Skip to main content

A Parallel Algorithm for Finding the Constrained Voronoi Diagram of Line Segments in the Plane

  • Conference paper
  • First Online:
Book cover Algorithms and Data Structures (WADS 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1663))

Included in the following conference series:

  • 794 Accesses

Abstract

In this paper, we present an O \( O\left( {\frac{1} {\alpha }\log n} \right) \) log n) (for any constant 0 ≤α≤1) time parallel algorithm for constructing the constrained Voronoi diagram of a set L of n non-crossing line segments in E 2, using O(n 1+α) processors on a CREW PRAM model. This parallel algorithm also constructs the constrained Delaunay triangulation of L in the same time and processor bound by the duality.

Our method established the conversions from finding the constrained Voronoi diagram L to finding the Voronoi diagram of S, the endpoint set of L. We further showed that this conversion can be done in O(log n) time using n processors in CREW PRAM model. The complexity of the conversion implies that any improvement of the complexity for finding the Voronoi diagram of a point set will automatically bring the improvement of the one in question.

This work is supported by NSERC grant OPG0041629.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal A., Chazelle B., Guibas L., O’Dunlaing C., and Yap C., (1988), ‘Parallel Computational Geometry’, Algorithmica, 3, pp.293–327.

    Article  MathSciNet  MATH  Google Scholar 

  2. Aggarwal A., Guibas L., Saxe J., and Shor P., (1989), ‘A linear time algorithm for computing the Voronoi diagram of a convex polygon’, Disc. and Comp. Geometry 4, pp.591–604.

    Article  MathSciNet  MATH  Google Scholar 

  3. Amato N. and Preparata F., (1993) ‘An NC1 Parallel 3D convex hull algorithm’, proceedings of 10th ACM symposium on Computational Geometry, pp.289–297.

    Google Scholar 

  4. Amato N., Goodrich M., and Ramos E., (1994), ‘Parallel algorithms for higher dimensional convex hulls’, Proc. 35th Annu. IEEE Sympos. Found. Comput. Sci., pp.683–694.

    Google Scholar 

  5. Atallah M., Cole R., and Goodrich M., (1989), ‘Cascading Divide-and-Conquer: A technique for Designing Parallel Algorithms’ SIAM J. Computing, Vol.18, No.3, pp.499–532.

    Article  MathSciNet  MATH  Google Scholar 

  6. Aurenhammer A., (1991), ‘Voronoi diagrams: a Survey’, ACM Computing Surveys 23. pp.345–405.

    Article  Google Scholar 

  7. Bern M. and Eppstein D., (1992), ‘Mesh generation and optimal triangulation’, Technical Report, Xero Palo Research Center.

    Google Scholar 

  8. Brown K., (1979), ‘Voronoi diagrams from convex hulls’, Information Processing Letters, 9:5, pp.223–228.

    Article  MATH  Google Scholar 

  9. Chew P., (1987), ‘Constrained Delaunay Triangulation’, Proc. of the 3rd ACM Symp. on Comp. Geometry, pp.213–222.

    Google Scholar 

  10. Chow A., (1980), ‘Parallel Algorithms for Geometric Problems’, PhD Dissertation, Dept. of Computer Science, Univ. of Illinois, Urbana, Illinois.

    Google Scholar 

  11. R. Cole, M. Goodrich, and C. O‘Dunlaing, (1996), A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm, Algorithmica, Vol. 16, pp.569–617.

    Article  MathSciNet  MATH  Google Scholar 

  12. Dadoun N., and Kirkpatrick D., (1989),‘Parallel constructing of subdivision Hierarchies’, J. of Computer and System Sciences, Vol.39, pp.153–165.

    Article  MathSciNet  MATH  Google Scholar 

  13. Edelsbrunner H., (1987), ‘Algorithms in Combinatorial Geometry’, Springer-Verlag, NY. 1987.

    MATH  Google Scholar 

  14. Goodrich M., O’Dunlaing C, and Yap C., (1993), ‘Constructing the Voronoi diagram of a set of line segments in parallel’, Algorithmica, 9, pp.128–141.

    Article  MathSciNet  MATH  Google Scholar 

  15. Guibas L., and Stolfi J., (1983), ‘Primitives for manipulation of general sub-divisions and the computation of Voronoi diagrams’, Proc. of 15th ACM Symposium on Theory of Computing, pp. 221–234.

    Google Scholar 

  16. Joe B. and Wang C., (1993), ‘Duality of Constrained Delaunay triangulation and Voronoi diagram’, Algorithmica 9, pp.142–155.

    Article  MathSciNet  MATH  Google Scholar 

  17. Lee D. and Drysdale R., (1981), ‘Generalization of Voronoi diagrams in the plane’ SIAM J. Computing, Vol.10, pp.73–87.

    Article  MathSciNet  MATH  Google Scholar 

  18. Lee D. and Lin A., (1986), ‘Generalized Delaunay triangulations for planar graphs’, Disc. and Comp. Geometry 1, pp.201–217.

    Article  MathSciNet  MATH  Google Scholar 

  19. Lingas, A., (1987), ‘A space efficient algorithm for the Constrained Delaunay triangulation’, Lecture Notes in Control and Information Sciences, Vol. 113, pp. 359–364.

    MathSciNet  Google Scholar 

  20. Mumbeck W., and Preilowski W., (1988), ‘A new nearly optimal parallel algorithm for computing Voronoi diagrams’, Tech. Rep. 57, Uni-GH Paderborn CS, 1988.

    Google Scholar 

  21. Preilowski W., Dahlhaus E., and Wechsung G., (1992), ‘New parallel algorithm for convex hull and applications in 3D space’ Proceedings MFCS, LNCS, 629, pp.442–450.

    Google Scholar 

  22. Preparata F. and Shamos M., (1985), Computational Geometry, Springer-Verlag.

    Google Scholar 

  23. J. Reif and S. Sen, (1992) Optimal Parallel Randomized Algorithms for Three-Dimensional Convex Hulls and Related Problems, SIAM J. Comput., Vol. 21, pp. 466–485.

    Article  MathSciNet  MATH  Google Scholar 

  24. Seidel R., (1988), ‘Constrained Delaunay triangulations and Voronoi diagrams with obstacles’, Rep. 260, IIG-TU Graz, Austria, pp. 178–191.

    Google Scholar 

  25. R. Tamassia and J. S. Vitter, (1991), “Parallel Transitive Closure and Point Location in Planar Structures”, SIAM J. Comput., 20(4) 1991, 703–725.

    Article  MathSciNet  Google Scholar 

  26. Wang C., ‘Efficiently Updating Constrained Delaunay Triangulations’, BIT, 33(1993), pp.238–252.

    MATH  Google Scholar 

  27. Wang C. and Schubert L., (1987), ‘An optimal algorithm for constructing the Delaunay triangulation of a set of line segments’, Proc. of the 3rd ACM Symp. On Comp. Geometry, pp.223–232.

    Google Scholar 

  28. Yap C., (1987), ‘An O(nlog n) algorithm for Voronoi diagram of a set of simple curve segments’, Disc. Comp. Geom. Vol. 2, pp.365–393

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chin, F., Lee, D.T., Wang, C.A. (1999). A Parallel Algorithm for Finding the Constrained Voronoi Diagram of Line Segments in the Plane. In: Dehne, F., Sack, JR., Gupta, A., Tamassia, R. (eds) Algorithms and Data Structures. WADS 1999. Lecture Notes in Computer Science, vol 1663. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48447-7_24

Download citation

  • DOI: https://doi.org/10.1007/3-540-48447-7_24

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66279-2

  • Online ISBN: 978-3-540-48447-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics