
Hierarchical Heterogeneous Specifications

Sophie Coudert1, Gilles Bernot2, and Pascale Le Gall2 ?

1 I.R.I.N., Université de Nantes, Rue de la Houssinière, 44332 Nantes, France
Sophie.Coudert@irin.univ-nantes.fr

2 L.a.M.I., Université d’Évry, Cours Monseigneur Roméro, 91025 Évry, France
{bernot,legall}@lami.univ-evry.fr

Abstract. We propose a definition of hierarchical heterogeneous formal
specifications, where each module is specified according to its own homo-
geneous logic. We focus on the specification structure which we represent
by a term in order to take benefit of classical knowledge on terms. For
example, substitutions solve implementation sharing of modules. Then,
we show how proof mechanisms can be expressed inside our framework.
Our proof system involves both the homogeneous inference relations as-
sociated to the logics of modules and property inheritance relations as-
sociated to the structuring primitives. Heterogeneous primitives allow
to move from one logic to another. We sketch out the specification of a
travel agency given according to our particular framework of structured
specifications. We demonstrate on this specification how a heterogeneous
proof can be handled.

Keywords: formal specification, structured specification, proof theory,
heterogeneous specification, heterogeneous proof, logical framework, in-
ference system, modularity, algebraic specification.

Introduction

Today, a number of formal foundations and tools exist to treat specification
modules independently, or hierarchical specifications: formal languages, theo-
rem provers, test generation tools, etc. Moreover the structure of the specifi-
cations becomes a privileged object of study, as in the software architecture
approaches [PW92]. The CoFI initiative for example [CoF96], which is defining
a common language core for algebraic specifications, gives a large place to struc-
turing issues [BST99]. Also several studies focus on the structuring primitives of
algebraic specifications [Wir93,HST94,DGS93]. Bringing into operations formal
methods and specifications on complete industrial projects requires reusability
issues. In order to reuse various already implemented components, we should
take them as they are, with their formalisms. The question addressed by this
paper is precisely how to combine such heterogeneous components.

? This work was partly supported by the ESPRIT-IV Working Group 22704 ASPIRE,
the ESPRIT-IV Working Group 23531 FIREworks and the French “PRC-GDR de
programmation.”

J.L. Fiadeiro (Ed.): WADT’98, LNCS 1589, pp. 107–121, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

108 Sophie Coudert et al.

We propose a general framework allowing to take into account both classical
structuring primitives ([Wir93,HST94,DGS93]) and special translation primi-
tives that introduce heterogeneity in specifications. We deal with structuring
primitives, uniformly according to the syntactic, semantic and proof considera-
tions. For this, we abstract them by the notion of constructor and we look for
characterizing minimal requirements allowing us to combine them into a hierar-
chical heterogeneous specification (HHS in the sequel) in a coherent way.

From a syntactic viewpoint, we represent structured specifications as terms
with specification modules as function symbols (constructors). For example, we
denote the enrichment of n specifications SP1, . . . , SPn with a module MP by the
term useMP (SP1, ..., SPn). There are as many different use constructors as differ-
ent enrichment modules MP . All other primitives, such as forget, rename, as well
as the translation primitive het, are constructors. Moreover, each constructor is
provided with an application domain giving which specification terms it may im-
port. Then, specifications are simply terms with respect the application domains.
Equal subterms of such a specification represent a unique sub-specification.

From a semantic viewpoint, the models of a specification are defined on its
exported signature so that they belong to the top level constructor logic. Follow-
ing previous works on modularity issues ([Bid87,NOS95]), constructor semantics
are sets of functions (implementations) associating to the imported models a
model over the exported signature. The ability to manage multiple importations
from different logics, as well as the sharing aspects are solved by using semantic
substitution mechanisms.

From a proof-theoretical viewpoint, we associate to each module an inference
mechanism especially devoted to capture the rôle of the constructor w.r.t. to the
transmitted properties from the imported specifications to the global specifica-
tion. We then formalize the proof principle which consists in delegating lemmas
along the specification structure ([HST94] uses the term “diving”) in such a way
that pieces of homogeneous proofs can be reused.

The main contribution of our HHS framework is that the syntax, semantic
and proof-theoretical parts of a specification can be systematically derived from
those of the constructors (structuring primitives) occurring in it. This modelling
easily admits heterogeneous components within a specification. We illustrate our
purpose with a simplified HHS of a travel agency and a significant heterogeneous
proof about it. The specification combines about a dozen modules and 3 for-
malisms, and heterogeneous components are glued together using heterogeneous
bridges.

1 Homogeneous Logics

1.1 Definition

As usual, system components are specified by means of a set of sentences over
their signature, according to their formalism. Homogeneous formalisms are simi-

Hierarchical Heterogeneous Specifications 109

lar to general logics [Mes89], but our requirements are weaker1 because they are
minimal with respect to our needs for HHS.

Definition 1. A homogeneous logic l is a tuple (Sig l, senl, modl,`l, |=l) where:

– Sig l is a class whose objects are called signatures
– senl is a map from Sigl to Set associating to each signature a set of sentences
(Set being the class of sets)

– modl is a map from Sig l to Class associating to each signature a class of
models (Class being the class of classes)

– `l, called inference relation, is a Sigl-indexed family such that for each sig-
nature Σ, `l,Σ is a binary relation included in P(senl(Σ)) × senl(Σ)

– |=l, called satisfaction relation, is a Sigl-indexed family such that for each
signature Σ, |=l,Σ is a binary relation included in modl(Σ) × senl(Σ)

and `l is reflexive, monotonic, transitive and sound i.e., respectively2

– ∀Σ ∈ Sigl, ∀ϕ ∈ senl(Σ), {ϕ} `l,Σ ϕ
– ∀Σ ∈ Sigl, ∀Γ ⊆ senl(Σ), ∀Γ

′ ⊆ senl(Σ), ∀ϕ ∈ senl(Σ),
Γ `l,Σ ϕ and Γ ⊆ Γ ′ =⇒ Γ ′ `l,Σ ϕ

– ∀Σ ∈ Sigl, ∀Γ ⊆ senl(Σ), ∀Γ
′ ⊆ senl(Σ), ∀ϕ ∈ senl(Σ),

Γ `b,Σ Γ ′ and Γ ∪ Γ ′ `l,Σ ϕ =⇒ Γ `l,Σ ϕ
– for any Γ ⊆ senl(Σ) and any ϕ ∈ senl(Σ), if Γ `l,Σ ϕ then

∀M ∈ modl(Σ), (M |=l,Σ Γ) =⇒ (M |=l,Σ ϕ)

Notation – L is the class of all homogeneous logics.
– Sig =

∐

l∈L

Sigl (the class of all the signatures
3)

– mod : Sig → Class associates modl(Σ) to each signature Σ in Sigl
– sen : Sig → Set associates senl(Σ) to each signature Σ in Sig l
– ` =

∐

l∈L

`l and |= =
∐

l∈L

|=l

Our HHS example specifying a travel agency will involve three different ho-
mogeneous logics, respectively FG, OBS and ND. FG is the classical typed equa-
tional logic [EM85], finitely generated for a subset of the sorts. It allows both
to use structural induction on these sorts and to import non finitely generated
logics. OBS is a formalism with observational semantics [BH96] and is also a
typed equational logic, not finitely generated, with set-theoretic equality for ob-
servable sorts (declared in the signature) and observational equality (based on
observable contexts) for the other sorts. ND is a formalism devoted to spec-
ify non deterministic behaviours [WM95]. Non deterministic signatures are the

1 and we have actually used examples of homogeneous logics which do not satisfy the
satisfaction condition [BLGA94]

2 Γ `b,Σ Γ
′ means ∀ϕ ∈ Γ ′, Γ `b,Σ ϕ and M |=b,Σ Γ means ∀ϕ ∈ Γ, M |=l,Σ ϕ

3 as usual,
∐
stands for the disjoint union

110 Sophie Coudert et al.

same as those of typed logic. The difference is that terms evaluate to sets of
values: all the possible values of non deterministic executions. The equality (=̇)
is strong: two terms are equal if evaluated to the same singleton. There are two
other predicates: a strong difference (6=), which requires disjoint evaluations,
and an inclusion (≺). Sentences are clauses and a useful remark for our purpose
is that in deterministic models (where all terms are evaluated in singletons), =̇
and ≺ have the same meaning, and Horn clauses can be seen as conditional
positive sentences. While FG and OBS are nearby formalisms (see for example
[Pad96]), ND is really a foreign formalism w.r.t. FG and OBS because of the
possible multi-evaluations of terms.

1.2 Heterogeneous Bridges Between Logics

Our approach for formal interoperability is based on a natural idea: we use spe-
cial translation modules which are new components added to the pre-existent
homogeneous ones. These new components allow a module in a formalism to im-
port a specification in another formalism. Such translations could be based on
some previous works (e.g. [Mes89,AC94,Tar96]) which establish strong relation-
ships between formalisms by means of mappings. All these mappings preserve
the signature morphisms (and their semantic counterpart) which are used to
model the structure. In other words these works intend to preserve the structure
and all the properties through the translation so that we can retrieve them in
a global flat model of the specification. Such a point of view in practice leads
to translation modules which are defined from a less expressive formalism to a
more expressive one (in the sense of a logical framework according to [Mes97]).

In order to define an applicable general framework, we adopt a more flexible
definition of such translation modules: formalism mappings will carry models
without any reference to signature morphisms, provided that the underlying
translations carry some clear intuition.

Definition 2.

Let a = (Siga, sena, moda,`a, |=a) and b = (Sigb, senb, modb,`b, |=b) be homo-
geneous logics. A heterogeneous bridge µ : a→ b consists of

– A total function Trµ : Siga → Sigb, called signature transposition function
– A Siga-indexed family Extµ such that Extµ,Σ : moda(Σ)→ modb(Trµ(Σ))
are partial functions called model extraction functions

– A family
µ indexed by Siga, such that
µ,Σ is a binary relation included
in P(sena(Σ)) × senb(Trµ(Σ)), called heterogeneous inference bridge

satisfying the following properties:

–
µ is monotonic
– heterogeneous soundness: for any Σ ∈ Siga, for any Γ ⊆ sena(Σ), for any
ϕ ∈ senb(Trµ(Σ)), if Γ
µ,Σ ϕ then for all M ∈ moda(Σ), if Extµ,Σ(M) is
defined, then we have: [M |=a Γ =⇒ Extµ,Σ(M) |=b ϕ]

Hierarchical Heterogeneous Specifications 111

Homogeneous logics provided with heterogeneous bridges form a category, het-
erogeneous bridge composition being defined in an obvious way. Some previous
works on maps between formalisms ([CM97,AC92,GB92,SS96,Mes89]) allow us
to rather easily derive heterogeneous bridges (e.g. [AC94], see also [BCLG96] for
a more precise discussion). Let us point out that we do not look for establishing
some fine relationships between logics, but on the contrary, we look for pragmatic
ones, any ad hoc definition of heterogeneous bridge is in fact suitable as soon
as one can associate an intuitive meaning to it. For example, the partiality of
Extµ,Σ allows translations from a more expressive formalism to a less expressive
one.
Heterogeneous bridges between the logics FG, OBS and ND are defined in an

obvious way. From FG to OBS, we forget in the source signature the declaration
of the finitely generated sorts and all sorts in the target signature are observable.
Models and sentences are preserved, by replacing the set-theoretic equal = by
the observational one ≈. So, ΦFG
 ϕOBS iff ϕOBS ∈ ΦFG [≈ / =]. From
OBS to FG, we forget the observation part of the signature, no sort is finitely
generated and we quotient the source model by the observational equivalence
[BH96]. Conversely, we have ΦOBS
 ϕFG iff ϕFG ∈ ΦOBS [= /≈]. From FG
to ND, we forget the finitely generated sorts in the signature, values become
singletons for the models, and we translate the sentences. The reverse bridge is
exactly symmetric on de facto deterministic models: it allows to transmit the
deterministic part of a specification after having forgotten the rest. We obtain a
bridge from OBS to ND by combining the previous ones.

2 An Example of HSS: A Travel Agency

Our travel agency selects for its customers the operator which potentially offers
the less expensive path from a city to another city. We have classical modules
for booleans and positive integers (Bool and Int). A moduleMap specifies cities
and direct links between them. A module Netwk specifies networks as sets of
links. Then, a module Path defines paths in a network as lists of links verifying
certain properties. A module Oper specifies two operators, each of them owning
its own network. Finally, the agency is specified in the module Agency. Each
module has its own “natural” specification language. Most of them (Bool, Int,
Map, Path, Agency) are specified according to FG. The networks (Netwk) are
sets, specified in OBS which is especially adequate for this. Oper is specified
according to ND. Indeed, as in general routing problems, there can be several
paths for a given travel, so that an operator proposes them in a non deterministic
way.

3 HHS Theory

3.1 Syntax

We unify all the different notions of specification modules and building primitives
by the notion of specification constructor [NOS95].

112 Sophie Coudert et al.

Definition 3. A constructor universe Θ is a tuple (C,Spec) where

– C is a class of constructors. Each constructor is provided with a profile in
Sig+. We denote such a constructor by f : Σ1 . . .Σn → Σ (n ∈ IN).

– Spec is a class of well structured specifications which is a subclass of the
free term algebra on C, TC. Spec is closed by sub-terms:
∀f : Σ1 . . .Σn → Σ ∈ C, ∀τ1 ∈ TC,Σ1, . . . , ∀τn ∈ TC,Σn ,
f(τ1, . . . , τn) ∈ Spec =⇒ ∀i = 1 . . . n, τi ∈ Spec

Reminder: C being given, the free term algebra on C is the least Sig-indexed
family TC =

∐

Σ∈Sig

TC,Σ such that for every (f : Σ1, . . . , Σn → Σ) ∈ C, if τ1 ∈

TC,Σ1 and . . . and τn ∈ TC,Σn (n ≥ 0), then f (τ1, . . . , τn) ∈ TC,Σ . Notice that TC
exists even if C is a class [DD77].

By convention, a constructor f will be denoted by ctext where c indicates
the nature of the constructor (e.g. use for an enrichment module) and text
gives the specific informations of the module (e.g. the exported signature, the
axioms, etc), possibly by means of an intermediate identifier (e.g. MP). A flat
homogeneous presentation P = (Σ, Γ) can give rise to a constructor of arity 0,
basicP :→ Σ. Also, say in the first order typed equational logic, each signature
morphism σ : Σ1 → Σ2 gives rise to forgetσ : Σ2 → Σ1, with the obvious
meaning of hiding operations as structuring operation. As a third example, we
can consider heterogeneous constructors from a logic to another one based on
the heterogeneous bridges presented earlier (similar to the deriving primitive
introduced in [Tar96]). Each heterogeneous bridge µ allows to define a family of
constructors f = hetµ,Σ provided with Σ → Trµ(Σ) as profile.

Notation If τ ∈ TC,Σ , we call Σ the signature of τ . By convention, the signa-
ture of τ is denoted by Στ .
Moreover, we note SpecΣ = Spec ∩ TC,Σ = {τ ∈ Spec | Στ = Σ}

The coincidence of the signatures is a minimal requirement to connect two
specification components but some specification modules are intended to be
combined only with some peculiar subspecifications. For example the module
useNetwk can only import aMap specification such that the provided equality
is reflexive, symmetric and transitive. It is the reason why Spec determines a
domain for each constructor.

Definition 4. Given a constructor universe Θ = (C,Spec), the syntactical
domain of a constructor f : Σ1 . . .Σn → Σ is the class Df of tuples (τ1, . . . , τn)
such that f(τ1, . . . , τn) belongs to Spec .

The point is that one should be able to specify a constructor without knowing
the formalisms of all its subcomponents, but only the useful properties inherited
from the syntactical domain and expressed on the input profile.
We can now give all the significant syntactic elements of the travel agency

example: we first give its hierarchical structure by a specification term.

Hierarchical Heterogeneous Specifications 113

The structure of the specification is built on a basic constructor for the Bool
presentation which does not import anything and use constructors for the

9

21

3

4 5 76 8

U

OBS

ND
FG

Map

Oper

Agency

Int

Bool

Path

Netwk

M
a
p

In
t
B
o
o
l enrichment modules (Int, Map,

Netwk, Path, Oper, Agency).
Nine heterogeneous constructors
(het) are needed to connect these
heterogeneous components.
Moreover, a forget constructor
U extracts the deterministic part
of the non-deterministic specifi-
cationOper, before applying the
heterogeneous constructor num-
bered 9. According to our frame-
work, this specification and its
subspecifications are terms on

these constructors:

Bool = basicBool , Int = useInt(Bool), Map = useMap(Bool),

Netwk = useNetwk(het1(Map), het2(Bool))

Path = usePath(Map, het3(Netwk),Bool, Int)

Oper = useOper(het4(Netwk), het5(Map), het6(Path), het7(Bool), het8(Int))

Agency = Agency(Map, het9(forgetU (Oper)),Bool, Int)

We now make precise the contents of the main use constructors. Map
specifies cities (A,B,C :→ city) and direct links (l(,) : city × city → link).

Path, FG

Inputs:

1:Map, 2:Netwk, 3:Bool, 4:Int,
Sorts: list
Operations:

*[] : link→ list;
* :: : link× list→ list;
p() : list× city× city× net→ bool;
$() : list→ nat;
Axioms: · · ·

Agency, FG

Inputs: 1:Map, 2:Oper, 3:Bool, 4:Int
Operations: sl() : city× city→ oper;
Axioms:

1: Ô2, c, c′> Ô1, c, c′⇔ sl(c, c′)=O1

Netwk specifies sets of links (sort
net, with ∅ :→ net as empty-set
and � : link × net → net as
insertion). These sets are observ-
able through membership (∈ :
link × net → bool): booleans are
observable. Paths in a network
are non-empty lists of consecutive
links: p(p, c, c′, n) means that p is
a path from c to c′ in the net-
work n; their cost ($()) is their
length. We only give the signa-
ture of the module Path. Conven-
tionally, a star before a symbol
points a generator. The Oper and
Agency modules are relevant for

the part of the proof we consider later on. For readability, we have simplified some
notations; for example, boolean functions are written like predicates (omitting
the “=T”), we abbreviate by ⇔ the corresponding set of conditional positive
axioms between boolean values, etc.

114 Sophie Coudert et al.

Oper, ND

Inputs:

1:Netwk, 2:Map, 3:Path, 4:Bool, 5:Int
Sorts: oper
Operations:

O1 :→ oper; O2 :→ oper;
nw() : oper→ net;
pt() : oper× city× city→ list;
,̂ , : oper× city× city→ nat;

Axioms:

1: O1 =̇O1 2: O2 =̇ O2
3: nw(O1) =̇ l(A,B) � l(B,C) � [l(C,A)]� ∅
4: nw(O2) =̇ l(C,B) � l(B,A) � [l(A,C)]� ∅
5: p(pt(o, c, c′), c, c′,nw(o)) =̇ T
6: [l(A,B)]≺pt(O1,A,B)

7: $(pt(o, c, c′))≥ ô, c, c′

8: ô, c, c′ ≺$(pt(o, c, c′))

The Oper specification defines
two operators, O1 and O2, each
of them having its own network
(nw()). They propose paths from
a city to another in a non-deter-
ministic way (pt()). A function
(,̂ ,) gives the best cost an opera-
tor proposes for a given travel, and
then, the agency selects (sl()) the
operator with the best optimum.
This is possible because the opti-
mum function, which is de facto
deterministic, will be preserved by
the forget constructor and then
imported by Agency.
In our proof example, O1, who pro-
poses a direct path from A to B,
will be selected.

3.2 Semantics

Several previous works [Bid87,NOS95] already presented the meaning of enrich-
ment modules as a class of functions from the models of the imported specifica-
tions to models of the global one. We consider also primitives in the same way,
and the semantics of a constructor f are defined by means of partial functions,
from the models of the domain signatures of f to the models of the exported
signature of f :

Definition 5. A constructor semantics for a constructor universe Θ =

(C,Spec) is a C-indexed family Sem =
∐

f∈C

Semf such that for each f :

Σ1 . . .Σn → Σ in C, the elements of Semf , called implementations of f , are
partial functions ν from mod(Σ1)× . . .×mod(Σn) to mod(Σ). Each definition
domain Dν is called the semantic domain of the constructor implementation ν.

Let us give 3 examples to illustrate this idea. First, the semantics of a homo-
geneous presentation basicP can be seen as a set of constant functions of arity
zero, one for each flat model of Mod(P). Second, a natural choice for a classical
constructor forgetσ is Semforgetσ = {mod(σ) : mod(Σ2)→ mod(Σ1)}. mod(σ)
is often called the “forgetful functor” and is usually denoted by Uσ. So, the se-
mantics of forgetσ is reduced to {Uσ}. The semantics of heterogeneous bridge
constructors f = hetµ,Σ : Σ → Trµ(Σ) are given by the corresponding model
extraction functions: Semhetµ,Σ = {Extµ,Σ}.

Definition 6. Given Θ = (C,Spec) and Sem, a (Θ,Sem)-realization is a
partial substitution ρ : C → Sem such that ρ(f), when it is defined, belongs to
Semf . We note Sem(Θ) the class of all (Θ,Sem)-realizations.

Hierarchical Heterogeneous Specifications 115

Notation Given a (Θ,Sem)-realization ρ : C → Sem, we note ρ : Spec →
mod(Sig) the partial canonical extension of ρ to Spec.
Notice that ρ(f(τ1, . . . , τn)) is defined if and only if: ρ(f) and all the ρ(τi) are
defined, and (ρ(τ1), . . . ,ρ(τn)) belongs to Dρ(f), the semantic domain of ρ(f).

The partiality of ρ should not confuse the reader here: it simply means that to
realize a specification τ , it is not necessary to implement all other constructors
that do not belong to τ . On the contrary, the partiality of ρ is significant. It
means that incompatible implementations of the constructors of τ never result
into a realization of τ . Finally, we can give the following definition:

Definition 7. Given Θ = (C,Spec), Sem, and a well structured specification
τ in Spec, the class of all flattened models of τ is:
Mod(τ) = {M ∈ mod(Στ) | ∃ρ ∈ Sem(Θ),M = ρ(τ)}.

Our substitution mechanism ensures that a constructor f still keeps the same
implementation even for two occurrences which do not import the same subspeci-
fications. It encompasses approaches dedicated to subspecification sharing within
an homogeneous setting.

3.3 Inference Relation

We define heterogeneous inference relations similarly as [Wir93,HST94] did for
homogeneous specifications. We define below a general mechanism of property
transmission through a constructor. A HHS theory is then obtained by consid-
ering a sound heterogeneous inference relation for each constructor.

Definition 8. A HHS theory is a tuple (Θ,Sem,
) where Θ is a construc-
tor universe, Sem is a constructor semantics over Θ and
 is a C-indexed
family of local heterogeneous inference relations,
 =

∐

f∈C

f , such that for

each constructor f : Σ1 . . .Σn → Σ ∈ C,
f is a binary relation included in
P(
∐

i=1...n

sen(Σi))× sen(Σ), sound with respect to Sem:

∀(Φ, ϕ) ∈
f , ∀τ = f (τ1, . . . , τn) ∈ Spec, ∀ρ(τ) ∈Mod(τ),
(∀i = 1 . . . n, ρ(τ i) |= Φ ∩ sen(Σi)) =⇒ ρ(τ) |= ϕ

4 Heterogeneous Structured Proofs

4.1 Inference System

There are two kinds of step in our heterogeneous inference system: homogeneous
steps (`) and constructor steps (
).
Definition 9. (Θ,Sem,
) being given, the corresponding inference system is
the least binary relation � ⊆ Spec× sen(Sig) such that, for any τ ∈ Spec

– � is transitive via `:
∀Γ ⊆ sen(Στ), ∀ϕ ∈ sen(Στ), (τ � Γ) ∧ (Γ ` ϕ) =⇒ (τ � ϕ).

116 Sophie Coudert et al.

– � is transitive via
 : when τ is of the form f(τ1, . . . , τn)
∀Γ ⊆

∐

i=1...n

sen(Στi), ∀ϕ ∈ sen(Στ)

[(∀i = 1 . . . n, (τi � Γ ∩ sen(Στi))) ∧ (Γ
 ϕ)] =⇒ (τ � ϕ)
With such steps, we can deduce a sentence ξ from the axioms of a heteroge-
neous specification SP (SP � ξ). The figure below illustrates how the structure
of the proof follows the term structure of the specification. It also introduces
our conventional proof notations. The different grey scales represent different
logics. The white interstices separate the input/output sides in the structure.
Properties get over it with the
f -relations (doubles lines). On this shape we
inherit δ1(λ) from P1 and δ2(ϕ) from P2 to prove ξ in the ∆P module, using
its homogeneous inference ` (simple lines). The properties inherited from P2 are
translated through the inference associated to the constructor hetµ,Σ2 .

Ax4

useMP

λ

ξ

Ax3

δ1(λ)

basicP1

basicP1
hetµ,Σ2

basicP2

basicP2

use∆P
δ2(ϕ)

hetµ ϕ

Ax2Ax1

hetµ,Σ2(basicP2)� ϕ

SP =

P2 P1

µ
2

∆P

ϕ1 ϕ2

1
basicP1 � λ
basicP2 � ϕ1 and basicP2 � ϕ2

use∆P (hetµ,Σ2(basicP2), basicP1)� ξ
use∆P (hetµ,Σ2(basicP2), basicP1)� δ2(ϕ)

use∆P (hetµ,Σ2(basicP2), basicP1)� δ1(λ)

Proposition 10. For any HHS theory , the corresponding inference system
is sound. This means that for any specification τ and for any sentence ϕ in
sen(Στ), we have: τ � ϕ =⇒ (∀M ∈Mod(τ), M |= ϕ)

The structure of a heterogeneous proof deliberately follows the structure of the
specification. A direct consequence is that if a module f1 is based on a poorly
expressive logic, and if it imports a module f2 based on a powerful logic, then
f1 will be unable to pass some properties of f2, even to a higher level module
f0 based on the same logic as f2. So, � is intrinsically not complete4. A het-
erogeneous proof is neither harder nor easier than a structured proof w.r.t a
purely homogeneous hierarchical specification. The only specific knowledges are
the constructor inferences. For basic and use constructors, it is simply the axiom
introduction and/or the transmission of all the imported properties through the
involved signature morphisms.

4 [HST94] already pointed out that their proof search procedure was not complete for
many-sorted equational logic and first-order logic with equality.

Hierarchical Heterogeneous Specifications 117

4.2 Proof Example

As illustration, let us prove that for a travel from the city A to the city B,

the operator O1 will be selected. The cost of a path being its length, O1 is
A

B

A

B
1

C
O O2

C

better. The general aspect of the proof is drawn
in a figure given on the next page, where only the
main lemmas are mentioned (rules w.r.t. ND given
in Annex).

Let x≥ 2∧ 1≥z⇒x> z (proved in Int) be denoted @1 and l(A,B)∈♣≈F
(proved in Netwk) be denoted @2, where ♣ denotes the network of
O2: l(C,B) � l(B,A) � [l(A,C)] � ∅. Let p(p,A,B,♣)⇒ $(p)≥ 2 be denoted @8
(proved in Path, by induction on the length of the paths). We prove sl(A,B)=O1
in Agency, using the inherited properties 1≥ Ô1,A,B =̇T denoted @5 and using
Ô2,A,B≥ 2 =̇T denoted @11 which are proved later on in Oper. (@1, @2 and
@8 are formally proved in [Cou98,CLGB97])
The annotation to the right of each inference line follows the following con-

ventions: ax means axiom introduction (resp. as when substituted); u means im-
ported via a use constructor (resp. h for a heterogeneous bridge); the subscript
of ax or as indicates the source module (its first character) and the superscript
indicates the axiom number; the subscript of u indicates the top level module
of the use constructor and the superscript indicates the number of the consid-
ered import slot; the subscript of h indicates the number of the bridge on the
specification shape. Moreover, obvious sequences of elementary inference rules
are contracted into one step. For example: the axioms are often introduced in an
already instanciated form; we exploit directly any useful consequence of modus
ponens. We also abreviate s(s(0)) as 2 (resp. s(0) as 1).

Proof of sl(A,B)=O1 in Agency:

@1
x≥ 2∧ 1≥ z⇒ x> z u

4
A

Ô2,A,B≥ 2∧ 1≥ Ô1,A,B⇒ Ô2,A,B> Ô1,A,B
SUB

@5

1≥ Ô1,A,B=T
h9u

2
A

Ô2,A,B≥ 2⇒ Ô2,A,B> Ô1,A,B @12
MP

Ô2,A,B> Ô1,A,B⇒ sl(A,B)=O1
as1A

@12

@11

Ô2,A,B≥ 2 =T
h9u

2
A

Ô2,A,B> Ô1,A,B
MP

sl(A,B)=O1
MP

Proof of @5 in Oper:

$(pt(o, c, c′))≥ ô, c, c′
ax7O A=A

REF

A=̇A
h5u

2
O

B=B
REF

B =̇B
h5u

2
O O1 =̇O1

ax1O

$(pt(O1,A,B))≥ Ô1,A,B @4
sub

@4 [l(A,B)]≺pt(O1,A,B)
ax6O

$([l(A,B)])≥ Ô1,A,B
rg3

$([l(A,B)])=1
as6P

$([l(A,B)]) =̇ 1
h6u

3
O

1≥ Ô1,A,B @5
rg2

118 Sophie Coudert et al.

Map

Netwk

Int

Oper
Agency

Path

he
t

he
t

he
t

he
t

U he
t

ax

$
([
l(
A

;
B

)]
)
=

1

$
([
l(
A

;
B

)]
)
_=

1

)

sl
(A
;
B

)
=

O

1

p
(p
;
A

;
B

;
|
)
=

T

)

$
(p
)
�
2

A

_=

A

[l
(A
;
B

)]
2
|

=

F

\ O

2
;A
;B

�
2
=

T

I
n
d

B

_=

B

1
�

\ O

1
;A
;B

_=

T

\ O

2
;A
;B

�
2

_=

T

sl
(A
;
B

)
=

O

1

1
�

\ O

1
;A
;B

=

T

x

�
2

^

1

�
z
)

x

>

z

\ O

2
;A
;B

>

\ O

1
;A
;B

[l
(A
;
B

)]
2
|

�
F

e
q
l
(l
(A
;
B

);
l(
A

;
C

))
�
F

e
q
l
(l
(A
;
B

);
l(
A

;
C

))
=

F

A

=

A

B

=

B

x

�
2

^

1

�
z
)

x

>

z

p
(p
;
A

;
B

;
|
)
6=
T

_

$
(p
)
�
2

Proof of @11 in Oper, using @8:

p(pt(o, c, c′), c, c′,nw(o))
ax5O

A=̇A
REFh5u

2
O B=̇B

REF h5u
2
O O2 =̇O2

ax2O

p(pt(O2,A,B),A,B,nw(O2)) @6
sub

@6 nw(O2) =̇♣
ax4O

p(pt(O2,A,B),A,B,♣) @7
rg2

@7

@8

p(p,A,B,♣) 6=T∨ $(p)≥ 2
h6u

3
0 pt(O2,A,B) =̇pt(O2,A,B)

h6u
3
O

p(pt(O2,A,B),A,B,♣) 6=T∨ $(pt(O2,A,B))≥ 2
sub

$(pt(O2,A,B))≥ 2 @9
cut

Hierarchical Heterogeneous Specifications 119

ô, c, c′≺ $(pt(o, c, c′))
ax80

A =̇A
REFh5u

2
O B =̇B

REFh5u
2
O O2 =̇O2

ax2O

Ô2,A,B≺ $(pt(O2,A,B)) @10
sub

@10 @9

Ô2,A,B≥ 2 @11
rg3

5 Conclusion

Our approach of hierarchical heterogeneous structuring is resolutely both formal
and pragmatic. Our first motivation was to manage heterogeneous libraries of
already implemented modules, for reuse purposes: in the French telecommuni-
cation project ECOS/CNET, hardware components specified in VHDL have to
cooperate in a system with software components.

From this point of view, we do not want to look for equivalence between
formalisms, or completness of proofs, but a good compromise between a sufficient
power to prove what is usually needed and a reasonable simplicity in order
to preserve legibility and tractability. For this reason, we do not require the
heterogeneous bridges to be optimal in any sense.

One of the main contributions of this article is to systematically represent
HHS by terms. It gives a very unified view of the hierarchical structuring mech-
anisms and allows us to manipulate HHS very easily, owning to the well es-
tablished corpus on terms, substitutions, etc. It provides us with a well suited
framework for “in the large” issues, and contributes to get a clearer view of how
to heterogeneously combine formal methods in software engineering.

The agency example outlined here has been inspired by a more general rout-
ing problem in telecommunication networks. It is of course considerably sim-
plified with respect to the original problem, however it remains representative
enough to illustrate our approach. It indicates that all classical algebraic speci-
fications approaches can be almost freely heteregeneously mixed together. This
result is already very encouraging and significant. Netherless, we have tried to
allow a broader scope by reducing as much as possible the hypotheses about
homogeneous logics. This will hopefully allow to specialize our heterogeneous
framework to model oriented specifications as well (Z,B,VDM,. . .). Our current
researches exploit this flexibility and the term approach facilities. With our ap-
proach, it becomes possible to rigorously treat the heterogeneous refinements of
a module. It amounts to replace a specification constructor by a “piece of term”
which can be itself heterogeneous. A next question is possibly: “is it possible to
handle object oriented structures in a similar manner?” (which is a bit out of the
scope of this paper). Following the heterogeneous proof method of this article,
we would also like to invent what integration testing of HHS could be [LGA96].
Details on definitions, specifications and proofs outlined in this article can be
found in [Cou98,CLGB97].

120 Sophie Coudert et al.

References

AC92. E. Astesiano and M. Cerioli. Relationships between logical frameworks.
In Recent Trends in Data Type Specification, volume 655, pages 101–126,
Dourdan, 1992. LNCS. 111

AC94. E. Astesiano and M. Cerioli. Multiparadigm specification languages: a first
attempt at foundations. Semantics of Specification Languages, Workshops
in Computing, pages 168–185. Springer Verlag, 1994. 110, 111

BCLG96. G. Bernot, S. Coudert, and P. Le Gall. Towards heterogeneous formal spec-
ifications. In AMAST’96, Munich, volume 1101, pages 458–472. Springer,
LNCS, 1996. 111

BH96. M. Bidoit and R. Hennicker. Behavioural theories and the proof of behav-
ioural properties. Theoretical Computer Science, 165 (1):3–55, 1996. 109,
111

Bid87. M. Bidoit. The stratified loose approach : a generalization of initial and loose
semantics. In Recent Trends in Data Type Specification, Gullane, Scotland,
pages 1–22. Springer-Verlag LNCS 332, July 1987. 108, 114

BLGA94. G. Bernot, P. Le Gall, and M. Aiguier. Label algebras and exceptions han-
dling. Journal of Science of Computer Programming, 23:227–286, 1994. 109

BST99. M. Bidoit, D. Sannella, and A. Tarlecki. Architectural specification in casl.
In AMAST’98, Amazonia-Manaus, volume to appear. Springer, LNCS, 1999.
107

CLGB97. S. Coudert, P. Le Gall, and G. Bernot. An example of heterogeneous struc-
tured specification. Université d’Evry, Report 28-1997, 1997. 117, 119

CM97. M. Cerioli and J. Meseguer. May I borrow your logic? Theoritical Computer
Sciences, 173(2):311–347, 1997. 111

CoF96. CoFI. Common framework initiative. EATCS Bulletin, 1996. 107
Cou98. S. Coudert. Hiérarchie et hétérogénéité dans les spécifications formelles.

Forthcoming Thesis, Université d’Évry, France, 1998. 117, 119
DD77. R. Douady and A. Douady. Algèbre et théories galoisiennes, Tome 1

(Algèbre). CEDIC, Nathan, Paris, 1977. 112
DGS93. R. Diaconescu, J. Goguen, and P. Stefaneas. Logical support for modular-

isation. In G. Huet and G. Plotkin, editors, Proc. Workshop on Types and
Logical Frameworks, pages 83–130, 1993. 107, 108

EM85. H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1. Equations
and initial semantics, volume 6. Springer-Verlag,EATCS Monographs on
Theoretical Computer Science, 1985. 109

GB92. J. A. Goguen and R. M. Burstall. Institutions: Abstract model theory for
specification and programming. Journal of the Association for Computing
Machinery, 39:95–146, 1992. 111

HST94. R. Harper, D. Sannella, and A. Tarlecki. Structured theory presentations
and logic representations. Annals of Pure and Applied Logic, 67, 1994. 107,
108, 108, 115, 116

LGA96. P. Le Gall and A. Arnould. Formal specifications and test: Correctness
and oracle. In Recent Trends in Data Type Specification, Oslo, Norway,
September 1995, pages 342–358. Springer-Verlag LNCS 1130, 1996. 119

Mes89. J. Meseguer. General logics. In Proc. Logic. Colloquium ’87, Amsterdam,
1989. North-Holland. 109, 110, 111

Mes97. J. Meseguer. Membership algebra as a logical framework for equational
specification. In Recent Trends in Data Type Specification, volume 1376,
pages 18–61, Tarquinia, LNCS, 1997. 110

Hierarchical Heterogeneous Specifications 121

NOS95. M. Navarro, F. Orejas, and A. Sanchez. On the correctness of modular
systems. Theoretical Computer Science, 140:139–177, 1995. 108, 111, 114

Pad96. P. Padawitz. Swinging data types: Syntax, semantics, and theory. In Recent
Trends in Data Type Specifications, Oslo, Norway, September 1995, pages
409–435. Springer-Verlag LNCS 1130, 1996. 110

PW92. D.E. Perry and A.L. Wolf. Foundations for the study of software archi-
tectures. ACM SIGSOFT, Software Engineering Notes, pages 40–52, 1992.
107

SS96. A. Salibra and G. Scollo. Interpolation and compactness in categories of
pre-institutions. Mathematical Structures in Computer Science, 6:261–286,
1996. 111

Tar96. A. Tarlecki. Moving between logical systems. In Recent Trends in Data Type
Specifications,Oslo, pages 478–502. Springer-Verlag LNCS 1130, 1996. 110,
112

Wir93. M. Wirsing. Structured specifications: syntax, semantics and proof calculus.
In Brauer W. Bauer F. and Schwichtenberg H., editors, Logic and Algebra
of Specification, pages 411–442. Springer, 1993. 107, 108, 115

WM95. M. Walicki and S. Meldal. A complete calculus for the multialgebraic and
functional semantics of nondeterminism. ACM Transactions on Program-
ming Langages and Systems, 17: 2, p. 366-393, 1995-03, 1995. 109, 121

Annex

Inference system for ND ([WM95]):

R1: a- x 6= y, x =̇ y rg1 b- x 6= t, x≺ t
rg1

x, y ∈ V

R2:

Cxt D, s =̇ t

Cxs , D
rg2

R3:

Cxt D, s≺ t

Cxs , D
rg3

x not in a right-hand side of ≺ in C.

R4:

C, s� t D, s 6= t

C,D
cut

(� being either =̇or ≺)

R5:
C
C, e

wea

R6:

C, x 6= t

` Cxt
eli

x ∈ V − V[t], at most one x in C

Derived rules:

PER: a- x =̇x
per

b- t≺ t
per

REN:
C
Cxy
ner

SUB:

C D, t =̇ t

Cxt , D
sub

INTR:

Cyt
Cyx , x 6= t

inc
y not in a right-hand side of ≺

	Introduction
	Homogeneous Logics
	Definition
	Heterogeneous Bridges Between Logics

	An Example of HSS: A Travel Agency
	HHS Theory
	Syntax
	Semantics
	Inference Relation

	Heterogeneous Structured Proofs
	Inference System
	Proof Example

	Conclusion

