eryone else, however, several conditions must be met; in particular, DA must not
be easily computable from EA. Indeed, public-key cryptography requires very
strong complexity assumptions: the existence of one-way trap-door predicates or
that of one-way trapdoor functions. (The latter, roughly, are functions that not
only are easy to evaluate and hard to invert, but also possess an associated secret
whose knowledge allows one to easily invert them.) Such assumptions appear to
be much more demanding than existence of a one-way function. Indeed, while
the existence of one-way functions is widely believed (and plenty of candidates
are available), trap-door one-way functions may not exist or may be very hard
to find (indeed, only a handful of them have been proposed without being imme-
diately dismissed). In sum, therefore, while one-way functions are sufficient to
communicate securely in a conventional cryptosystem once a common secret key
has been established, the process of establishing such a key based on public-key
cryptography appears t o require a much stronger type of assumption, thereby
creating a weaker link in the overall security.

458

In addition to the above concerns about security, and perhaps of more im-
mediate importance, key agreement protocols based on public-key cryptography
and number theory tend to be very expensive to implement. Indeed, the cost
of building hardware that can quickly perform modular exponentiation is far
greater than the cost of building encryption devices based on one-way functions.
Indeed, when providing encryption devices to a country of the size of the United
States, the cost of the key-agreement hardware is far from being insignificant.

SECURITY DRAWBACKS OF THE TRUSTED-AGENT APPROACH. In this approach
there are three main parameters: N , the total number of users in the system, k
the length of a common secret key, and B , a bound on the number of (collab-
orating) malicious users. The algorithms of [2] and [3] make use of polynomial
and integer arithmetic for implementing a Symmetric Key-Generation System.
This consists of computing (from a single, secret, system value K) a set of n
secret values, Kl , . . . , K,,, which in turn yield n2 quantities, Kij, satisfying the
following properties. For each a and j the quantity Kij can be computed easily
either on inputs j and Ki, or on inputs i and Kj. Moreover, given any B in-
dividual values, K,, , . . .) K,, , one has no information about the quantity Kij
whenever i, j # a;, . . . , aB.

A symmetric key-generation system can be effectively used by trusted agent
to enable the users to provide an elegant solution to the secret-key agreement
problem. The trusted agent (after choosing the system master secret) simply
computes n secret values Kl, . . . , K, and assigns to user i value Ki as his indi-
vidual secret key. The common key between two users i and j will then be Kij,
which can be easily computed by either one of the two users. This key is secret
in that no coalition of less than B users, no matter how much computation they
perform, can infer the common of two other users. While this is a very attractive
property, relying on a trusted agent for assigning the proper, individual secret
keys is in itself from a security point of view, a serious drawback.

F’rom an efficiency point of view, while the algorithms of [2] and [3] require
small individual keys (i.e., Q (N k) bits per user), they do require a fair amount of
algebraic computation in oreder to compute common secret keys from individual
keys. Even if this computation could be sped up in a hardware implementation,
the cost of this circuitry may not be trivial with respect to that required for
conventionally encrypting messages via a one-way function, after common secret
keys have been established. Moreoever, for both security and efficiency reasons,
conventional encryption schemes are not algebraic; thus the “algebraic hardware”
necessary for their secret-key agreement represents pure additional cost, since it
will have very little to share with the “encrypting hardware.”

1.3 Our Contribution

In this paper, we advocate two new approaches to secret-key exchange, none of
which is based on public-key cryptography or polynomial/integer arithmetic.

In the first we introduce a new class of symmetric key-generation systems
requiring longer individual keys than [2] or [3], but guaranteeing a that cornput-

459

ing common secret keys is absolutely trivial. To enhance the security of these
algorithms further we recommend using them in conjunction with special hard-
ware and a set of moderatly trusted agents. This whole approach is described in
Section 2.

The second approach requires a simple interaction with moderatly trusted
agents, and can be impleneted in software with great efficiency and security (and,
of course, wit great savings). This approach is described in Section 3.

Both approaches are information-theoretically secure, though they can be
more convenently impemented if ordinary one-way functions are used. (In any
case, therefore, they will be immune to attacks baaed on advances in number
theory.)

Finally, both of our approaches are capable, if so wanted by society, of making
very secure encryption “compatible with law-enforcement;” that is, in case a
court authorizes tapping the communication lines of users suspected of illegal
activities (and only in case of these legitimate authorizations), the relevant secret
keys can be reconstructed by the Police. This is indeed the major feature of two
recent encryption proposals, Fair cryptosystems, as put forward by the second
author, and the Clipper Chip as put forward be the Clinton administration.
To illustrate both this additional important point and the cryptographic use of
tamper-proof hardware that may enhance the security of our first scheme, let us
provide a brief introduction to the government proposal.

1.4 The Clipper Chip Project

In April, 1993, the Clinton Administration announced its intention to develop
a cryptographic scheme for widespread use within the government. The scheme
is centered around a device known as the Clipper Chip which is expected to
become standardized for encryption and decryption of telephone, fax, email,
and modem traffic. The Clipper Chip does not offer a solution to the secret-key
agreement problem; rather, it assumes that such a solution exists. Its goal is
making conventional cryptosystems compatible with law-enforcement.

The Clipper Chip will be made using a special VLSI process which is de-
signed to prevent reverse engineering. In particular, the conventional encryption
and decryption algorithms used on the Clipper Chip will be classified, but the
chip itself will not be classified. The Clipper Chip will also contain a protected
memory for secret keys. The protected memory is designed to prevent anyone
(even the legitimate user of the chip) from gaining access to the keys contained
therein.

According to the government press release, each Clipper Chip will be equipped
with a unique secret key Ki that is formed by an irreversible process from two
pieces of the secret key Kil) and Ki(’). The pieces of the secret keys will be held
by system-wide trusted agents ‘2i and Z. (Actually, only one of the agents needs
to be trusted since 5 will hold only the first piece of each secret key and ‘& will
hold only the second piece.) When two parties wish to communicate using the
new system, they first agree on a session key S and they enter this key into their

460

respective Clipper Chips. This key is used by the Clipper Chips as an encryp-
tion/decryption key for the message traffic. In other words, once the session key
is selected, the Clipper Chips function as a private-key cryptosystem.

There is a major difference between the Clipper Chips and a conventional
private-key cryptosystem, however. That is, the Clipper Chips also transmit the
session key S being used in encrypted form using the secret key for the chip,
thereby allowing the trusted agents to eavesdrop on the conversation. The reason
for transmitting the session key in this fashion is so that law enforcement can
(upon obtaining the relevant court order) obtain the secret key of the user from
the trusted agents and then decrypt the conversation (thereby preserving cur-
rent wiretapping capabilities) but no other unauthorized person can eavesdrop
(thereby providing greater privacy than exists currently for most individuals).

1.5 Our Contribution to the Clipper Chip Project

In the proposed Clipper Chip project, it is assumed that every pair of users has
already agreed on a common, secret, (session) key. In practice, therefore, devices
that incorporate the Clipper Chip will use a specific key-agreement protocol, or
a crucial link would be Inissing. This, however, has the potential of introducing
a host of new difficulties. For instance, if public-key cryptography is used for
providing this missing link, the system might become more vulnerable (since it
now must rely on stronger -and possibly false- comlexity assumptions) and
much more costly.

By contrast, as we shall see, our two schemes can greatly enhance the security
and the economicity of the Clipper Chip project. In fact, not only can we guar-
antee compatibility of law-enforcement with strong encryption, but, within the
same framework (without additional costs or loss of security), also the necessary
secret-key agreement that was missing in the Administration proposal.

2 A Hardware-Based Approach

For simplicity of exposition, the secret-key agreement of this section is described
in two phases. The first phase consists of a special class of symmetric key-
generation systems -and thus of a basic scheme for secret-key agreement based
on a trusted agent.

In the second phase, we show how to enhance the security of our basic schemes
assuming the availability of tamper-proof hardware and the existence of a group
of “only moderately trusted” agents rather than a single, totally trusted one.

2.1 The First Basic Scheme

The symmetric key-generation scheme described in this subsection is both very
efficient and quite natural. We thus expect that it might have beed already
discussed in the literature, but we have been unable to find such reference. w e

46 1

of course be very grateful to anyone who can provide us with such a piece of
information.

Recall that in a symmetric key-generation system there are three relevant pa-
rameters: N , the total number of possible users in the system; B , an upperbound
on the size of a coalition of dishonest users, and k, the number of unpredictable
bits contained in each common secret key of two honest users (e.g., k = 100).
For didactic purposes, however, we shall make use of an auxiliary parameter M ,
and then show that M should be about B3 In N .

COMPUTING INDIVIDUAL KEYS. On input N , B , and k, the trusted agent per-
forms the following steps:

- First, he randomly and secretly selects M, k-bit long, system secret keys:
XI,.. . , XM, where M = O (B 3 In N) (the precise constant will be worked
out in the final paper).

- Then, he constructs (in poly(N,M) time) a N x M 0 - 1 matrix A = {ai,,}
with the properties that:
1) any pair of rows have 0’s in at least F = O (M 1 / 3 ln2/3 N) common

2) any triple of rows all have 0’s in at most G = O(1nN) common columns.

(We will show how to construct such a matrix shortly.)
- He then assignes to player i, where i is a logN-bit identifier, the individual

secret key consisting of the vector (v i , ~ , . . . , v u ; , ~) , where v ; , ~ equals the secret
system key Mn if ai,n = 0, and the empty word otherwise.

columns, and

1. B < rF/G].

COMPUTING COMMON SECRET KEYS. The common secret key of users i and j ,
K i j , consists of the M-vector whose nth component equals Mn if a;,n = bj,n = 1,
and the empty word otherwise. Thus, each user trivially computes his common
secret key with another user by taking a subset of the system secrets in his
possession.

(If so wanted, the size of these common secret keys can be reduced; for
instance, by evaluating a one-way hash function on them. Such reductions are
not, however, a concern of this paper.)

SECURITY. Assume, for now, that a matrix A as above has been constructed.
Then, given the individual secret keys of a set of B users, the common secret
key of two users contains at least k random and unpredictable bits. The proof is
very simple. By Property 1, above, every common secret key K;,j must contain
at least F system secrets. By Property 2, however, the individual secret key of a
user other than i or j contains at most G of these secrets. Hence, a t least [FIG1
other individual secret keys are necessary in order to recover all of the system
secrets in a common secret key.

CONSTRUCTING THE MATRIX. Next, let us show that a matrix A satisfying
Properties 1 and 2 above exists. We do this by showing that such an A can be
constructed with probability > 0 by the following probabilistic algorithm.

462

Set each entry of A to 0 with probability p = 0 ((9)1‘3). The probability
that Property 1 is not satisfied is then at most

provided that F I Mp2. Similarly, the probability that Property 2 is not satisfied
is at most

Hence, the probability that A fails to satisfy either property is at most

By setting p = 2 (Y) ’ I 3 , F = 1M1I3 ln2/3 N , and G = 16e In N , we find that if
M >_ 8 In N , then this probability is strictly less than 1, as desired. (It is worth
noting that substantially better constants can be derived for particular values
of N and M with a more careful analysis.)

Finally, let us show that such a matrix A not only exists, hut is also easy
to compute deterministically. This is so thanks to the method of conditional
probabilities fl]. In fact, it should be noted that the task of evaluating a simple
upper bound on the probability that either Property 1 or Property 2 is violated
(as in Equation 1) conditioned on some of the values in A being fixed is easily
accomplished in polynomial time.

(Indeed, matrix A needs not t o be computed “at once,” but can be easily
computed row-by-row. This way, the cost of a row can be incurred only when
one more user -of a budgeted total of Nusers- joins the system.)

In the case when N is small, even better constructions for A exist. For ex-
ample, when N = we can construct an A for which F = M1/3 and G = 1
by letting each row of A correspond to a plane through an M1l3 x
lattice of points modM. By choosing non-parallel planes for the rows of A, each
pair of planes will intersect in a line, and each triple of planes will intersect in
exactly one point, thereby achieving the desired bounds for F and G. In this
example, it suffices to have B = M1i3 - 1.

2

x

EFFICIENCY. Given what we have said so far, the bit-length of an individual
key is about kB3 log N . An individual key, in fact, consists of a subset of the

463

M =' 8 (B 3 log N) system secrets. One must observe, however, that the subset
tends to be quite sparse. Indeed, we can construct matrices A enjoying also the
following additional property:

0) Every row has at most O (M 2 / 3 N) 0's.

The number of system secrets entering an individual key is thus about B2 log N.
Though this is longer than the kB bits of individual key (roughly) needed

by an individual key in the Blom' algorithm with the same parameters, in our
case the construction of a common secret key is trivial, since it only consists of
taking a subset of stored secrets. It is unquestionable that, whether in software
or in hardware, this operation is much preferable to computing with B-degree
polynomials over fields with size-k elements.

2.2 The Second Basic Scheme.

Also this scheme should have, in our opinion, been discussed in the litterature.
Nonetheless, we have not been able to find it.

In this scheme the trusted agent distributes to the users longer individual
secret keys. As we shall see in the subsection after next, however, the scheme
offers additional advantages if some special hardware is available. This scheme
too has a perfectly-secure version, but one-way functions can be used in order
to shorten the length of the individual secret keys.

COMPUTING INDIVIDUAL SECRET KEYS. Parameters N,B,k, and hf are as in
the first scheme. The secod basic scheme has, however, an additional and inde-
pendent parameter L 2 2.

In the perfectly secure version, the trusted agent computes individual keys
as follows.

- He chooses ML, k-bit long, system secrets, {Xi,*}, where i ranges between
1 and M, and n between 0 and L - 1.

- He assigns to each user in the system an identifier consisting of M random
values between 1 and L - 1, a = (~1,. . . , a ~) . (In practice, the ai values
can be generated by applying a proper cryptographic function to the "real
name" of the user.)

- Then, he assigns to user ((~1,. . . , QM) the secret key consisting of the (prop-
erly ordered) subset of system secrets {Xi,* : i E [l, M] ai E [0, L - 11).

COMPUTING COMMON SECRET KEYS. The common secret key of two users with
identifiers a = (q, , . . , C T M) and p = (p,. . . ,p) consists of the (properly or-
dered) set of system values {Xitmazi,. . . , X i , ~ - l - ~ ~ ~ ~ : i E [1,M] maxi =

(Again, such a key can be substantially reduced in size, if so wanted, but this
ma4 w , Pi).

is not a concern of this paper.)

464

THE COMPUTATIONALLY-SECURE VERSION. The above scheme requires quite
long individual keys. This drawback can be eliminated by using one-way func-
tions. This, of course, will turn the perfect security of the above scheme into com-
putational security, but this is quite tolerable, since the conventional encryption
that follows the key-agreement can be at most be computationally secure.

The most straightforward way to use one-way functions to shorten individ-
ual key-length in our second basic scheme consists of having the trusted agent
set Xi,,, = h"(Xi) where Xi is the ith system secret (randomly selected as be-
fore) and h is a one-way function. The user identifiers are chosen like in the
perfectly-secure version, but the individual key of user a! = (a l , , . . , a~ now is
(h"l(X~), . . . , heM (X M)) , since user a! can reconstruct all other values by eval-
uating h in the easy direction. This version of our scheme approximates the
perfectely-secure one in that the value Xi,n is computationally hard to predict
from the values Xi,,,, for m > n. Nonetheless, if the correct value Xi,,, is sup-
plied, one can verify its correctness by evaluating h sufficiently many times on
it.

In most cases, the above approximation can be deemed sufficient. But, though
this lies beyond the scope of this paper, let us mention that a better way to
approximate computationally the perfectly-secure, second basic scheme, can be
obtained by using a slight variation of the pseudo-random function construction
of Goldreich, Goldwasser, and Micali [5] . In particular, one can guarantee that,
to someone who is given Xi++l , Xi,, is undistinguishable from a random value
of the same length. The lenth of an individual key, however, becomes kM log L.

SECURITY. In order for an adversary to compute the common secret key of two
users with identifiers a = ((~ 1 , . . . , a ~) and p = (PI)...) P M) , he will need to
obtain enough individual keys so as to have all system values Xm,p, (Zm =
hPm(Xm) in the computationally secure scenario) where pm 5 maz(a,, ,Om) for
1 5 m 5 M . In order for the system to be secure, then, we would like it t o be the
case that no matter for what set of B users, if the adversary enters in possession
of the individual keys of those users, he still does not have enough information
to recover a common secret key for any other two users in the system.

To this end, we need to select the identifier K; = {ai,17 a+, . . . , a j , ~ } for
each user i so that for any il,i2,. . . , i ~ E [1,N] and any jl,j2 E [l,N] such that
i, # j , for 1 5 T 5 B and 1 5 s 5 2, there exists an integer t (1 5 t 5 M) such
that

min(air,t} > max{qa,t}.

In other words, for any pair of users j 1 and j 2 and any set of B users il, i2,. . . , ia
whose individual keys are learned by the adversary, there needs to be at least
one Xt such that none of the B learned keys contains Xt , , (hW(Xt) in the
computationally-secure scenario) for any w 5 max(aj,,t, a!jaIt).

Fortunately, it is not too difficult to find identifiers for the users that satisfy
the preceding property, For example, if L is a multiple of B and B is about
(M / e In N)1/3, then this property is likely to hold if each ai,, is chosen uniformly

l < r l B 1952

465

at random in [0, L - 11. This is because the probability that

min {ai,,t} 5 m=(aj . , t } .
l < r < B l < S < Z

for some particular values of i l , i 2 , . . . , i B , j l , j 2 , and t is at most

L B and a (1 - $) since there is always a & chance that ajl,t,aj,,t <
that o i l , t , . . . ,aig,t 2 3. For B 22, (1 - $) 2 e - % - h and thus

chance

B

Hence, the probability that Equation 2 holds for all t , 1 5 t 5 M is at most

Summing this probability over the

possible choices for i ~ , i z , . . . , iB,jl,jZ, we find that the probability that any pair
key can be recovered by opening any B other chips is at most

e-(B - l) e - l M / B 3 - - ,(B+Z)[ln N+1 -ln(B+2)] -(B-1)e-’ M / B 3

which becomes small when B is about (M / e In N)”3.
If L is larger than B2, then the preceding sort of analysis can also be used

to show that the probability that any pair key can be recovered by opening B
other chips is small when B is about (2M/lnN)1’3, The key difference is that
when L is large compared to B 2 , the probability in Equation 3 can be improved
to

2 - o(1) =I--
B2 ’

(1 - o(1))2B!
1 -

(B + 2)!

which is smaller than 1 - for large B.

EFFICIENCY. Given what we have said so far, in the computationally secure
version, the length of an individual key equals that of the first basic scheme:

466

kB3 In N bits. The time needed to compute a common secret key from an indi-
vidual one is however slightly longer, consisting of M (L - 1) one-way function
evaluations. Since one-way functions are particularly fast to evalaute, however,
this operation, implemented in software, may still be negligible with respect to
the equivalent one of (21 and [3]. Our common-secret-key computation also is
more convenient than that of (21 and [3] with respect to hardware implemen-
tations. Not only because the circuitry needed for one-way function evaluation
tends to be simpler than that of polynomial arithmetic, but also because the
circuitry necessary to evaluate one-way functions needs to be present any way,
in order to encrypt messages (or session keys) once a common secret key has
been computed.

Let us just mention in passing, however, that, like for the first basic scheme,
the length of an individual key can be reduced to about B2 log N , but the initial
(omitted) constant can be better than that of the first scheme. (Details will be
given in the final paper.)

The real advantage of the second scheme, however, comes in if a special type
of hardware is available. This advantage is discussed in section 2.5.

2.3 Optimality of our Basic Schemes

We now show that the schemes for assigning public keys that were just described
are a l l optimal t o within a logarithmic factor among those where common secret
keys are constructed as “subsets of common secrets.” In particular, we will show
that no matter how large L is and no matter how public keys are assigned, then
there is always a set of €3 = @(M1/310g2/3 M) chips which, when opened, will
lead to the recovery of a pair key for some other pair of users. Because of space
limitations, we will only sketch the proof in this extended abstract, and we will
not worry about constant factors. (In fact, the constant hidden behind the 8 is
quite small.)

define an N x M matrix A = {a i , j } as follows:
Given any set of N public keys {Kill 5 i <_ N} where K, = {a;,,ll 5 m 5 M},

-1 if ai,j is the smallest item in {ar,jll 5 T 5 N } ,
0 if a;,j is among the next smal)est items in {a,jIl 5 T 5 N } ,
1 otherwise.

Ties can be broken arbitrarilv. Thus. each column of A will have one -1,
*M 0’8, and N - 1 - -+- Nlo I f 3 M 1’s.

We next use the pigeonhole principle to show that there are two rows u and
v in A such that

1) neither row u nor row v contains any -l’s, and
2) there are at most F = €J(M1/’ log2I3 M) columns for which both rows u and

v contain a 0.

467

This is because at most M rows contain a -1, and at most

pairs of rows can both contain a 0 in column j for any j . Hence, there exists a
pair of rows satisfying Properties 1 and 2 above if

Equation 4 is satisfied for F = Q(M'/3 log2j3 M) provided that N 2 2M.
M) chips which, when opened, can

be used to recover the pair key for u and v. The first step towards this goal is to
find M) rows of A (other than u and v) such that for each column
t , one of these rows contains a 0 in column t. We can find such a set of rows
because every column of A has + 0's and at most 2 of these zeros can
be in rows u and v. In particular, there is always a row in A (besides u and v)
with at least

We next show how to find O(M1I3

N lo ' I 3 M

- 2 / N = Q (M 2 / 3 M) N i0g1i3 M (M1i3)
0's. When we remove this row (call i t il) and any columns j in A for which
ai,,j = 0, there is still a row with L2(M2/3 log1I3 M) 0's in the remaining columns.
Continuing in this fashion, we can easily find a collection of O(M1/3/ log1I3 hf)
rows which collectively have at least one 0 in half of the columns. Continuing
further, we can find a collection of O(M1l3 10g2/3 M) rows which collectively
have at least one 0 in each column. By opening the chips corresponding to these
O (M 1 / 3 l ~ g ~ / ~ M) rows, we can then recover the portions of the secret pair key
for u and t~ corresponding to columns t for which max{a,,t,a,,t} = 1.

All that remains is to open the F = O(M1l3 log2l3 M) chips corresponding
to the rows w for which aUtt = -1 where t is one of the F = O(M1/310g2/3 M)
columns for which aUlt = aVlt = 0. These chips contain the remaining secrets
necessary to reproduce the pair key for users u and v. Hence B can be at most
O (M 1 / 3 10g2/3 M) if the system is to be secure.

2.4

MULTIPLE TRUSTEES. Let us now modify the basic schemes described above So
that they no longer need such a strong assumption aa the existence of a trusted
agent selecting and distributing individual secret keys t o the users. At the sim-
plest level, as envisaged in [6] and in the Clipper Chip scenario, this modification
consists of replacing the trusted agent with a group of agents that are moderatly
trusted. That is, trusted collectively, but not necessarily individually.

Enhancing the Security of the Basic Scheme.

For instance, there may be a set o f t independent trustees, each one of which
acts as the trusted agent of Sections 2.1 and 2.2. Thus, denoting by KCj the secret
common key between users i and j relative to the nth trustee, the overall secret
common key between i and j, Ki,j, will be the XOR of the Ktj’s. It is easily
seen that this does not effect the security and the all the relevant properties of
the trusted agent scenario. In addition, if society so wants, this way of operating
also allows one to make cryptography compatible with law enforcement. In fact,
the two trusted agents can give, when presented with a court order, the two
individual secret keys of a suspected user i, K! and K:, to the Police. Thus the
Police will be allowed, in case of a court order, to understand any message sent
or received by i, because it can easily compute all possible common secret keys
between i and other users.

SECURE CHIPS. A second modification that may greatly enhance the security
of our basic schemes depends on the availability of secure chips, Recall that
these are chips whose memory (or parts of it) cannot be read from the outside,
and that cannot be tampered with without destroying their content. Given such
chips, each of the trustees can then store the individual key of a user into a
secure chip. Once a chip has all the required individual keys (i.e., t if there are t
trustees), is given to its proper user. We further recommend that he should not
see any of the common secret keys enabling him to communicate privately with
other users. In fact, we recommend that the only way for one to use his own chip
consists of entering the chip a message and a recipient identity and that the only
action taken in response by the chip consists of (1) internally (and thus secretly)
compute the right common secret key, and then (2) outputting the encryption
of that message with that key. (In particular, if the input to the chip is not of
the proper form, the chip will take no action, but it will never output part of a
secret key, nor will it answer in any way to any “input request” about a secret

This step makes it harder for a coalition of malicious users to compute the
common secret key of two honest users. In fact, malicious users no longer know
their own individual keys. Even if one assumes that, with a lot of effort and
with a substantial investment in sophisticated equipment, one may succeed in
reading the content of at most A chips, by selecting the individual keys with
parameter B > A, one can guarantee that no common secret key between two
uncompromised chips can be computed.

The inability of computing common secret keys does not, however, quite coin-
cide with the inability of eavesdropping. Indeed, Yuliang Zheng [8] has observed
that, if B = 0, then there may exist a single chip w whose individual secret key
allows one to compute the common secret key, Ka,p, of two other chips a and
0, and that, if this is the case, chip w can be used (without opening it) in order
to eavesdrop communications between cr and p. (He also shows, however, that
by having the common secret key of two users also depend from their identifiers
makes eavesdropping impossible even in that special case. It would be nice to
know, by the way, where are such special cases exist, or to have a formal proof
that no other sich a case exist.)

key. 1

469

ENHANCING THE SECURITY OF PRIOR KEY-DISTRIBUTION SCHEMES. These en-
hancements can also be used to improve the security of the algebraic schemes of
Blom [2] and Blundo et al. [3]. Namely, assume that there are two (for simplicity)
trustees, 71 and 7 2 , at least one of which is honest. Then, each trustee 7; can pro-
duce up to n secret values Kr’s, and store KF in the protected memory of chip
of user i a his secret individual key, without revealing its value to him. Then,
the common secret key of two users i and j can be easily computed (without
interaction) by either of their tamper-proof chips as a fixed combination of K:j
&e., their common secret key as if 71 were the only trusted agent) and K& (i.e.,
their common secret key as if 7 2 were the only trusted agent. This way, gather-
ing together more than B secret individual keys is harder (because all such keys
are stored in protected hardware and are not known to the users) and, at the
same time, one no longer relies on a single trusted agent. In addition, also these
so modified schemes may make, if so wanted, encryption and law enforcement
compatible.

These security-enhanced schemes, however, will be less efficient and more
expensive than our enhanced ones.

2.5 Partially-Openable Chips

So far we have assumed that an adversary who succeeds in opening the protected
memory of a chip, succeeds in reading all of this memory. It may be more real-
istic, however, to assume that, by tampering with a properly protected chip, an
adversary can obtain at most a few bits from the protected memory of each chip
before he destroys the rest of the bits. In this case, our second basic scheme may,
by using a large parameter L, make the adversary’s work dramatically difficult.
This is so because learning -say- 5 bits of hn(Xm) for different values of n

will be of little help to the adversary. Thus the ability of opening random chips
no longer is very useful: the adversary must open many chips with exactly the
same portion of the secret key if he wants t o obtain “useful information.” But,
when L is large, even the simple step of getting hold of a large number of chips
with such identifiers (and thus such secret keys) may be overwhelmingly hard.
In fact, in the cases of the first basic scheme and the second one with L = 2, the
adversary needs to partially open about B(B2 log N)lc/5 chips (if at most 5 bits
can be recovered from such an opened chip) in order to compute the individual
keys of B chips. By contrast, in the second basic scheme, when the parameters
L increases (and all other parameters remain fixed), the number of chips that
need to be opened tends to LB(B2 log N) k / 5 . It then becomes clear that even
for reasonable values of L, in most applications there will not be that many
chips in the system. Thus no adversary has a realistic chance of computing the
common secret key of two uncompromised chips even if he gets hold and par-
tially opens all the other ones. This is even more true if one assumes (like it
may be realistic to do) that before succeeding in partially opening a chip the
adversary is expected to destroy a few chips in the process. In fact, many more
than LB(B2 logN)k/5 chips are needed in this case.

470

Additional protection can be obtained if chips are initialized with users iden-
tifiers that are chosen as an unpredictable function of the names of their users.

Security Hierarchies The previous scheme can be easily modified for use in a
scenario where there are various gradations of security. For example, assume that
the users are categorized into S security levels 1,2,. . . , S, where level 1 is the
highest level of security, and level S is the lowest level of security. Then, we can
use the same scheme as before except that the public key for a user at security
level g is selected so that am is a random integer in the range [1+ (q - 1)L, pL]
for 1 5 m 5 qMIS.

The modification increases the time to compute a pair key by a factor of
at most S, but it has the nice feature that conversations between users will
always take place at the highest (Lea, most secure) common level of security. In
particular, in order for an adversary to recover the pair key for a conversation
between users at security level q or better, the adversary will need to open at
least B chips of security level q or better where B is as defined above (with M
decreased by S). Since there are likely to be fewer chips a t the higher security
level, and since they are likely to be guarded more closely, it will be much more
difficult for an adversary to obtain such chips, and he will have to open more
of them before being able to recover a pair key (since we can replace N by the
number of users with that level of security, which is smaller).

3 A Software-Based Approach

Let us now describe a scheme for exchanging keys that does not rely on any
protected hardware at all. The scheme is very simple and, in its basic version,
only relies on a trusted agent. (We shall describe how to implement the scheme
with multiple trustees later.)

Again, it seems to us that this very scheme should have been considered
before, but we have not been able to find it in the literature. Our software-
based approach shares, however, some similarities with that of Needham and
Schroeder, and it is actually useful to to contrast the two of them.

3.1

THE NEEDHAM-SCHROEDER PARADIGM. Outside the public-key cryptography
framework, the most popular approaches to secret-key agreement follow a paradigm
put forward by Needham and Schroeder [7], whose essential features are sum-
marized below.

A trusted agent T assigns to each user i in the system an individual secret
key Ki. This key is thus a common secret between the user and T. Whenever a
user i wishes to talk in private to another user j , i sends T a message (in the
clear) specifying his own identity and that of the recipient, j . The trusted agent
answers this request by selecting a new session key S and sending i a global

The Needham-Schroeder Approach Versus Ours

471

message, encrypted with key Ki, consisting of two values: S and E , where E is
an encryption of S with key Kj. User i , after recovering S and E , sends j two
values: his intended message encrypted with S, and E. User j, thanks to his
knowledge of Kj , recovers S from E , and then recovers the message.

(After this basic step, i and j also engage in another protocol to check that
indeed S is a common key to both of them. We have decided to ignore thcsc
additional protocols in this paper.)

CRITIQUE OF THE NEEDHAM-SCHROEDER PARADIGM. Many objections can be
and have been moved to the above paradigm for secret-key exchange; in partic-
ular:

1. It requires tha t t he trusted agent be cont inuously available.
Indeed, if the communication link between a user and the trusted agent is
down, then that user is deprived of the possibility of communicate privately.

2. It exposes arbitrarily m a n y cleartext-ciphertezt pairs . Indeed, whenever user
z requests to speak to user j he will receive, for free, a session key S and its
encryption (with j ’ s secret key).

Assume that the encryption between i and T consists of exclusive-oring
messages with a one-time pseudo-random pad generated on input Ki. Also
assume that it is an enemy (instead of T) who send i the global message,
and that he chooses it to consist of two random values: Q and p. Then, i will
compute the decryptions, S and R, of, respectively, Q and p . Of course, it is
very unlikely that R will be an encryption of S with key K,. Thus a message
sent by i to j encrypted with S will not be understood by j. But i has no way
to realize this without engaging in an additional protocol with j . Thus, even
if a good encryption scheme (such as exclnsive-oring with a pseudo-random
pad) is used in the Needham-Schroeder approach, an additional interactive
protocol between users becomes more of a necessity than an option. This is
a pity, because now their approach stops from being very simple, and is also
made less efficient. Moreover, such additional protocols need to be secure,
something that it is not trivial to achieve -at least if one wishes to keep
them very simple,
(Indeed, as we have already mentioned, such an additional protocol was rec-
ommended in the original paper, though it did not quite achieve its intended
goal. Things, in fact, are not that simple. Not only should i and j verify that
they share a common key, but they also better verify that this key is the one
chosen by T for this particular session -a task further complicated by the
fact that an enemy may impersonate both T and j in order to fool i.)
Do such complications arise because xoring with a pseudo-random pad is
not a secure encryption algorithm? The answer is no: xoring with a pseudo-
random pad is a very secure encryption scheme. But the Needham-Schroeder
paradigm derives its attractive simplicity from the assumption that encryp-
tion schemes can guarantee both privacy and authentication. When T sends
i the two values S and E , it would be desirable both that (u) only i will

3. It requires encryp t ion t o provide authentication.

472

understand them, and that (b) user i can be guaranteed that it is T who is
sending them. Now, encryption schemes are traditionally designed so as to
guarantee property (a), but not property (b) . Indeed, it should be realized
that the problems just discussed, which are evident in the case of one-time-
pad encryption, may become harder to see, but not necessarily disappear,
if more complex block-ciphers are used. Property (b) can instead be guar-
anteed -say- by digital signature schemes, but requiring their explicit use
would deprive the Needham-Schroeder approach of its attractive simplicity,
and would substantially increase its efficiency and the cost of its hardware
implementations. (In fact, each user should then be given the additional
circuitry necessary for digital signature verification.)

ADVANTAGES OF OUR APPROACH. Even before relaxing the assumption of
a trusted agent, our approach offers significant advantages.
First, it is very simple, efficient, and easy to implement. In particular, it does
not require that i and j engage in additional protocols for guaranteeing i
that he and j share the same secret key.
Second, the security of our scheme does not depend from complicated as-
sumptions (such as the existence of -hopefully efficient- encryption schemes
that possess additional and little-understood properties); rather, our scheme
solely requires that ordinary one-way functions exist,
Finally, for talking in private to an user j, user i needs to access the trusted
party only the first time that such a conversation is desired; the responsibility
of choosing session keys is the users’; and no undue stress (such as revealing
an arbitrary number of cleartext-ciphertext pairs for free) is imposed on the
secret encryption keys.

3.2 Our Software-Based, Trusted-Agent Scheme.

To analize this scheme we only consider two parameters: N , the total number of
users, and Ic the length of the common secret keys. (As we shall see, in fact, a big
advantage of this approach is that an adversary cannot eavesdrop conversations
between two honest users no matter how many other users he may compromise.)

The high-level mechanics.of the scheme are as follows. The trusted agent,
T, gives to each user i two secret individual keys: an exchange key Ki and an
authentication key Kj. (Using two keys considerably simplifies the description
and the analysis of the scheme.) In addition, upon request, T can quckly compute
and make available a pair key Pi,j for each pair of users i and j. To send an
encrypted message to user j, i uses K; and the pair key Pi,j. To decrypt the
resulting ciphertext, j only uses his own individual key Kj . The scheme possesses
two important properties:

1. Without knowledge of Ki or Kj, the pair key Pi,j (and any other pair key
as well) is useless for deciphering the encrypted communications between i
a n d j ; and

2. Learning the individual keys of any number of users does not help in eaves-
dropping the conversations between any other two users.

473

The first property guarantees that there is no need to protect the pair keys,
something that greatly accounts for the simplicity of our scheme. Indeed, though
this would be quite inefficient, all N 2 of them could be made public, in which
case there would be no need to call the trusted party.

The second property implies that, differently from the hardware-based ap-
proach of Section 2, there is nothing to be gained by preventing a user from
knowing his own key. Of course, each user should not loose or divulge his in-
dividual key (since the secrecy of his communications depend on it), but the
scheme is such that compromising a user’s individual key is only useful to un-
derstand the communications relative to that user alone. This greatly simplifies
the logistic requirements of our scheme, and allows it t o be implemented with a
very unexpensive apparatus.

PSEUDO-RANDOM FUNCTIONS. Also the present secret-key agreement has a
perfectly-secure version, but given that it is both rather inefficient and easily
derivable from the computationally secure one, it is only the latter version that
we shall describe below.

A critical building block for our computationally-secure version is the notion
of a pseudo-random function generator, as defined by Goldreich, Goldwasser, and
Micali (51. Roughly said, such a generator is a easy to compute function h(. , .)
mapping pairs of -say- k-bit strings into k-bit strings. When the first argument
is fixed to a randomly and secretly chosen value K , then the resulting single-
argument pseudo-random function f ~ (z) = h(K, z) passesses all polynomial-
time statistical tests for functions. That is, any poZy(k)-time observer who asks
for and receives function values at inputs of his choice (but does not know the
initial value K) cannot distinguish the case when his questions are consistently
answered by means of the specially-constructed pseudo-random function h(K, a) ,

or by means of a function f(.) randomly selected among all possible ones mapping
k-bit strings to k-bit strings. We stress that only the random initial value K needs
to be kept secret; the program for h is instead assumed to be public knowledge.
The authors of [5] also show that (good) pseudo-random function generators
can be constructed given any (good) pseudo-random number generator. (Thus
pseudo-random functions in their sense exist if a and only if ordinary one-way
functions exist.) The cost of one evaluation of such a pseudo-random function
fK equals that of generating 2k2 pseudo-random bits (with a k-bit seed), and is
thus essentially negligible.

In practice, one might prefer to use a one-way hash function

a : (0, 1}2k + (0, l}k

as his pseudo-random function generator. In this case, h(K, z) = H(Klz) will be
his chosen pseudo-random function, where the symbol L‘J” denotes concatenation.
Such pseudo-random function generators will be even faster t o evaluate.

In any case, in describing our scheme with inputs N and k, we assume that
a pseudo-random function generator h : { O , l } k x { O , l } k --f { O , l } k has been
publically agreed-upon. We also assume that the number of possible users is
upperbounded by a small polynomial in k.

474

COMPUTING INDIVIDUAL KEYS AND PAIR KEYS. The trusted agent randomly
and secretly selects two k-bit m a s t e r secret keys K and K’. He then privately
gives to user i, as his individual exchange key, the value Ki = h (K , i) , and ;ls
his individual authentication key the value Kj = h(K’,i). Whenever user i asks
him for the pair key of two users a and j , the trusted agent computes and sends
him the k-bit value value

together with the k-bit authentication value

&,j = h(K,’, h(K.j,i)).

COMPUTING COMMON SECRET KEYS. The common secret key used by user i
to send a private message to user j is Ki,j = h(Kj,i). User i computes this
key by retrieving the pair key P;,j from his personal directory (if he has spoken
privately to j in the past) or by asking the trusted agent for it (if it is the first
time he wishes to speak privately to j). Then i computes V = Pj,j @ h(Ki , j)
(which is easy for user i because he knows his individual key and the name of the
intended recipient) and checks whether h(K,’, V) = d,j. If so, he then randomly
selects a session key S and sends to j an encryption of S with key V.

To read the session key sent by i, j simply computes the common secret
key V = h(Kj, i) , from the sender’s name and his own individud key (no table
lookup is needed for receiving) and then decrypts i’s ciphertext with V SO to
obtain S.

(Notice that the common secret key by which i sends private messages to
j does not coincide with that by which j sends messages to i, but this does
not cause any problems with respect to their ability of communicating with one
another. Also notice that while we guarantee i that

ENCRYPTING MESSAGES. While we recommend the use of session keys, recom-
mendation of a particular conventiond encryption scheme is beyond the gods
of this paper. Whether the common secret key computation occurs within a se-
cure chip or an ordinary personal computer, we insist that it should not become
“known” to the user. That is, in the case of a sender i , the key Ki,j should
reside within i’s computer. User i can access only indirectly, by giving his own
computing device a message string m that needs to be encrypted with Ki,j.

EXTENDING OUR SCHEME. In the scheme above, in order to provide a fairer
comparison between our approach and that of Needham and Schroeder, we have
addressed, with better results, (after all, technical advances should occur after
15 years) essentially the same security concerns as in the summarized Needham-
Schroeder scenario. However, it should be realized (and we wi l l explicitly show
it in the final paper) that our techniques easily extend to include much tighter
security requirements. For instance, we c m accomplish that whenever user i asks
the trusted party for the pair key with user j, the trusted agent can check that

475

this request indeed comes from i . As for another example, we can accomplish
that once both i and j have computed a common secret (session) key, the recipi-
ent of a message encrypted with it can be sure that that particular message was
indeed sent by i. Details about this will be given in the final paper. We would like
to stress from now, however, that like in the simpler setting below, no authen-
ticating step needs to be interactive (like in a challenge-response mechanism),
which makes also these secure protocols simple and efficient.

SECURITY. Let us briefly sketch the security of the above scheme in an itemized
manner.

- Unpredictabdity of individual keys. Because the k-bit string K is random
and secret, and because h(., .) is a pseudo-random function generator, the
individual key of a user i , h (K , i) , is unpredictable to an adversary. In fact,
fx(.) = h(K, .) is poly(k)-time undistinguishable from a truly random, secret
function f from k-bit strings to k-bit strings. Thus, f K (i) is polynomial-time
unpredictable because f (i) would be totally unpredictable. (This argument
actually shows that individual keys are more than unpredictable, they are
undistinguishable from random numbers even when their values are actually
revealed -provided that the secret master key is still secret. These are im-
portant differences, but we shall not discuss them in detail in this abstract.)
Further, because f (i) would be totally urnpredictable even given the value
of f at any other number of inputs, Ki = f ~ (i) remains poly(k)-time un-
predictable even if all other individual keys become known.

- Unpredictability of common sec~et keys . When user i wishes to talk to user
j in privatc, he does so by mcans of the common secret key h (K j , i) . User
i can compute this key thanks to the special help given him by the trusted
agent (i.e., thanks to the particular way in which the trusted agent chooses
the pair key Pi,j based on i’s individual key). But Ki,j is unpredictable to
any number of other users, that is, unpredictable given all possible individual
and pair keys in the system except the individual keys of i and j . The un-
predictability of h (K j , i) can be proved in two steps. First, fxj (.) = h (K j , .)
passes all poly(k)-time statistical tests for functions in the sense of 151 when-
ever Ki is random and secret. This is not sufficient, however, because key
Kj, though secret, is not random, but poly(k)-time undistingushable from
a truly random number. In fact, Kj = fx(j) and thus we are not exactly
within the hypothesis of [5] . But given that K is random and secret to all
users, we can apply a kind of “transitivity property” for poly(k) undistin-
guishability. Namely, if h(Kj,i) were predictable, being Kj secret and h a
pseudo-random function generator, then this would imply the predictability
of Kj = f ~ (j) . But, since K is random and secret, this would contradict
the undistinguishability of f~ from a random function. It should be noticed
that the this basic argument for the unpredictability of h (K j , i) keeps on
holding when the adversary also knows additional information, such as the
individual keys of users x other than i and j. This is so because (u) for a truly
random and secretly selected function f (.), the value of f on input i is un-

476

predictable no matter for how many other inputs z the value of f becomes
known, and (b) the undistinguishability (in poly(k)-time) of h(Kj, -) from
such an f. This argument can be extended so as to take in consideration the
case in which all possible pair keys in the system and their authenticating
values are also known to the adversary (e.g., because he has eavesdropped all
possible requests for pair keys). Full details will be given in the final paper.
In addition, the authenticating value d , , j provided by the trusted agent
does not help an adversary who has not compromised the individual keys
of i and j to predict Ki,j. In fact, even if he knew the value of the
authenticating value would undistinguishable from a truly random number
to him. Indeed, d,,j = h(Kl,Ki, j) , and the key K: is secret and undis-
tinguishable from a truly random number. Thus, the function h(Ki,.) is
poly(k)-time undistinguishable from a function f(-) truly randomly and se-
cretly selected among those mapping &bit strings to L-bit strings. But be-
cause for such a function the value f (Ki , j) cannot possibly betray Ki,j, the
same is true for h(Ki’, Ki,j). (To be precise, for any users a, b, . . . for which i
asks and obtains pair keys, the adversary also sees the authenticating values
h(Ki, Ki,,), h(Ki, Zlfi ,b), But these additional values are practically use-
less. In fact, in the case of a truly random and secretly selected function f,
the values f (Kit,), f(Ki,b), . . . would be useless because random and inde-
pendent of f (Ki, j) , and h(K:, -) is poly(k)-time undistinguishable from such
a function.)

- Requesting pair keys. In requesting the pair key P;,j, a user i does not need
to autheticate himself t o the trusted agent. Indeed, there is no need for the
trusted agent to ensure that the request of P;,j comes from i. This is so
because, ag we have already said, even if all the pair keys were to be made
public, no group of malicious users can compute the common secret key of
two honest users.

- Authenticating pair keys. We have already argued that the authenticating
values produced by the trusted agent do not betray the common secret keys.
We must now argue that they prevent an adversary z, who cuts off the
communication line between i and the trusted agent and tries to impersonate
the latter, from finding a false pair key FPi,j and a false authenticating value
34,j such that honest user i accepts as valid

as his common secret key with j . What is immediate to argue is that z can-
not mislead i into accepting a false secret key FKi,j known to z. This is so
because Ki is unkown and unpredictable to z and h is a pseudo-random func-
tion generator; thus, the function h(K,!, a) is undistinguishable from a truly-
random secret function, and the necessary authenticating value h(K,’, FV)
is unpredictable to z . We must also argue, however, ‘that z does not have a
realistic chance of authenticating a false common secret key that he does not
know. The reason for this is that the pseudo-random functions h(Ki, .) and
h(K;, .) not only “behave randomly” (because each of Ki and K; is random

477

and secret), but also behave as independent functions, because the values
K, and Ki are independent random values. Details will be given in the final
paper.

REMARK. Notice that this is not a public-key approach not only because each
user does not choose his own keys, but also because no user has a public key.
Pair keys not only are associated to pairs of users and are chosen by an external
party, but do not need to be made public for the scheme to work. Rather, the
scheme remains secure even if they become public.

EFFICIENCY AND OTHER CONSIDERATIONS. The scheme above described is most
efficient.

For the users, computing common secret keys from pair keys is quite trivial.
Moreover, user i needs to ask the trusted agent for pair key P;,j only when
he wants to talk to user j in private for the first time, In fact, Ki,j is then
stored by i for future use. It is important to notice that if also its associated
authenticating value is stored alongside with it, this pair key needs not t o be
stored in a protected memory. Indeed, it can be stored outside the user’s own
computer. Indeed, the user needs to keep secret only two k-bit values: Ki and
Kl. Since no particular precaution needs to be applied to the pair keys and
authenticating values, the user can easily store them all. Thus, if the link to the
trusted party is down, users still can (very much as in the public-key scenario)
talk in private with every other user with which they did so in the past.

Moreover, since our scheme does not depend on any interactive authenti-
cation protocols, the initial effort of calling up the trusted party is negligible.
Indeed, obtaining the necessary two k-bit values from the trusted party can be
handled much as we currently handle a call to 411 (information) in the phone
system today. In fact, the whole process can be easily automated-the caller
dials in his own identity and that of j and then receive two 10-byte values in
response.

Our scheme is also most convenient from the trusted agent point of view.
Indeed, computing an individual key consists of a single pseudo-random function
evaluation, which is trivial todo whether or not one uses a one-way hash function
in practice. Also handling a request for a pair key is trivial. In fact, even if decides
t o securely store only his lc-bit master secret key K , the trusted party can satisfy
a pair-key request by making 5 pseudo-random function evaluations and one sum
modulo 2.

3.3 The Multiple-Trustee Scenario

Also our software-based scheme can be easily adapted for use with multiple
trusted agents, only one of whom needs to be honest. For example, if there are
two trustees, we can make 2 copies of the preceding scheme (one for each trustee)
thus there will be two individual secret keys, two individual secret authentication
keys, and two pair keys for each pair of users. There will be only one common

478

secret key for each pair of user, however, set to be the sum modulo 2 of the two
common secret keys relative to each trustee.

Once again, not only does this decrease the amount of trust required, but
allows our scheme to make strong encryption compatible with law enforcement.

It should also be realized that, though not needed, secure chips can be useful
in this approach too. First, storing individual keys in secure chips cannot but be
useful. Second, in the multiple-trustee scenario, each of the trustees can inbed
his own k-bit master secret key in a number of secure chips, and then gives these
chips to the phone company. Thus, the phone companies need not to be trusted
with respect to user privacy (or law enforcement) but only to deliver efficiently
pair keys on request in a 411-like manner, something that they are set up to
do quite well. In fact, once a pair key internally computed by a secure chip is
output, it can be handled without other privacy concerns,

Thus, like our first approach, this one too succeeds in simultaneously accom-
plishing two tasks: (1) making law enforcement compatible with encryption like
in the Clipper Chip scenario, and (2) providing the secret-key agreement missing
in the Clipper Chip. Moreover, the present approach succeeds in achieving an
additional important goal; namely, (3) being very economical. Our second ap-
proach, in fact, can be totally and securely implemented in software. Indeed, the
only operation required from a user consists in summing two numbers modulo 2
-which, rather than in software, can actually be done by hand.

4 Conclusions

In this paper, we have described two simple schemes for key agreement which
offer significant advantages in terms of cost and (potentially) security over tra-
ditional number-theoretic schemes such as Diffie-Hellman and RSA. The new
schemes are also particularly well-suited for use with the emerging Clipper Chip
technology proposed by the Clinton Administration, and with Kerborous.

5 Acknowledgment

Many thanks to Mihir Bellare, Joe Kilian, and Phil Rogaway for their helpful
comments.

References

1. N. Alon, P. Erdos, and T. Spencer. The Probabilistic Method. Wiley Interscience
Series in Discrete Mathematics and Optimization. John Wiley & Sons, NY, 1992,

2. R. Blom. An Optimal Class of Symmetric Key Generation Systems. In Advances in
Cryptology: Proceedingags of Eurocrypt 84, Lecture Notes an C o m p r t e r Science, vob
209, Springer-Verlag, Berlin, 1987, pp. 335-338.

3. c. Blmdo, A. De Santis, A. Herzberg, S. Kutten, U. Vaccazo, and M. Yung. Per-
fectly Secure Key Distribution for Dynamic Conferences. In Advances in Cryptobgy:
Proceedings of CRYPT0 '92, Lecture Notes an Computer Science, Springer Verlag,
1992.

479

4. W. Diffie and M.E. Hellman New Direction in Cryptography. In IEEE Transactdon
on Information Theory, vol. 22, no. 6, December 1976, pp. 644-654.

5. 0. Goldreich, S. Goldwasser, and S. Micali How To Construct Random Functions.
In J. ofthe ACM, vol. 33, no. 4, October 1986, pp. 792-807.

6. S. Micali. Fair Public-Key Cryptosystems. In Advances in Cryptology: Procecdzngs
of CRYPT0 'g2, Lecture Note3 in ComputeT Science, Springer Verlag, 1992.

7. R. M. Needham and M.D. Schroeder. Using Encryption for Authentication in Large
Networks of Computers. In Comm. ACM, vol. 21, no. 12, December 1978, pp. 993-
999.

8. Y. Zheng. Personal Communication, September 1993.

	Secret-Key Agreement without Public-KeyCryptography(Extended Abstract)
	1 Introduction
	1.1 The Problem of Secret-Key Agreement
	1.2 Prior Approaches
	1.3 Our Contribution
	1.4 The Clipper Chip Project
	1.5 Our Contribution to the Clipper Chip Project

	2 A Hardware-Based Approach
	2.1 The First Basic Scheme
	2.2 The Second Basic Scheme.
	2.3 Optimality of our Basic Schemes
	2.4 Enhancing the Security of the Basic Scheme.
	2.5 Partially-Openable Chips

	3 A Software-Based Approach
	3.1 The Needham-Schroeder Approach Versus Ours
	3.2 Our Software-Based, Trusted-Agent Scheme.
	3.3 The Multiple-Trustee Scenario

	4 Conclusions
	5 Acknowledgment
	References

