Skip to main content

Animating Spatiotemporal Constraint Databases

  • Conference paper
  • First Online:
Spatio-Temporal Database Management (STDBM 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1678))

Included in the following conference series:

Abstract

Constraint databases provide a very expressive framework for spatiotemporal database applications. However, animating such databases is difficult because of the cost of constructing a graphical representation of a single snapshot of a constraint database. We present a novel approach that makes the efficient animation of constraint databases possible. The approach is based on a new construct: parametric polygon. We present an algorithm to construct the set of parametric polygons that represent a given linear constraint database. We also show how to animate objects defined by parametric polygons, analyze the computational complexity of animation, and present empirical data to demonstrate the efficiency of our approach.≠

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Bern. Triangulations. In Goodman and O’Rourke [11], chapter 22, pages 413–428. 228

    Google Scholar 

  2. A. Borning, K. Marriott, P. Stuckey, and Y. Xiao. Solving linear arithmetic constraints for user interface applications. In ACM Symposium on User Interface Software and Technology, 1997. 237

    Google Scholar 

  3. J. Chomicki, D. Goldin, and G. Kuper. Variable Independence and Aggregation Closure. In ACM Symposium on Principles of Database Systems, pages 40–48, Montréal, Canada, June 1996. 239

    Google Scholar 

  4. J. Chomicki. Temporal Query Languages: A Survey. In D. M. Gabbay and H. J. Ohlbach, editors, Temporal Logic, First International Conference, pages 506–534. Springer-Verlag, LNAI 827, 1994. 224

    Google Scholar 

  5. J. Chomicki and P. Z. Revesz. Constraint-Based Interoperability of Spatiotemporal Databases. In International Symposium on Large Spatial Databases, pages 142–161, Berlin, Germany, July 1997. Springer-Verlag, LNCS 1262. 225, 229, 238

    Google Scholar 

  6. J. Chomicki and P. Z.. Revesz. Constraint-Based Interoperability of Spatiotemporal Databases. Geoinformatica, 3(3), September 1999. 238

    Google Scholar 

  7. J. Chomicki and P. Z. Revesz. A Geometric Framework for Specifying Spatiotemporal Objects. In International Workshop on Time Representation and Reasoning, Orlando, Florida, May 1999. 237

    Google Scholar 

  8. M. Egenhofer. Why not SQL! International Journal of Geographic Information Systems, 6(2):71–85, 1992. 225

    Article  Google Scholar 

  9. M. Egenhofer. Spatial SQL: A Query and Presentation Language. IEEE Transactions on Knowledge and Data Engineering, 6(1), 1994. 225

    Google Scholar 

  10. M. Erwig, R. H. Güting, M. M. Schneider, and M. Vazirgiannis. Spatio-Temporal Data Types: An Approach to Modeling and Querying Moving Objects in Databases. In ACM Symposium on Geographic Information Systems, November 1998. 224, 237

    Google Scholar 

  11. Jacob E. Goodman and Joseph O’Rourke, editors. Handbook of Discrete and Computational Geometry. CRC Press, 1997. 239, 240

    Google Scholar 

  12. S. Grumbach, P. Rigaux, and L. Segoufin. Spatio-Temporal Data Handling with Constraints. In ACM Symposium on Geographic Information Systems, November 1998. 224, 237

    Google Scholar 

  13. M. Gervautz and D. Schmalstieg. Integrating a scripting language into an interactive animation system. In Computer Animation, pages 156–166, Geneva, Switzerland, 1994. 237

    Google Scholar 

  14. R. H. Güting. An Introduction to Spatial Database Systems. VLDB Journal, 3(4):357–400, October 1994. 224

    Article  Google Scholar 

  15. P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Constraint Query Languages. Journal of Computer and System Sciences, 51(1):26–52, August 1995. 224, 225

    Article  MathSciNet  Google Scholar 

  16. P. C. Kanellakis, S. Ramaswamy, D. E. Vengro., and J. S. Vitter. Indexing for Data Models with Constraints and Classes. Journal of Computer and System Sciences, 52(3):589–612, 1996. 238

    Article  MATH  MathSciNet  Google Scholar 

  17. P. Kanjamala, P. Z. Revesz, and Y. Wang. MLPQ/GIS: A Geographic Information System using Linear Constraint Databases. In 9th COMAD International Conference on Management of Data, pages 389–393, Hyderabad, India, December 1998. Tata McGraw Hill. 234

    Google Scholar 

  18. J. Paredaens. Spatial Databases, The Final Frontier. In International Conference on Database Theory, pages 14–32, Prague, Czech Republic, January 1995. Springer-Verlag, LNCS 893. 225, 227

    Google Scholar 

  19. F. Preparata and M. Shamos. Computational Geometry. Springer-Verlag, 1985. 233, 234

    Google Scholar 

  20. J.. Raper. Three Dimensional Applications in Geographical Information Systems. Taylor & Francis, 1989. 238

    Google Scholar 

  21. P. Z. Revesz and Y. Li. MLPQ: A Linear Constraint Database System with Aggregate Operators. In International Database Engineering and Applications Symposium, pages 132–137. IEEE Press, 1997. 234

    Google Scholar 

  22. R. Seidel. Convex Hull Computations. In Goodman and O’Rourke [11], chapter 19, pages 361–375. 230

    Google Scholar 

  23. R. T. Snodgrass. Temporal Databases. In Theories and Methods of Spatio-Temporal Reasoning in Geographic Space, pages 22–64. Springer-Verlag, LNCS 639, 1992. 224

    Google Scholar 

  24. A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. T. Snodgrass, editors. Temporal Databases: Theory, Design, and Implementation. Benjamin/Cummings, 1993. 224

    Google Scholar 

  25. L. Vandeurzen, M. Gyssens, and D. Van Gucht. On the Desirability and Limitations of Linear Spatial Database Models. In International Symposium on Large Spatial Databases, pages 14–28, 1995. 225

    Google Scholar 

  26. J. S. Vitter. External Memory Algorithms and Data Structures. In J. Abello and J. S. Vitter, editors, External Memory Algorithms and Visualization, DIMACS Series on Discrete Mathematics and Theoretical Computer Science. American Mathematical Society, 1999. 238

    Google Scholar 

  27. M. F. Worboys. A Unified Model for Spatial and Temporal Information. Computer Journal, 37(1):26–34, 1994. 224, 237

    Article  Google Scholar 

  28. Michael F. Worboys. GIS: A Computing Perspective. Taylor & Francis, 1995. 224, 227

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chomicki, J., Liu, Y., Revesz, P. (1999). Animating Spatiotemporal Constraint Databases. In: Böhlen, M.H., Jensen, C.S., Scholl, M.O. (eds) Spatio-Temporal Database Management. STDBM 1999. Lecture Notes in Computer Science, vol 1678. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48344-6_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-48344-6_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66401-7

  • Online ISBN: 978-3-540-48344-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics