Skip to main content

The Complexity of the Extended GCD Problem

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1672))

Abstract

We undertake a thorough complexity study of the following fundamental optimization problem, known as the ℓp-norm shortest extended GCD multiplier problem: given a 1,..., a n ∈ ℤ, find an ℓp-norm shortest gcd multiplier for a 1,..., a n, i.e., a vector x ∈ ℤn with minimum \( \left( {\sum\nolimits_{i = 1}^n {|x_i |^p } } \right)^{1/p} \) satisfying \( \sum\nolimits_{i = 1}^n {x_i a_i = \gcd (a_1 ...,a_n )} \). First, we prove that the shortest GCD multiplier problem (in its feasibility recognition form) is NP-complete for every ℓp-norm with p ∈ ℤ. This gives an affirmative answer to a conjecture raised by Havas and Majewski. We then strengthen this negative result by ruling out even polynomial-time algorithms which only approximate an ℓp-norm shortest gcd multiplier within a factor \( n^{1/(p\log ^\gamma n)} \) for γ an arbitrary small positive constant, under the widely accepted complexity theory assumption \( NP \nsubseteq DTIME\left( {n^{poly(\log n)} } \right) \).

For positive results we focus on the ℓ2-norm GCD multiplier problem. We show that approximating this problem within a factor of \( \sqrt n \) is very unlikely NP-hard by placing it in NP ⋂ coAM through a simple constant-round interactive proof system. This result is complemented by a polynomial-time algorithm which computes an ℓ2-norm shortest gcd multiplier up to a factor of 2(n−1)/2.

This study is motivated by the importance of extended gcd calculations in applications in computational algebra and number theory. Our results rest upon the close connection between the hardness of approximation and the theory of interactive proof systems.

Partially supported by the Australian Research Council.

Partially supported by a UQ High Quality Research Grant.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Arora, L. Babai, J. Stern, and Z. Sweedyk. The hardness of approximate optima in lattices, codes, and systems of linear equations. Journal of Computer and System Sciences, 54(2):317–331, April 1997.

    Article  MATH  MathSciNet  Google Scholar 

  2. S. Arora and C. Lund. Hardness of approximation. In D. Hochbaum, editor, Approximation Algorithms for NP-hard Problems, chapter 11. PWS Publishing, 1996.

    Google Scholar 

  3. G. Ausiello, P. Crescenzi, and M. Protasi. Approximate solutions of NP optimization problems. Theoretical Computer Science, 150:1–55, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  4. L. Babai. Trading group theory for randomness. In Proc. 17th Ann. ACM Symp. on Theory of Computing, pages 421–429, 1985.

    Google Scholar 

  5. L. Babai. On Lovasz’ lattice reduction and the nearest lattice point problem. Combinatorica, 6:1–13, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  6. R. Boppana, J. Håstad, and S. Zachos. Does coNP have short interactive proofs? Information Processing Letters, 25(2):127–132, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  7. O. Goldreich and S. Goldwasser. On the limits of non-approximability of lattice problems. In Proc. 30th ACM Symp. Theory of Computing, pages 1–9, 1998.

    Google Scholar 

  8. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof systems. SIAM Journal on Computing, 18(l):186–208, February 1989.

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Goldwasser and M. Sipser. Private coins versus public coins in interactive proof systems. Advances in Computing Research 5: Randomness and Computation, 1989.

    Google Scholar 

  10. G. Havas and B. S. Majewski. Hermite normal form computation for integer matrices. Congressus Numerantium, 105:184–193, 1994.

    MathSciNet  Google Scholar 

  11. G. Havas and B. S. Majewski. Extended gcd calculation. Congressus Numerantium, 111:104–114, 1995.

    MATH  MathSciNet  Google Scholar 

  12. G. Havas and B. S. Majewski. A hard problem which is almost always easy. In Algorithms and Computation, Lecture Notes in Computer Science 1004, 216–223, 1995.

    Chapter  Google Scholar 

  13. G. Havas and B.S. Majewski. Integer matrix diagonalization. Journal of Symbolic Computation, 24:399–408, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  14. G. Havas, B. S. Majewski and K. R. Matthews. Extended gcd and Hermite normal form algorithms via lattice basis reduction. Experimental Mathematics, 7:125–136, 1998.

    MATH  MathSciNet  Google Scholar 

  15. C. S. Iliopoulos. Worst case complexity bounds on algorithms for computing the canonical structure of finite abelian groups and the Hermite and Smith normal forms of an integer matrix. SIAM Journal on Computing, 18:658–669, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  16. R. Kannan. Polynomial-time aggregation of integer programming problems. J. ACM, 30:133–145, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  17. S. Khanna, M. Sudan and L. Trevisan. Constraint Satisfaction: The Approximability of Minimization Problems. In Proceedings of the 12th IEEE Conference on Computational Complexity, pages 282–296, 1997.

    Google Scholar 

  18. C. Lund and M. Yannakakis. On the hardness of minimization problems. J. ACM, 41:960–981, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  19. B. S. Majewski and G. Havas. The complexity of greatest common divisor computations. In Algorithmic Number Theory, pages 184–193. Springer, 1994. LNCS 877.

    Google Scholar 

  20. R. Raz. A parallel repetition theorem. SIAM Journal on Computing, 27(3):763–803, June 1998.

    Article  MATH  MathSciNet  Google Scholar 

  21. C. Rössner and J.-P. Seifert. The complexity of approximate optima for greatest common divisor computations. In Algorithmic Number Theory, pages 184–193. Springer, 1996. LNCS 1122.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Havas, G., Seifert, JP. (1999). The Complexity of the Extended GCD Problem. In: Kutyłowski, M., Pacholski, L., Wierzbicki, T. (eds) Mathematical Foundations of Computer Science 1999. MFCS 1999. Lecture Notes in Computer Science, vol 1672. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48340-3_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-48340-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66408-6

  • Online ISBN: 978-3-540-48340-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics