Skip to main content

Optimizing Constrained Offset and Scaled Polygonal Annuli

  • Conference paper
  • First Online:
  • 765 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1663))

Abstract

Aicholzer et al. recently presented a new geometric construct called the straight skeleton of a simple polygon and gave several combinatorial bounds for it. Independently, the current authors defined in companion papers a distance function based on the same offsetting function for convex polygons. In particular, we explored the nearest- and furthest- neighbor Voronoi diagrams of this function and presented algorithms for constructing them. In this paper we give solutions to some constrained annulus placement problems for offset polygons. The goal is to find the smallest annulus region of a polygon containing a set of points. We fix the inner (resp.,outer) polygon of the annulus and minimize the annulus region by minimizing the outer offset (resp., maximizing the inner offset. We also solve a a special case of the first problem: finding the smallest translated offset of a polygon containing an entire point set. We extend our results for the standard polygon scaling function as well

Work on this paper by the first author has been supported by the U.S. ARO under Grant DAAH04-96-1-0013. Work by the second author has been supported by the NSERC of Canada under grant OGP0183877 Work by the third author has been supported by the NSF under Grant CCR-93-1714.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Aichholzer and F. Aurenhammer, Straight skeletons for general polygonal figures in the plane. Proc.2nd COCOON, 1996, 117–126, LNCS 1090, Springer Verlag

    Google Scholar 

  2. O. Aichholzer, D. Alberts, F. Aurenhammer, and B. Gärtner, A novel type of skeleton for polygons. J. of Universal Computer Science (an electronic journal), 1(1995), 752–761.

    Google Scholar 

  3. A. Aggarwal, L. J. Guibas, J. Saxe, and P. W. Shor, A linear-time algorithm for computing the Voronoi diagram of a convex polygon. Discrete Computational Geometry,4 (1989), 591–604.

    Article  MathSciNet  MATH  Google Scholar 

  4. G. Barequet, A. J. Briggs, M. T. Dickerson, and M. T. Goodrich, Offset-polygon annulus placement problems. Computational Geometry. Theory and Applications, 11(1998), 125–141.

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Barequet, M. Dickerson, and M. T. Goodrich, Voronoi Diagrams for Polygon-Offset Distance Functions. Proc. 5th Workshop on Algorithms and Data Structures. Halifax. Nova Scotia, Canada. Lecture Notes in Computer Science, 1272, Springer Verlag, 200–209, 1997.

    Chapter  Google Scholar 

  6. G. Barequet, M. Dickerson, and P. Pau, Translating a convex polygon to contain a maximum number of points. Computational Geometry. Theory and Applications, 8 (1997), 167–179.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. DE Berg, P. Bose, D. Bremner, S. Ramaswami, and G. Wilfong, Computing constrained minimum-width annuli of point sets. Computer-Aided Design, 30 (1998), 267–275.

    Article  Google Scholar 

  8. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, Computational Geometry: Algorithms and Applications, 1997.

    Google Scholar 

  9. L. P. Chew and R. L. Drysdale, Voronoi diagrams based on convex distance functions. TR PCS-TR86-132, Dept of Computer Science, Dartmouth College, Hanover, NH03755, 1986; Prel. version appeared in: Proc. 1st Ann. ACM Symp. on Computational Geometry, Baltimore, MD, 1985, 235–244.

    Google Scholar 

  10. C. A. Duncan, M. T. Goodrich, and E.A. Ramos, Efficient approximation and optimization algorithms for computational metrology. Proc. 8th Ann. ACM.SIAM Symp. on Disc. Algorithms, New Orleans,LA, 1997, 121–130.

    Google Scholar 

  11. L. W. Foster, GEO-METRICS II: The application of geometric tolerancing techniques. Addison-Wesley, 1982.

    Google Scholar 

  12. D. Kirkpatrick and R. Seidel, The ultimate planar convex hull algorithm. SIAM J. Computing, 15 (1986), 287–299.

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Kirkpatrick and J. Snoeyink, Tentative prunerand-search for computing fixed-points with applications to geometric computation, Fundamental Informaticæ, 22 (1995), 353–370.

    MathSciNet  MATH  Google Scholar 

  14. R. Klein and D. Wood, Voronoi diagrams based on general metrics in the plane, Proc. 5th Symp. on Theoretical Computer Science, 1988, 281–291, LNCS 294, Springer Verlag.

    Google Scholar 

  15. M. MC Allister, D. Kirkpatrick, and J. Snoeyink, A compact piecewise, linear Voronoi diagram for convex sites in the plane, Discrete Computational Geometry, 15 (1996), 73–105.

    Article  MathSciNet  Google Scholar 

  16. G. T. Toussaint, Solving geometric problems with the rotating calipers, Proc. IEEE MELECON, Athens, Greece, 1983, 1–4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barequet, G., Bose, P., Dickerson, M.T. (1999). Optimizing Constrained Offset and Scaled Polygonal Annuli. In: Dehne, F., Sack, JR., Gupta, A., Tamassia, R. (eds) Algorithms and Data Structures. WADS 1999. Lecture Notes in Computer Science, vol 1663. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48447-7_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-48447-7_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66279-2

  • Online ISBN: 978-3-540-48447-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics