Skip to main content

Hyperparameter Estimation for Satellite Image Restoration by a MCMCML Method

  • Conference paper
  • First Online:
  • 367 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1654))

Abstract

Satellite images can be corrupted by an optical blur and electronic noise. Blurring is modeled by convolution, with a known linear operator H, and the noise is supposed to be additive, white and Gaussian, with a known variance. The recovery problem is ill-posed and therefore must be regularized. Herein, we use a regularization model which introduces a ϕ-function, avoiding noise amplification while preserving image discontinuities (i.e. edges) of the restored image. This model involves two hyperparameters. Our goal is to estimate the optimal parameters in order to reconstruct images automatically.

In this paper, we propose to use the Maximum Likelihood estimator, applied to the observed image. To evaluate the derivatives of this criterion, we must estimate expectations by sampling (samples are extracted from a Markov chain). These samples are images whose probability takes into account the convolution operator. Thus, it is very difficult to obtain them directly by using a standard sampler. We have developed a new algorithm for sampling, using an auxiliary variable based on Geman-Yang algorithm, and a cosine transform. We also present a new reconstruction method based on this sampling algorithm. We detail the Markov Chain Monte Carlo Maximum Likelihood (MCMCML) algorithm which ables to simultaneously estimate the parameters, and to reconstruct the eled by convolution, with a known linear operator corrupted image.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Aubert, L. Vese, A variational method in image recovery, SIAM J. Numer. Anal., Vol 34, No 5, pp 1948–1979, Oct. 1997.

    Article  MATH  MathSciNet  Google Scholar 

  2. R. Azencott, Image analysis and Markov fields, in Int. Conf. on Ind. and Appl. Math., SIAM Philadelphia, 1988.

    Google Scholar 

  3. J. Besag, Spatial Interaction and Statistical Analysis of Lattice Systems, A. Roy. Stat. Soc. Series B, Vol 36, pp 721–741, 1974.

    MathSciNet  Google Scholar 

  4. S. P. Brooks, G. O. Roberts, Assessing Convergence of Markov Chain Monte Carlo Algorithms, Univ. of Cambridge, may 1997.

    Google Scholar 

  5. P. Charbonnier, L. Blanc-Féraud, G. Aubert, M. Barlaud, Deterministic edgepreserving regularization in computed imaging, IEEE Trans. Image Proc., Vol 6, No 2, pp 298–311, Feb. 1997.

    Article  Google Scholar 

  6. B. Chalmond, Image Restoration using an Estimated Markov Model, Signal Processing, 15, pp 115–129, 1988.

    Article  Google Scholar 

  7. F. Champagnat, Y. Goussard, J. Idier, Unsupervised deconvolution of sparse spike train using stochastic approximation, IEEE Trans. on Image Processing, Vol 44, No 12, Dec. 1996.

    Google Scholar 

  8. G. Demoment, Image Reconstruction and Restoration: Overview of Common Estimation Structures and Problems, IEEE Trans. on ASSP, Vol 37, No 12, pp 2024–2036, Dec. 1989.

    Article  Google Scholar 

  9. X. Descombes, R. Morris, J. Zerubia, M. Berthod, Estimation of Markov random field prior parameters using Markov Chain Monte Carlo Maximum Likelihood, INRIA Research Report No 3015, Oct. 1996, and IEEE Trans. on Image Proc. to be published in 1999.

    Google Scholar 

  10. S. Geman, D. Geman, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Trans. Patt. Anal. Machine intell., Vol 6, No 6, pp 721–741, Nov. 1984.

    MATH  Google Scholar 

  11. D. Geman, Random fields and inverse problems in imaging, Springer-Verlag, Berlin, 1990.

    Google Scholar 

  12. D. Geman, G. Reynolds, Constrained restoration and recovery of discontinuities, IEEE Trans. Patt. Anal. Machine intell., Vol 16, No 3, pp 367–383, Mar. 1992.

    Article  Google Scholar 

  13. D. Geman, C. Yang, Nonlinear image recovery with half-quadratic regularization and FFTs, IEEE Trans. Image Proc., Vol 4, No 7, pp 932–946, Jul. 1995.

    Article  Google Scholar 

  14. H.-O. Georgii, Gibbs Measures and Phase Transitions, Gruyter-Studies in Mathematics, Vol 9, 1988.

    Google Scholar 

  15. C. Geyer, E. A. Thompson, Constrained Monte Carlo Maximum Likelihood for dependent data, J. R. Statist. Soc. B, Vol 54, No 3, pp 657–699, 1992.

    MathSciNet  Google Scholar 

  16. C. Geyer, On the convergence of Monte Carlo Maximum Likelihood calculations, J. R. Statist. Soc. B, Vol 56, No 1, pp 261–274, Nov. 1994.

    MATH  MathSciNet  Google Scholar 

  17. W. R. Gilks, S. Richardson, D. J. Spiegelhalter, Markov Chain Monte Carlo in practice, Chapman & Hall, 1996.

    Google Scholar 

  18. J. Hadamard, Lectures on Cauchy’s Problem in Linear Partial Differential Equations, Yale University Press, New Haven, 1923.

    MATH  Google Scholar 

  19. W. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, No 57, pp 97–109, 1970.

    Article  MATH  Google Scholar 

  20. A. Jalobeanu, L. Blanc-Féraud, J. Zerubia, Estimation d’hyperparamétres pour la restauration d’images satellitaires par une méthode “MCMCML”, INRIA Research Report No 3469, Aug. 1998.

    Google Scholar 

  21. M. Khoumri, L. Blanc-Féraud, J. Zerubia, Unsupervised deconvolution of satellite images, IEEE Int. Conference on Image Processing, Chicago, USA, 4-7 oct. 1998.

    Google Scholar 

  22. P. J. M. van Laarhoven, E. H. L. Aarts, Simulated Annealing: theory and applications, D. Reidel, 1987.

    Google Scholar 

  23. S. Lakshmanan, H. Derin, Simultaneous parameter estimation and segmentation of Gibbs random fields using simulated annealing, IEEE Trans. Patt. Anal. Machine intell., Vol 11, No 8, pp 799–813, Aug. 1989.

    Article  Google Scholar 

  24. N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, Equation of state calculations by fast computing machines, J. of Chem. Physics, Vol 21, pp 1087–1092, 1953.

    Article  Google Scholar 

  25. R. Morris, X. Descombes, J. Zerubia, Fully Bayesian image segmentation-an engineering perspective, INRIA Research Report No 3017, Oct. 1996.

    Google Scholar 

  26. J. J. K. O Ruanaidh, W. J. Fitzgerald, Numerical Bayesian methods applied to signal processing, Statistics and Computing, Springer-Verlag, 1996.

    Google Scholar 

  27. C. Robert, Méthodes de Monte Carlo par chaînes de Markov, Economica, Paris, 1996.

    Google Scholar 

  28. M. Sigelle, Simultaneous image restoration and hyperparameter estimation for incomplete data by a cumulant analysis, Bayesian Inference for Inverse Problems, part of SPIE’s Int. Symposium on Optical Science, Engineering and Instrumentation, Vol 3459, San Diego, USA, 19–24 jul. 1998.

    Google Scholar 

  29. M. A. Tanner, Tools for statistical inference, Springer Series in Statistics, Springer-Verlag, 1996.

    Google Scholar 

  30. A. N. Tikhonov, Regularization of incorrectly posed problems, Sov. Math. Dokl., Vol 4, pp 1624–1627, 1963.

    MATH  Google Scholar 

  31. L. Younes, Estimation and annealing for Gibbsian fields, Ann. Inst. Poincaré, Vol 24, No 2, pp 269–294, 1988.

    MATH  MathSciNet  Google Scholar 

  32. L. Younes, Parametric inference for imperfectly observed Gibbsian fields, Prob. Th. Fields, No 82, pp 625–645, Springer-Verlag, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  33. J. Zerubia, L. Blanc-Féraud, Hyperparameter estimation of a variational model using a stochastic gradient method, Bayesian Inference for Inverse Problems, part of SPIE’s Int. Symposium on Optical Science, Engineering and Instrumentation, Vol 3459, San Diego, USA, 19–24 jul. 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jalobeanu, A., Blanc-Féraud, L., Zerubia, J. (1999). Hyperparameter Estimation for Satellite Image Restoration by a MCMCML Method. In: Hancock, E.R., Pelillo, M. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 1999. Lecture Notes in Computer Science, vol 1654. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48432-9_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-48432-9_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66294-5

  • Online ISBN: 978-3-540-48432-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics