Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1661))

Included in the following conference series:

Abstract

Humans know how to ‘abstract away’ detail instinctively. This is a necessary survival trait, since we cannot possibly save in our brain all the detail around us. So we extract only the necessary information for the task at hand. While abstracting, we extract a subset from a very large but finite set of objects around us. If continuing to choose subsets of objects with even more abstract properties we create levels of detail of objects. The structure created by such an abstraction process is a hierarchy. The type of hierarchy depends on the operation used for the abstraction process. Current spatial information systems lack the structures, tools, and operations to handle representations with multiple levels of detail. Very little is known about using hierarchies for the description of ordered levels of detail. This paper explores the relationships between abstraction, levels of detail, and hierarchies first theoretically and then practically with an example from analogue map series.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahl, V., and Allen, T.F.H., Hierarchy Theory-A Vision, Vocabulary, and Epistemology. New York: Columbia University Press, 1996.

    Google Scholar 

  2. Alexander, C., Ishikawa, S., and Silverstein, M.. A Pattern Language-Towns, Buildings, Construction. New York: Oxford University Press, 1977.

    Google Scholar 

  3. Berzins, V., Gray, M., and Naumann, D., “Abstraction based software development.” Communications of the ACM, 29(5), 1986, 403.

    Article  Google Scholar 

  4. Booch, G., Object-oriented analysis and design with applications. 2nd ed., Menlo Park, CA: Addison-Wesley Publishing, 1994.

    Google Scholar 

  5. Borgida, A., Mylopoulos, J., and Wong, H.K.T., “Generalization/Specialization as a Basis for Software Specification.” In On Conceptual Modelling, Perspectives from Artificial Intelligence, Databases, and Programming Languages, edited by M.L. Brodie, J. Mylopolous and J.W. Schmidt. New York: Springer Verlag, pp. 87–117, 1984.

    Google Scholar 

  6. Braitenberg, V., Vehicles, experiments in synthetic psychology. Cambridge, MA: MIT Press, 1984.

    Google Scholar 

  7. Brodie, M.L., Mylopoulos, J., and Schmidt, J.W. On Conceptual Modelling: perspectives from artificial intelligence, databases, and programming languages. Springer-erlag, 1984.

    Google Scholar 

  8. Car, A. Hierarchical Spatial Reasoning: Theoretical Consideration and its Application to Modeling Wayfinding. Ph.D. Thesis. Vol. 10. GeoInfo Series, ed. Frank, A.U. and Haunold, P. Vienna: Department of Geoinformation, Technical University Vienna, 1996.

    Google Scholar 

  9. Egenhofer, M.J. and Franzosa, R., “Point-Set Topological Spatial Relations.” IJGIS, 5 1991

    Google Scholar 

  10. Fisher, Peter., “Propagating effects of database generalization on the viewshed.“ Transactions in GIS, 12 1996, pp. 69–81.

    Article  Google Scholar 

  11. Fotheringam, A.S. “Encoding Spatial Information: The Evidence for Hierarchical Processing.” In Theories and Methods of Spatio-Temporal Reasoning in Geographic Space, edited by Frank, A.U., Campari, I., and Formentini, U. LNCS 639. Heidelberg-Berlin: Springer Verlag, pp. 269–287, 1992.

    Google Scholar 

  12. Frank, A.U. Using Hierarchical Spatial Data Structures for Hierarchical Spatial Reasoning. Internal Report. Dept. of Geoinformation, Technical University Vienna, 1996.

    Google Scholar 

  13. Freksa, C. “Qualitative Spatial Reasoning.” In Cognitive and Linguistic Aspects of Geographic Space, edited by Mark, D.M. and Frank, A.U. Dordrecht, The Netherlands: Kluwer Academic Press, pp. 361–372, 1991.

    Google Scholar 

  14. Gibson, J.J. The Ecological Approach to Visual Perception. Hillsdale, NJ: Lawrence Erlbaum, 1986.

    Google Scholar 

  15. Gill, A. Applied Algebra for the Computer Sciences. Englewood Cliffs, NJ: Prentice-Hall, 1976.

    MATH  Google Scholar 

  16. Glasgow, J. “A Formalism for Model-Based Spatial Planning.” In Spatial Information Theory-A Theoretical Basis for GIS (International Conference COSIT’95), edited by Frank, A.U. and Kuhn, W. LNCS 988. Berlin-Heidelberg: Springer-Verlag, pp. 501–518, 1995.

    Google Scholar 

  17. Golledge, R.G. and Stimson, R.J. Spatial Behavior: A Geographic Perspective. New York: The Guildford Press, 1997.

    Google Scholar 

  18. Hirtle, S.C. “Representational Structures for Cognitive Space: Trees, Ordered Trees and Semi-Lattices.” In Spatial Information Theory-A Theoretical Basis for GIS, edited by Frank, A.U. and Kuhn, W. LNCS 988. Berlin-Heidelberg-New York: Springer, pp. 327–340, 1995.

    Google Scholar 

  19. Hirtle, S. C. and Jonides, J. “Evidence of Hierarchies in Cognitive Maps.” Memory & Cognition, 13(3) 1985, pp. 208–217.

    Google Scholar 

  20. Koestler, A. The Ghost in the Machine. London: Pan, 1967.

    Google Scholar 

  21. Kuipers, B. et al. “The Semantic Hierarchy in Robot Learning.“ In Robot Learning, edited by Connell, J. and S. Mahadevan. Kluver Academic, 1993.

    Google Scholar 

  22. Langacker, R.W. Foundations of Cognitive Grammar. Vol. 1 Theoretical Prerequisites. Stanford, Cal.: Stanford University Press, 1987.

    Google Scholar 

  23. Liskov, B. and Guttag, J. Abstraction and Specification in Program Development. Cambridge, MA: MIT Press, 1986.

    MATH  Google Scholar 

  24. Mainguenaud, M. and Simatic, X.T. “A Data Model to Deal with Multi-Scaled Networks.” Computers, Environment and Urban Systems, 16 1992, pp. 281–288.

    Article  Google Scholar 

  25. Mark, D.M. and Egenhofer, M.J. “An Evaluation of the 9-Intersection for Region-Line Relations.” In GIS/LIS’92 Proceedings in San Jose, ACSM-ASPRS-URISA-AM/FM, pp. 513–521, 1992.

    Google Scholar 

  26. Mesarovic, M.D., Macko, D., and Takahara, Y. Theory of hierarchical, multilevel, systems. Mathematics in science and engineering, ed. Bellmann, Richard. New York: Academic Press, 1970.

    Google Scholar 

  27. Molenaar, M. “Object hierarchies or uncertainty in GIS or why is standardisation so difficult.” GeoInformations-Systeme, 6(3) 1993, pp. 22–28.

    Google Scholar 

  28. Montello, D.R. “Scale and Multiple Psychologies of Space.” In Spatial Information Theory: Theoretical Basis for GIS, edited by Frank, A.U. and Campari, I. LNCS 716. Heidelberg-Berlin: Springer Verlag, pp. 312–321, 1993.

    Google Scholar 

  29. Muller, J. C. “Generalization of spatial databases.” In Geographical Information Systems: principles and applications, edited by Maguire, D.J., Goodchild, M.F., and Rhind, D.W. Essex: Longman Scientific & Technical, pp. 457–475, 1991.

    Google Scholar 

  30. Parsons, J. and Wand, Y. “Choosing Classes in Conceptual Modeling.” Communications of the ACM, 40(6) 1997, pp. 63–69.

    Article  Google Scholar 

  31. Pattee, H.H., ed. Hierarchy Theory-The Challenge of Complex Systems. New York: Braziller, 1973.

    Google Scholar 

  32. Rekoff, M.G. “On Reverse Engineering.” IEEE Transactions on systems, man, and cybernetics, 15(2) 1985, pp. 244–252.

    Google Scholar 

  33. Rigaux, P. and Scholl, M. “Multi-Scale Partitions: Application to Spatial and Statistical Databases.” In Fourth International Symposium on Large Spatial Databases-SSD95 in Portland, ME, edited by Egenhofer, M. J. and Herring, J., Springer Verlag, Heidelberg, pp. 170–183, 1995.

    Google Scholar 

  34. Rosch, E. “Principles of Categorization.” In Cognition and Categorization, edited by Rosch, E. and Lloyd, B. B. Hillsdale, NJ: Erlbaum, 1978.

    Google Scholar 

  35. Schlaisich, I. “Sketch Maps and GIS Output.” M.Sc., Technical University Vienna, 1998.

    Google Scholar 

  36. Simon, H.A. The Sciences of the Artificia 1. Third ed., Cambridge, MA: MIT Press, 1996.

    Google Scholar 

  37. Stell, J. and Worboys, M. “Stratified Map Spaces: A Formal Basis for Multi-resolution Spatial Databases.” In Symposium on Spatial Data Handling in Vancouver, Canada, edited by Poiker, T., IGU, 1998.

    Google Scholar 

  38. Stevens, A. and Coupe, P. “Distortions in judged spatial relations.” Cognitive Psychology, 10 1978, pp. 422–437.

    Article  Google Scholar 

  39. Timpf, S. “Hierarchical structures in map series.” PhD, Technical University Vienna, 1998a.

    Google Scholar 

  40. Timpf, S. “Map Cube Model-a model for multi-scale data.” In Symposium on Spatial Data Handling in Vancouver, Canada, edited by Poiker, T., IGU, 1998b.

    Google Scholar 

  41. Timpf, S. and Devogele, T. “Multi-scale representations-why do we need them and what tools exist in GIS?” In IC’97 in Stockholm, 1997.

    Google Scholar 

  42. Timpf, S. and Frank, A.U. “Exploring the life of screen objects.” In Auto-Carto 13 in Seattle, WA, USA April 7-10, 1997, ACSM/ASPRS, pp. 195–203, 1997a.

    Google Scholar 

  43. Timpf, S. and Frank, A.U. “Using hierarchical spatial data structures for hierarchical spatial reasoning.” In Spatial Information Theory-A Theoretical Basis for GIS (International Conference COSI’’97), edited by Hirtle, S.C. and Frank, A.U. LNCS 1329. Berlin-Heidelberg: Springer-Verlag, pp. 69–83, 1997b.

    Chapter  Google Scholar 

  44. Timpf, S., Volta, G.S., Pollock, D.W., and Egenhofer, M.J. “A Conceptual Model of Wayfinding Using Multiple Levels of Abstractions.” In Theories and Methods of Spatio-Temporal Reasoning in Geographic Space, edited by Frank, A.U., Campari, I., and Formentini, U. 639. Heidelberg-Berlin: Springer Verlag, pp. 348–367, 1992.

    Google Scholar 

  45. Volta, G.S. and Egenhofer, M.J. “Interaction with GIS Attribute Data Based on Categorical Coverage.” In Spatial Information Theory: Theoretical Basis for GIS, edited by Frank, A.U. and Campari, I. LNCS 716. Heidelberg-Berlin: Springer Verlag, pp. 215–247, 1993

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Timpf, S. (1999). Abstraction, Levels of Detail, and Hierarchies in Map Series. In: Freksa, C., Mark, D.M. (eds) Spatial Information Theory. Cognitive and Computational Foundations of Geographic Information Science. COSIT 1999. Lecture Notes in Computer Science, vol 1661. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48384-5_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-48384-5_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66365-2

  • Online ISBN: 978-3-540-48384-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics