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Abstract. We study the functions from Fm
2 into Fm

2 for odd m which
oppose an optimal resistance to linear cryptanalysis. These functions are
called almost bent. It is known that almost bent functions are also almost
perfect nonlinear, i.e. they also ensure an optimal resistance to differen-
tial cryptanalysis but the converse is not true. We here give a necessary
and sufficient condition for an almost perfect nonlinear function to be
almost bent. This notably enables us to exhibit some infinite families of
power functions which are not almost bent.

1 Introduction

This paper is devoted to the study of the functions f from Fm
2 into Fm

2 which
achieve the highest possible nonlinearity. This means that any non-zero linear
combination of the Boolean components of f is as far as possible from the set
of Boolean affine functions with m variables. When m is odd, the highest possi-
ble value for the nonlinearity of a function over F2m is known and the functions
achieving this bound are called almost bent. These functions play a major role in
cryptography; in particular their use in the S-boxes of a Feistel cipher ensure the
best resistance to linear cryptanalysis. It was recently proved [5] that the nonli-
nearity of a function from Fm

2 into Fm
2 corresponds to the minimum distance of

the dual of a linear code Cf of length (2m − 1). In particular when f is a power
function, f : x 7→ xs, this code Cf is the cyclic code C1,s of length (2m − 1)
whose zeros are α and αs (α denotes a primitive element of F2m). It was also
established [6] that if a function over Fm

2 for odd m ensures the best resistance
to linear cryptanalysis, it also ensures the best resistance to differential crypt-
analysis. For the associated code Cf , this means that if its dual (or orthogonal)
code, denoted by C⊥

f , has the highest possible minimum distance, then Cf has
minimum distance at least 5. But the reciprocal does not hold. Using Pless po-
wer moment identities [22] and some ideas due to Kasami [13], we make this
condition necessary and sufficient by adding a requirement on the divisibility of
the weights of C⊥

f . Since the divisibility of the weights of the cyclic code C⊥
1,s

is completely determined by McEliece’s theorem [17], the determination of the
values of s such that the power function x 7→ xs is almost bent on F2m is now
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reduced to a combinatorial problem. This notably yields a very fast algorithm
for checking if a power function over F2m is almost bent, even for large values
of m. McEliece’s theorem can also be used for proving that C⊥

1,s contains a code-
word whose weight does not have the appropriate divisibility. We are then able
to prove that, for some infinite families of values of s the power function x 7→ xs

is not almost bent on F2m .
The next section recalls the link between the weight distribution of the duals

of cyclic codes with two zeros and the nonlinearity of a function from F2m into
F2m . In Section 3 we develop a new theoretical tool for studying the weight
distribution of some linear codes, which generalizes some ideas due to Kasami.
Combined with McEliece’s theorem, this method provides a new characterization
of almost bent power mappings. Section 4 then focuses on power functions x 7→
xs over F2m for odd m when the exponent s can be written as s = 2

m−1
2 +2i −1.

This set of exponents contains the values which appear in both Welch’s and
Niho’s almost bent functions. We here prove that for most values of i, x 7→
x2

m−1
2 +2i−1 is not almost bent on F2m . In Section 5 we finally give a very simple

necessary condition on the exponents s providing almost bent power functions
on F2m when m is not a prime; in this case we are able to eliminate most values
of s. We also prove that the conjectured almost perfect nonlinear function x 7→ xs

with s = 24g + 23g + 22g + 2g − 1 over F25g is not almost bent.

2 Almost Bent Functions and Cyclic Codes with Two Zeros

2.1 Almost Perfect Nonlinear and Almost Bent Functions

Let f be a function from Fm
2 into Fm

2 . For any (a, b) ∈ Fm
2 × Fm

2 , we define

δf (a, b) = #{x ∈ Fm
2 , f(x + a) + f(x) = b}

λf (a, b) = |#{x ∈ Fm
2 , a · x + b · f(x) = 0} − 2m−1|

where · is the usual dot product on Fm
2 . These values are of great importance

in cryptography especially for measuring the security of an iterated block cipher
using f as a round permutation [6]. A differential attack [2] against such a
cipher exploits the existence of a pair (a, b) with a 6= 0 such that δf (a, b) is high.
Similarly a linear attack [16] is successful if there is a pair (a, b) with b 6= 0 such
that λf (a, b) is high. The function f can then be used as a round function of an
iterated cipher only if both

δf = max
a6=0

max
b

δf (a, b) and λf = max
a

max
b 6=0

λf (a, b)

are small. Moreover if f defines the S-boxes of a Feistel cipher, the values of δf

and λf completely determine the complexity of differential and linear cryptana-
lysis [21,20].

Proposition 1. [21] For any function f : Fm
2 → Fm

2 ,

δf ≥ 2 .

In case of equality f is called almost perfect nonlinear (APN).
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Proposition 2. [24,6] For any function f : Fm
2 → Fm

2 ,

λf ≥ 2
m−1

2 .

In case of equality f is called almost bent (AB).

Note that this minimum value for λfcan only be achieved if m is odd. For even m,
some functions with λf = 2

m
2 are known and it is conjectured that this value is

the minimum [23, p. 603].
From now on the vector space Fm

2 is identified with the finite field F2m . The
function f can then be expressed as a unique polynomial of F2m [X] of degree
at most (2m − 1). Note that the values of δf and λf are invariant under both
right and left compositions by a linear permutation of F2m . Similarly, if f is
a permutation, δf = δf−1 and λf = λf−1 . We can then assume that f(0) = 0
without loss of generality.

Both APN and AB properties can also be expressed in terms of error-correc-
ting codes. We use standard notation of the algebraic coding theory (see [15]).
The (Hamming) weight of any vector x ∈ Fn

2 is denoted by wt(x). Any linear
subspace of Fn

2 is called a binary linear code of length n and dimension k and is
denoted by [n, k]. Any [n, k]-linear code C is associated with its dual [n, n − k]-
code, denoted by C⊥:

C⊥ = {x ∈ Fn
2 , x · c = 0 ∀c ∈ C} .

Any r × n binary matrix H defines an [n, n − r]-binary linear code C:

C = {c ∈ Fn
2 , cHT = 0}

where HT is the transposed matrix of H. We then say that H is a parity-check
matrix of C. The proofs of the following results are developed by Carlet, Charpin
and Zinoviev in [5]:

Theorem 1. Let f be a function from F2m into F2m with f(0) = 0. Let Cf be
the linear binary code of length 2m − 1 defined by the 2m× (2m − 1)-parity-check
matrix

Hf =
(

1 α α2 . . . α2m−2

f(1) f(α) f(α2) . . . f(α2m−2)

)
, (1)

where each entry is viewed as a binary column vector of length m and α is a
primitive element of F2m . Then

(i) λf = 2m−1 if and only dim Cf > 2m − 1 − 2m or C⊥
f contains the all-one

vector.
(ii) If dim Cf = 2m − 1 − 2m,

λf = max
c∈C⊥

f
,c6=0

|2m−1 − wt(c)| .

In particular, for odd m, f is AB if and only if for any non-zero codeword
c ∈ C⊥

f ,

2m−1 − 2
m−1

2 ≤ wt(c) ≤ 2m−1 + 2
m−1

2 .
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(iii) f is APN if and only if the code Cf has minimum distance 5.

Tables 1 (resp. 2) give all known and conjectured values of exponents s (up
to equivalence) such that the power function x 7→ xs is APN (resp. AB). AB
power permutations also correspond to pairs of maximum-length sequences with
preferred crosscorrelation [23].

Table 1. Known and conjectured APN power functions xs on F2m with m = 2t + 1

exponents s status
quadratic functions 2i + 1 with gcd(i, m) = 1 and 1 ≤ i ≤ t proven [10,19]
Kasami’s functions 22i − 2i + 1 with gcd(i, m) = 1 and 2 ≤ i ≤ t proven [14]

inverse function 22t − 1 proven [19,1]
Welch’s function 2t + 3 proven [9]
Niho’s function 2t + 2

t
2 − 1 if t is even proven

2t + 2
3t+1

2 − 1 if t is odd [8]
Dobbertin’s function 24i + 23i + 22i + 2i − 1 if m = 5i conjectured [8]

Table 2. Known AB power permutations xs on F2m with m = 2t + 1

exponents s status
quadratic functions 2i + 1 with gcd(i, m) = 1 and 1 ≤ i ≤ t proven [10,19]
Kasami’s functions 22i − 2i + 1 with gcd(i, m) = 1 and 2 ≤ i ≤ t proven [14]
Welch’s function 2t + 3 proven [4,3]
Niho’s function 2t + 2

t
2 − 1 if t is even proven

2t + 2
3t+1

2 − 1 if t is odd [12]

2.2 Weight Divisibility of Cyclic Codes

We now give some properties of binary cyclic codes since the linear code Cf

associated to a power function f : x 7→ xs on F2m is a binary cyclic code of
length (2m − 1) with two zeros. We especially focus on the weight divisibility of
the duals of such codes.

Definition 1. A linear binary code C of length n is cyclic if for all codewords
(c0, . . . , cn−1) in C, the vector (cn−1, c0, . . . , cn−2) is also in C.

If each vector (c0, . . . , cn−1) ∈ Fn
2 is associated with the polynomial c(X) =∑n−1

i=0 ciX ı̂ in Rn = Fn
2 [X]/(Xn−1), any binary cyclic code of length n is an ideal

of Rn. Since Rn is a principal domain, any cyclic code C of length n is generated
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by a unique monic polynomial g having minimal degree. This polynomial is
called the generator polynomial of the code and its roots are the zeros of C. The
defining set of C is then the set

I(C) = {i ∈ {0, · · · , 2m − 2}| αi is a zero of C} .

where α is a primitive element of F2m . Since C is a binary code, its defining
set is a union of 2-cyclotomic cosets modulo (2m − 1), Cl(a), where Cl(a) =
{2ja mod (2m − 1)}. From now on the defining set of a binary cyclic code of
length (2m − 1) is identified with the representatives of the corresponding 2-
cyclotomic cosets modulo (2m − 1). The linear code Cf associated to the power
function f : x 7→ xs on F2m is defined by the following parity-check matrix:

Hf =
(

1 α α2 . . . α2m−2

1 αs α2s . . . α(2m−2)s

)
.

It then consists of all binary vectors c of length (2m −1) such that cHT
f = 0, i.e.

c(α) =
2m−2∑
i=0

ciα
i = 0 and c(αs) =

2m−2∑
i=0

ciα
is = 0 .

The code Cf is therefore the binary cyclic code of length (2m − 1) with defining
set {1, s}.

Definition 2. A binary code C is said 2`-divisible if the weight of any of its co-
dewords is divisible by 2`. Moreover C is said exactly 2`-divisible if, additionally,
it contains at least one codeword whose weight is not divisible by 2`+1.

The following theorem due to McEliece reduces the determination of the
exact weight divisibility of binary cyclic codes to a combinatorial problem:

Theorem 2. [17] A binary cyclic code is exactly 2`-divisible if and only if ` is
the smallest number such that (` + 1) nonzeros of C (with repetitions allowed)
have product 1.

We now focus on primitive cyclic codes with two zeros and on the exact
weight divisibility of their duals. We denote by C1,s the binary cyclic code of
length (2m − 1) with defining set Cl(1) ∪ Cl(s). The nonzeros of the cyclic
code C⊥

1,s are the elements α−i with i ∈ Cl(1) ∪ Cl(s). Then (` + 1) nonzeros
of C⊥

1,s have product 1 if and only if there exist I1 ⊂ Cl(s) and I2 ⊂ Cl(1) with
|I1| + |I2| = ` + 1 and∏

k∈I1∪I2

α−k = 1 ⇐⇒
∑

k∈I1∪I2

k ≡ 0 mod (2m − 1)

We consider both integers u and v defined by their 2-adic expansions: u =∑m−1
i=0 ui2i and v =

∑m−1
i=0 vi2i where ui = 1 if and only if 2is mod (2m − 1) ∈ I1

and vi = 1 if and only if 2i mod (2m − 1) ∈ I2. Then we have

∑
k∈I1∪I2

k ≡
m−1∑
i=0

ui2is +
m−1∑
i=0

vi2i mod (2m − 1) ≡ 0 mod (2m − 1)
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The size of I1 (resp. I2) corresponds to w2(u) =
∑m−1

i=0 ui which is the 2-weight
of u (resp. v). McEliece’s theorem can then be formulated as follows:

Corollary 1. The cyclic code C⊥
1,s of length (2m − 1) is exactly 2`-divisible if

and only if for all (u, v) such that 0 ≤ u ≤ 2m − 1, 0 ≤ v ≤ 2m − 1 and

us + v ≡ 0 mod (2m − 1),

we have w2(u) + w2(v) ≥ ` + 1.

Since v ≤ 2m − 1, the condition us + v ≡ 0 mod (2m − 1) can be written v =
(2m −1)−(us mod (2m − 1)). This leads to the following equivalent formulation:

Corollary 2. The cyclic code C⊥
1,s of length (2m − 1) is exactly 2`-divisible if

and only if for all u such that 0 ≤ u ≤ 2m − 1,

w2(A(u)) ≤ w2(u) + m − 1 − `

where A(u) = us mod (2m − 1).

3 Characterization of Almost Bent Functions

As previously seen the nonlinearity of a function from F2m into F2m is related
to the weight distributions of some linear binary codes of length (2m − 1) and
dimension 2m. We here give some general results on the weight distributions
of linear codes having these parameters. Our method uses Pless power moment
identities [22] and some ideas due to Kasami [13, th. 13] (see also [5, th. 4]).
The weight enumerator of a linear code C of length n is the vector (A0, . . . , An)
where Ai is the number of codewords of weight i in C.

Theorem 3. Let C be a [2m − 1, 2m − 2m− 1] linear binary code with minimum
distance d ≥ 3. Assume that the dual code C⊥ does not contain the all-one
vector 1 = (1, · · · , 1). Let A = (A0, · · · , A2m−1) (resp. B = (B0, · · · , B2m−1)) be
the weight enumerator of C⊥ (resp. C). Then we have

(i) If w0 is such that Aw = A2m−w = 0 for all 0 < w < w0, then

6(B3 + B4) ≤ (2m − 1)
[
(2m−1 − w0)2 − 2m−1]

where equality holds if and only if Aw = 0 for all w 6∈ {0, w0, 2m−1, 2m−w0}.
(ii) If w1 is such that Aw = A2m−w = 0 for all w1 < w < 2m−1, then

6(B3 + B4) ≥ (2m − 1)
[
(2m−1 − w1)2 − 2m−1]

where equality holds if and only if Aw = 0 for all w 6∈ {0, w1, 2m−1, 2m−w1}.
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Proof. The main part of the proof relies on the first Pless power moment iden-
tities [22]. The first four power moment identities on the weight distribution of
the [2m − 1, 2m]-code C⊥ are:

n∑
w=0

wAw = 22m−1(2m − 1),

n∑
w=0

w2Aw = 23m−2(2m − 1),

n∑
w=0

w3Aw = 22m−3 (
(2m − 1)2(2m + 2) − 3!B3

)
,

n∑
w=0

w4Aw = 22m−4 (
2m(2m − 1)(22m + 3 · 2m − 6) + 4! (B4 − (2m − 1)B3)

)

Let us consider the numbers I` =
∑2m−1

w=1 (w − 2m−1)`Aw. Since for ` even

(w − 2m−1)` = ((2m − w) − 2m−1)` ,

we have for any even `:

I` =
2m−1∑
w=1

(w − 2m−1)`Aw =
2m−1−1∑

w=1

(w − 2m−1)`(Aw + A2m−w) .

Note that the codeword of weight zero is not taken in account in the sum above.
Recall that C⊥ does not contain the all-one codeword. By using the four power
moments, we obtain the following values for I2 and I4:

I2 = 22m−2(2m − 1)
I4 = 22m−2 [

6(B3 + B4) + 2m−1(2m − 1)
]

This implies

I(x) = I4 − x2I2 =
2m−1−1∑

w=1

(w − 2m−1)2
(
(w − 2m−1)2 − x2) (Aw + A2m−w)

= 22m−2 [
6(B3 + B4) + (2m − 1)(2m−1 − x2)

]
The w-th term in this sum satisfies:

(w − 2m−1)2
(
(w − 2m−1)2 − x2

)
< 0 if 0 < |2m−1 − w| < x
= 0 if w ∈ {2m−1, 2m−1 ± x}
> 0 if |2m−1 − w| > x

This implies that, if Aw = A2m−w = 0 for all w such that 0 < w < w0, all
the terms in I(2m−1 − w0) are negative. Then we have

6(B3 + B4) + (2m − 1)
[
2m−1 − (2m−1 − w0)2

] ≤ 0
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with equality if and only if all terms in the sum are zero. This can only occur
when Aw = 0 for all w 6∈ {0, w0, 2m−1, 2m − w0}.

Similarly, if Aw = A2m−w = 0 for all w such that w1 < w < 2m−1, all the
terms in I(2m−1 − w1) are positive. Then we have

6(B3 + B4) + (2m − 1)
[
2m−1 − (2m−1 − w1)2

] ≥ 0

with equality if and only if all terms in the sum are zero, i.e. if Aw = 0 for all
w 6∈ {0, w1, 2m−1, 2m − w1}. �

Let us now suppose that m is odd, m = 2t + 1. We give a necessary and
sufficient condition on f : F2m → F2m to be almost bent.

Theorem 4. Let m be an odd integer and let f be a function from F2m into F2m

such that λf 6= 2m−1. Then f is AB if and only if f is APN and the code C⊥
f

defined in Theorem 1 is 2
m−1

2 -divisible.

Proof. Let (A0, · · · , A2m−1) (resp. (B0, · · · , B2m−1)) be the weight enumerator
of C⊥

f (resp. Cf ) and let w0 be the smallest w such that 0 < w < 2m−1 and
Aw +A2m−w 6= 0 for all 0 < w < w0. According to Theorem 1 (ii), f is AB if and
only if w0 = 2m−1 −2

m−1
2 . Since λf 6= 2m−1, we deduce from Theorem 1 (i) that

the code Cf has dimension 2m −2m−1 and that C⊥
f does not contain the all-one

vector. Since the minimum distance of Cf is obviously greater than 3, Theorem 3
can be applied. The announced condition is sufficient: if w0 = 2m−1 − 2

m−1
2 we

have that B3 + B4 = 0 according to Theorem 3 (i). This means that Cf has
minimum distance 5 (i.e. f is APN). Moreover all nonzero weights of C⊥

f lie in

{2m−1, 2m−1 ± 2
m−1

2 }. The code C⊥
f is therefore 2

m−1
2 -divisible.

The condition is also necessary since, for any w such that 2m−1−2
m−1

2 < w <

2m−1, both integers w and 2m−1 − w are not divisible by 2
m−1

2 . The condition
on the divisibility of the weights of C⊥

f then implies that Aw + A2m−w = 0 for

all w such that 2m−1 − 2
m−1

2 < w < 2m−1. If f is APN, Cf does not contain any
codeword of weight 3 and 4. The lower bound given in Theorem 3 (ii) (applied
with w1 = 2m−1 − 2

m−1
2 ) is then reached. It follows that the weight of every

codeword in C⊥
f lies in {0, 2m−1, 2m−1 ± 2

m−1
2 } and therefore that f is AB. �

When f is a power function, f : x 7→ xs, the corresponding code Cf is the
binary cyclic code C1,s of length (2m − 1) with defining set {1, s}. The weight
divisibility of the corresponding dual code can therefore be obtained by applying
McEliece’s theorem, as expressed in Corollary 2. This leads to the following
characterization of AB power functions:

Corollary 3. Let m = 2t + 1. Assume that the power function f : x 7→ xs on
F2m has no affine component. Then f is AB on F2m if and only if f is APN
on F2m and

∀u, 1 ≤ u ≤ 2m − 1, w2(A(u)) ≤ t + w2(u) (2)

where A(u) = us mod (2m − 1).
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Condition (2) is obviously satisfied when w2(u) ≥ t+1. Moreover, if gcd(s, 2m −
1) = 1 (i.e. if x 7→ xs is a permutation), the condition also holds for all u such
that w2(u) = t. Using that

A(u2i mod (2m − 1)) = 2iA(u) mod (2m − 1),

we deduce that Condition (2) must only be checked for one element in each
cyclotomic coset. Note that if u is the smallest element in its cyclotomic coset
and w2(u) < t, we have u ≤ 2m−2 − 1. This result provides a fast algorithm for
checking whether an APN power function is AB, and then for finding all AB
power functions on F2m . There are roughly 2m−1

m cyclotomic representatives u
such that w2(u) ≤ t and each test requires one modular multiplication on m-bit
integers and two weight computations. Condition (2) can then be checked with
around 2m elementary operations and at no memory cost.

The 2-weight of s obviously gives an upper bound on the weight divisibility
of C⊥

1,s (obtained for u = 1 in Corollary 2). Using this result, we immediately
recover the condition on the degree of AB functions given in [5, Theorem 1] in
the particular case of power functions.

Corollary 4. Let m be an odd integer. If the power permutation f : x 7→ xs is
AB on F2m , then

degree(f) = w2(s) ≤ m + 1
2

.

4 Power Functions x 7→ xs on Fm
2 with s = 2

m−1
2 + 2i − 1

In his 1968 paper [11], Golomb mentioned a conjecture of Welch stating that for
m = 2t + 1, the power function x 7→ xs with s = 2t + 3 is AB on F2m . Niho [18]
stated a similar conjecture for s = 2t+2

t
2 −1 when t is even and s = 2t+2

3t+1
2 −1

when t is odd. Note that all of these exponents s can be written as 2t + 2i − 1
for some i. Since both Welch’s and Niho’s functions are APN [9,8], Corollary 3
leads to the following formulation of Welch’s and Niho’s conjectures:
Let m = 2t + 1 be an odd integer. For all u such that 1 ≤ u ≤ 2m − 1, we have

w2((2t + 2i − 1)u mod (2m − 1)) ≤ t + w2(u) (3)

for the following values of i: i = 2, i = t/2 for even t and i = (3t+1)/2 for odd t.
We proved that Condition (3) is satisfied in the Welch case (i = 2) [4,3]. More
recently Xiang and Hollmann used this formulation for proving Niho’s conjec-
ture [12]. We here focus on all other values of s which can be expressed as
s = 2t + 2i − 1 for some i. We prove that for almost all of these values x 7→ xs

is not AB on F2m . This result is derived from both following lemmas which give
an upper bound on the exact weight divisibility of C⊥

1,s.

Lemma 1. Let m = 2t+1 be an odd integer and s = 2t+2i−1 with 2 < i < t−1.
Let C1,s be the binary cyclic code of length (2m − 1) with defining set {1, s}. If
2` denotes the exact divisibility of C⊥

1,s, we have
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– if t ≡ 0 mod i and i 6= t/2, then ` ≤ t − 1,
– if t ≡ 1 mod i, then ` ≤ t − i + 2,
– if t ≡ r mod i with 1 < r < i, then ` ≤ t − i + r.

Proof. Let t = iq+r with r < i and A(u) = (2t+2i−1)u mod 2m − 1. McEliece’s
theorem (Corollary 2) implies that C⊥

1,s is at most 2`-divisible if there exists an
integer u ∈ {0, . . . , 2m −1} such that w2(A(u)) = w2(u)+2t−`. We here exhibit
an integer u satisfying this condition for the announced values of `.

– We first consider the case r 6= 0. Let u = 2t + 2r−1 ∑q
k=1 2ik + 1. Then

w2(u) = q + 2 and we have

A(u) = 22t + 2t+r−1
q∑

k=1

2ik + 2t+i + (2t+i−1 − 2i+r−1) + (2i − 1) . (4)

If r > 1, we have t + i < t + r − 1 + ik ≤ 2t − 1 for all k such that 1 ≤ k ≤ q.
All terms in (4) are then distinct. It follows that

w2(A(u)) = 1 + q + 1 + (t − r) + i = w2(u) + t − r + i .

If r = 1, we obtain

A(u) = 22t + 2t

q∑
k=2

2ik + 2t+i+1 + 2t+i−1 − 1 .

In this case

w2(A(u)) = 1 + (q − 1) + 1 + (t + i − 1) = w2(u) + t + i − 2 .

– Suppose now that r = 0 and i 6= t/2. Since i < t, we have q > 2. Let
u = 2t+i + 2t+2 + 2t + 2i+2 ∑q−2

k=0 2ik + 1. Using that i > 2, we deduce that
i + 2 + ik ≤ i(q − 1) + 2 ≤ t − i + 2 < t for all k ≤ q − 2. It follows that
w2(u) = q + 3. Let us now expand the corresponding A(u):

A(u) = 22t +
q−3∑
k=0

2t+2+(k+2)i + 2t+2i + 2t+i+3 − 2i+2 + 2i + 2i−1 + 1 . (5)

If i > 2, all values of k such that 0 ≤ k ≤ q−3 satisfy t+2i < t+2+(k+2)i <
2t. We then deduce that, if q > 2, all the terms in (5) are distinct except if
i = 3. It follows that, for any i > 3,

w2(A(u)) = 1 + (q − 2) + 1 + (t + 1) + 3 = w2(u) + t + 1 .

For i = 3, we have

A(u) = 22t +
q−3∑
k=0

2t+3k+8 + 2t+7 − 25 + 23 + 22 + 1 .

In this case

w2(A(u)) = 1 + (q − 2) + (t + 2) + 3 = w(u) + t + 1 .

�
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Lemma 2. Let m = 2t+1 be an odd integer s = 2t +2i − 1 with t+1 < i < 2t.
Let C1,s be the binary cyclic code of length (2m − 1) with defining set {1, s}. If
2` denotes the exact divisibility of C⊥

1,s, we have

– if t + 1 < i < 3t+1
2 , then ` ≤ m − i,

– if 3t+1
2 < i < 2t − 1, then ` ≤ 2(m − i) − 1,

– if i = 2t − 1, then ` ≤ 3.

Proof. Let A(u) = (2t + 2i − 1)u mod (2m − 1). Exactly as in the proof of the
previous lemma, we exhibit an integer u ∈ {0, . . . , 2m −1} such that w2(A(u)) =
w2(u)+2t− ` for the announced values of `. We write i = t+ j where 1 < j < t.

– We first consider the case t + 1 < i < 3t+1
2 . Let u = 2t + 2j−1 + 1. Then

w2(u) = 3 and

A(u) = 22t + 2t+2j−1 + 2t+j + 2t+j−1 − 1 . (6)

Since j < t+1
2 , we have that 2t > t+2j −1. All the terms in (6) are therefore

distinct. We deduce

w2(A(u)) = 3 + (t + j − 1) = w2(u) + i − 1 .

– We now focus on the case 3t+1
2 < i ≤ 2t − 1. Let u = 2t + 2j + 1. Then

w2(u) = 3 and

A(u) = 22t + 2t+j+1 − 2j−1 + 22j−t−1 − 1 . (7)

Since t+1
2 < j < t, we have 0 < 2j − t − 1 < j − 1. If j 6= t − 1, all the

exponents in (7) are distinct. It follows that

w2(A(u)) = 1 + (t + 2) + (2j − t − 1) = w2(u) + 2(i − t) − 1 .

If j = t − 1, we have

A(u) = 22t+1 − 2j−1 + 22j−t−1 − 1 .

In this case

w2(A(u)) = (2t + 1) − (t − j) = w2(u) + 2t − 3 .

�
From both lemma 1 and 2 we deduce the following theorem:

Theorem 5. Let m = 2t + 1 be an odd integer and let s = 2t + 2i − 1 with i ∈
{1, . . . , 2t}. The only values of i such that x 7→ xs is AB on F2m are 1, 2, t

2 , t, t+
1, 3t+1

2 , 2t and maybe t − 1.

Proof. If i 6∈ {1, 2, t
2 , t − 1, t, t + 1, 3t+1

2 , 2t}, C⊥
1,s is not 2t-divisible since the

upper bounds given in both previous lemmas are strictly less than t. It follows
from Theorem 4 that the corresponding power functions are not AB. Moreover
x 7→ xs is AB for i ∈ {1, 2, t

2 , t, t + 1, 3t+1
2 , 2t}:
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– i = 1 corresponds to a quadratic function,
– i = 2 corresponds to the Welch’s function,
– i = t corresponds to the inverse of a quadratic function since (2t+1 − 1)(2t +

1) ≡ 2t mod 2m − 1.
– i = t + 1 corresponds to a Kasami’s function since 2t(2t+1 + 2t − 1) ≡

22t − 2t + 1 mod 2m − 1.
– i = 2t gives an s which is in the same 2-cyclotomic coset as 2t+1 − 1.
– i = t

2 or i = 3t+1
2 corresponds to the Niho’s function. �

The only unresolved case is then i = t−1. In accordance with our simulation
results for m ≤ 39 we conjecture that the dual of the binary cyclic code of
length (2m − 1) with defining set {1, 2t + 2t−1 − 1} is exactly 2t-divisible. For
m = 5 and m = 7 the function x 7→ xs for s = 2t + 2t−1 − 1 is AB since it
respectively corresponds to a quadratic function and to the Welch function. On
the contrary it is known that this power function is not APN when 3 divides m
since C1,s has minimum distance 3 in this case [7, Th. 5]. We actually conjecture
that for any odd m ≥ 9 the function x 7→ xs with s = 2t + 2t−1 − 1 is not APN
on F2m .

5 AB Power Functions on F2m when m Is Not a Prime

We now focus on AB power functions on F2m when m is not a prime. We show
that in this case the nonlinearity of x 7→ xs on F2m is closely related to the
nonlinearity of the power x 7→ xs0 on F2g where g is a divisor of m and s0 =
s mod (2g − 1).We first derive an upper bound on the exact weight divisibility
of C⊥

1,s from the exact weight divisibility of the code C⊥
1,s0

of length (2g − 1).

Proposition 3. Let g be a divisor of m. Let C1,s be the binary cyclic code
of length (2m − 1) with defining set {1, s} and C0 the binary cyclic code of
length (2g − 1) with defining set {1, s0} where s0 = s mod (2g − 1). Assume
that C⊥

0 is exactly 2`-divisible. Then C⊥
1,s is not 2

m
g (`+1)-divisible.

Proof. Let s = s0 + a(2g − 1). We here use McEliece’s theorem as expressed in
Corollary 1. If C⊥

0 is exactly 2`-divisible, there exists a pair of integers (u0, v0)
with u0 ≤ 2g − 1 and v0 ≤ 2g − 1 such that

u0s0 + v0 ≡ 0 mod 2g − 1 and w2(u0) + w2(v0) = ` + 1

Let us now consider both integers u and v defined by

u = u0
2m − 1
2g − 1

and v = v0
2m − 1
2g − 1

For s = s0 + a(2g − 1), the pair (u, v) satisfies

us + v = u0a(2m − 1) +
2m − 1
2g − 1

(u0s0 + v0) ≡ 0 mod (2m − 1) .
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Since 2m−1
2g−1 =

∑m/g−1
i=0 2ig and both u0 and v0 are less than 2g − 1, we have

w2(u) + w2(v) =
m

g
(w2(u0) + w2(v0)) =

m

g
(` + 1) .

We then deduce that C⊥
1,s is not 2

m
g (`+1)-divisible. �

We now derive a necessary condition on the values of the exponents which
provide AB power functions.

Theorem 6. Let m be an odd integer. The power function x 7→ xs is not AB
on F2m if there exists a divisor g of m with g > 1 satisfying one of the following
conditions:

1. ∃i, 0 ≤ i < g, s ≡ 2i mod (2g − 1),
2. s0 = s mod (2g − 1) 6= 2i and the dual of the cyclic code of length (2g − 1)

with defining set {1, s0} is not 2
g−1
2 -divisible.

Proof. Theorem 4 provide a necessary condition for obtaining an AB power
function on F2m : this function has to be APN and C⊥

1,s has to be 2
m−1

2 -divisible.
When s ≡ 2i mod (2g − 1), it is known [7] that the cyclic code C1,s has minimum
distance 3. It follows that x 7→ xs is not APN in this case. Suppose now that
the dual of the cyclic code of length (2g − 1) with defining set {1, s0} is exactly
2`-divisible. According to the previous theorem we have that C⊥

1,s is not 2
m
g (`+1)-

divisible. If C⊥
1,s is 2

m−1
2 -divisible, it therefore follows that

m − 1
2

≤ m

g
(` + 1) − 1 .

This gives

` + 1 ≥ g(m + 1)
2m

>
g − 1

2

since (m + 1)g > m(g − 1). This implies that C⊥
0 is 2

g−1
2 -divisible. �

Example 1. We search for all AB power permutations on F221 . We here use
that the cyclic codes C⊥

1,s0
of length (27 − 1) are at most 4-divisible when

s0 ∈ {7, 19, 21, 31, 47, 55, 63} (and for their cyclotomic conjugates). Amongst
the 42340 possible pairs of exponents (s, s−1) such that gcd(s, 221 − 1) = 1 (up
to equivalence), only 5520 satisfy both conditions expressed in Corollary 4 and
Theorem 6. By testing the weight divisibility of the corresponding cyclic codes
as described in Corollary 3 we obtain that only 20 such pairs correspond to a
210-divisible code C⊥

1,s. The corresponding values of min(s, s−1) are:

{3, 5, 13, 17, 33, 241, 257, 993, 1025, 1027, 1055, 3071, 8447}
∪ {171, 16259, 31729, 49789, 52429, 123423, 146312} .

The exponents lying in the first set are known to provide AB functions (see
Table 2). We finally check that the power functions corresponding to the second
set of exponents are not APN.
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We now exhibit another family of power functions which are not AB:

Proposition 4. Let m be an odd integer. If there exists a divisor g of m such
that s satisfies

s ≡ −s0 mod
2m − 1
2g − 1

with 0 < s0 <
2m − 1
2g − 1

and w2(s0) ≤ 1
2

(
m

g
− 3

)

then the power function x 7→ xs is not AB on F2m .

Proof. If the power function x 7→ xs is AB on F2m , we have that the dual of the
cyclic code C1,s of length (2m − 1) with defining set {1, s} is 2

m−1
2 -divisible. We

here use McEliece’s theorem as formulated in Corollary 2. Let u = 2g − 1. Then
we have

A(u) = us mod 2m − 1 = (2m − 1) − (2g − 1)s0 .

We obtain that w2(A(u)) = m−w2((2g −1)s0). Since w2((2g −1)s0) ≤ gw2(s0),
this implies that

w2(A(u)) ≥ m − gw2(s0)

≥ w2(u) + m − g(w2(s0) + 1) > w2(u) +
m − 1

2

when w2(s0) ≤ 1
2

(
m
g − 3

)
. It follows that C⊥

1,s is not 2
m−1

2 -divisible. �

The third author conjectured that for m = 5g the function x 7→ xs with s =
24g + 23g + 22g + 2g − 1 is APN on F2m [8]. The previous corollary implies:

Proposition 5. Let m be an odd integer such that m = 5g. The power function
x 7→ xs with s = 24g + 23g + 22g + 2g − 1 is not AB on F2m .

Proof. Since s = 25g−1
2g−1 − 2, we apply the previous corollary with s0 = 2 and

m/g = 5 using that

w2(s0) = 1 =
1
2

(
m

g
− 3

)
.

�
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