Skip to main content

Adaptive Pixel-Based Data Fusion for Boundary Detection

  • Conference paper
  • First Online:
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1654))

  • 358 Accesses

Abstract

It is of practical importance to fuse data obtained by multiple sensors for improving the performance of computer vision systems. This paper introduces an algorithm for pixel-based data fusion on the variational framework. An adaptive system fuses data effectively using a variational technique. Previously, we have introduced a technique to fuse gray-scale image and texture extracting features for segmenting an image with both textured and non-textured surfaces. This paper extends the study for more general multi-valued data and improve the previous algorithm in terms of the performance and speed.

Research partially supported by ONR Grant N00014-97-1-1163 and ARO Grant DAAH04-96-10326

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Besag. On the statistical analysis of dirty pictures. J. Royal Statistical Soc., Ser. B, 48:259–302, 1986.

    MATH  MathSciNet  Google Scholar 

  2. A. Blake and A. Zisserman. Visual Reconstruction. MITPress, Cambridge, MA, 1987.

    Google Scholar 

  3. C. Bouman and B. Liu. Multiple resolution segmentation of textured images. IEEE Trans. Pattern Recog. and Machine Intel., 13(2):259–302, 1991.

    Google Scholar 

  4. J. G. Daugman. Two-dimensional spectral analysis of cortical receptive field profiles. Vision Research, 20:847–856, 1980.

    Article  Google Scholar 

  5. F. Espinal, T. Huntsberger, B. Jawerth, and T. Kubota. Wavelet-based fractal signature analysis for automatic target recognition. Optical Engineering, 37(1):166–174, January 1998.

    Article  Google Scholar 

  6. D. Geiger and F. Girosi. Parallel and deterministic algorithms from MRF’s: Surface reconstruction. IEEE Trans. Pattern Analysis and Machine Intel., 13(5):401–412, 1991.

    Article  Google Scholar 

  7. S. Geman and D. Geman. Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images. IEEE Trans. Pattern Analysis and Machine Intel., 6(6):721–741, 1984.

    Article  MATH  Google Scholar 

  8. T. L. Huntsberger, C. L. Jacobs, and R. L. Cannon. Iterative fuzzy image segmentation. PR, 18:131–138, 1985.

    Google Scholar 

  9. A. K. Jain and F. Farrokhnia. Unsupervised texture segmentation using Gabor filters. Pattern Recognition, 24(12):1167–1186, 1991.

    Article  Google Scholar 

  10. T. Kubota and T. Huntsberger. Adaptive pattern recognition system for scene segmentation. Optical Engineering, 37(3):829–35, 1998.

    Article  Google Scholar 

  11. S. Lakshmanan and H. Derin. Simultaneous parameter estimation and segmentation of Gibbs random fields using simulated annealing. IEEE Trans. Pattern Analysis and Machine Intel., 11:799–813, 1989.

    Article  Google Scholar 

  12. K. I. Laws. Textured Image Segmentation. PhD thesis, University of Southern California, Institute for Robotics and Intelligent Systems, 1980.

    Google Scholar 

  13. T. S. Lee. A Bayesian framework for understanding texture segmentation in the primary visual cortex. Vision Res., 35(18):2643–2657, 1995.

    Article  Google Scholar 

  14. S. Z. Li. Parameter-estimation for optimal object recognition: Theory and application. IJCV, 21(3):207–222, February 1997.

    Article  Google Scholar 

  15. J. Q. Liu and Y. H. Yang. Multiresolution color image segmentation. PAMI, 16(7):689–700, July 1994.

    Google Scholar 

  16. R. C. Luo and M. G. Kay. Data fusion in robotics and machine intelligence, chapter 2, page 47. Academic Press, 1992. Ed. A. Abidi and R. C. Gonzalez.

    Google Scholar 

  17. J-M. Morel and S. Solimini. Variational Methods in Image Segmentation. Birkhauser, Boston, MA, 1994.

    Google Scholar 

  18. D. Mumford and J. Shah. Optimal approximation by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics, pages 577–685, 1989.

    Google Scholar 

  19. D. K. Panjwani and G. Healey. Markov random-field models for unsupervised segmentation of textured color images. PAMI, 17(10):939–954, October 1995.

    Google Scholar 

  20. M. Pelillo and M. Refice. Learning compatibility coefficients for relaxation labeling processes. PAMI, 16(9):933–945, September 1994.

    Google Scholar 

  21. A. Rosenfeld, R. A. Hummel, and S.W. Zucker. Scene labeling by relaxation operations. SMC, 6(6):420–433, June 1976.

    MATH  MathSciNet  Google Scholar 

  22. E. Saber, A. M. Tekalp, and G. Bozdagi. Fusion of color and edge information for improved segmentation and edge linking. IVC, 15(10):769–780, October 1997.

    Article  Google Scholar 

  23. T. Uchiyama and M. A. Arbib. Color image segmentation using competitive learning. PAMI, 16(12):1197–1206, December 1994.

    Google Scholar 

  24. A. B. Watson. The cortex transforms: rapid computation of simulated neural images. Computer Vision, Graphics, and Image Processing, 39:311–327, 1987.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kubota, T. (1999). Adaptive Pixel-Based Data Fusion for Boundary Detection. In: Hancock, E.R., Pelillo, M. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 1999. Lecture Notes in Computer Science, vol 1654. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48432-9_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-48432-9_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66294-5

  • Online ISBN: 978-3-540-48432-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics