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Abstract. This paper presents an efficient interpolation attack using a
computer algebra system. The interpolation attack proposed by Jakob-
sen and Knudsen was shown to be effective for attacking ciphers that
use simple algebraic functions. However, there was a problem that the
complexity and the number of pairs of plaintexts and ciphertexts requi-
red for the attack can be overestimated. We solve this problem by first,
finding the actual number of coefficients in the polynomial (or rational
expression) used in the attack by using a computer algebra system, and
second, by finding the polynomial (or rational expression) with fewest co-
efficients by choosing the plaintexts. We apply this interpolation attack
to the block cipher SNAKE proposed by Lee and Cha at JW-ISC’97. In
the SNAKE family there are two types of Feistel ciphers, SNAKE(1) and
SNAKE(2), with different round functions. Both of them use the inverse
function in Galois Field GF(2m) as S-box. We show that when the block
size is 64 bits and m = 8, all round keys are recovered for SNAKE(1)
and SNAKE(2) with up to 11 rounds. Moreover, when the block size is
128 bits and m = 16, all round keys are recovered for SNAKE(1) with
up to 15 rounds and SNAKE(2) with up to 16 rounds.

1 Introduction

Since two powerful cryptanalyses on block ciphers, differential cryptanalysis[1]
and linear cryptanalysis[6], were presented, some new block ciphers with pro-
vable security against these cryptanalyses have been proposed. On the other
hand, Jakobsen and Knudsen raised the alarm that some of them are easy to
cryptanalyze by algebraic attacks such as higher order differential attack and
interpolation attack[3]. These attacks are effective for attacking ciphers that use
simple algebraic functions. For example, there is the 6-round prototype Feistel
cipher presented in [8], called the cipher KN . It uses the cubing function in
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GF(233) in the round function, and was broken by the higher order differential
attack exploiting the low degree of polynomial expression over GF(2). A variant
of the cipher, called the cipher PURE , which uses the cubing function in GF(232)
as the round function, was broken by the interpolation attack up to 32 rounds
by exploiting the low degree of polynomial expression over GF(232). Moreover,
a slightly modified version of the cipher SHARK[9], which uses the inverse fun-
ction in GF(28) as S-box, was broken up to 5 rounds by an interpolation attack
exploiting the low degree of rational expression over GF(28).

The principle of the interpolation attack is that, roughly speaking, if the
ciphertext is represented as a polynomial or rational expression of the plaintext
with N coefficients, the polynomial or rational expression can be constructed
using N pairs of plaintexts and ciphertexts. Since N determines the complexity
and the number of pairs required for the attack, it is important to find as small
N as possible.

This paper shows two solutions to find a tighter upper bound of N . The first
problem is that generally it is difficult to find the actual number of coefficients
in the polynomial or rational expression. In [3] Jakobsen and Knudsen estimated
it from the degree of the polynomial or rational expression. However, this me-
thod often overestimates it when we use a multivariate polynomial or rational
expression, in particular. As the solution to this problem, we compute the actual
polynomial or rational expression by using a computer algebra system and find
the number of coefficients. The second problem is the number of coefficients (or
the degree) of the polynomial or rational expression varies with the plaintexts
chosen. If we use a computer algebra system, it is easy to compute the number
of coefficients of the polynomial or rational expression in a few variables. We
can find the polynomial or rational expression with the fewest coefficients by
choosing the plaintexts.

We apply this interpolation attack to the block cipher SNAKE proposed by
Lee and Cha at JW-ISC’97[5]. This cipher is not a prototype cipher and we
don’t modify it to simplify the cryptanalysis. The cipher SNAKE is a Feistel
cipher with provable resistance against differential and linear cryptanalysis. In
[5], it is also claimed that SNAKE is resistant against higher order differential
attack and interpolation attack, though the rationale was not discussed enough.
SNAKE(1) and SNAKE(2) have different round functions. To put it concretely,
the structure of the round function is the same, the substitution-permutation
network (SPN). Both of them use the same number of S-boxes in the round
function, the function used as the S-box is the same, e.g., the inverse function
in GF(2m), but only the diffusion layer is different.

We apply to the cipher SNAKE the interpolation attack using rational ex-
pressions. If we represent the cipher SNAKE as a polynomial, the attack becomes
impractical with only a few rounds, since the number of coefficients in the po-
lynomial increases to the upper bound of the number of pairs we can obtain.
This is because the degree of the inverse function in GF(2m) in polynomial ex-
pression is very high as follows: f(x) = x−1 = x2m−2. Using a computer algebra
system, we find the rational expression with the fewest coefficients by choosing
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the plaintexts. As a result, both of the SNAKE ciphers with many rounds are
broken. When the block size is 64 bit and m = 8, all round keys are recovered
for SNAKE(1) and SNAKE(2) with up to 11 rounds. Moreover, when the block
size is 128 bit and m = 16, all round keys are recovered for SNAKE(1) with up
to 15 rounds and SNAKE(2) with up to 16 rounds.

This paper is organized as follows. In Section 2, we give a summary of the
interpolation attack. Section 3 describes the specifications of the cipher SNAKE.
In Sections 4 and 5, we apply the interpolation attack to the cipher SNAKE
with blocksize 64 bits and 128 bits, respectively. In Section 6, we discuss some
problems and make concluding remarks.

2 The Interpolation Attack

In this section, we describe the outline of the interpolation attack proposed by
Jakobsen and Knudsen in [3] and explain the notations used in this paper. The
target of the attack is an iterated cipher with block size 2n bits and R rounds.
We denote a plaintext by x and a ciphertext by y. Let x be the concatenation
of u subblocks xi ∈ GF(2m), where 2n = m × u. We define y similarly.

x = (xu, xu−1, . . . , x1) ∈ GF(2m)u, xi ∈ GF(2m)
y = (yu, yu−1, . . . , y1) ∈ GF(2m)u, yj ∈ GF(2m)

Moreover, we denote the i-th round key by k(i) and let the length of k(i) be l

bits. Similarly let k(i) be the concatenation of t subblocks k
(i)
j , where l = m × t.

k(i) = (k(i)
t , k

(i)
t−1, . . . , k

(i)
1 ) ∈ GF(2m)t k

(i)
j ∈ GF(2m)

2.1 Global Deduction

If the key is fixed to k, a ciphertext subblock yj ∈ GF(2m) can be expressed as
a polynomial in plaintext subblocks {xu, xu−1, . . . , x1} as follows:

yj = fjk(xu, xu−1, . . . , x1) ∈ GF(2m)[xu, xu−1, . . . , x1],

where GF(2m)[X] is the polynomial ring of X = {xu, . . . , x1} over GF(2m). If the
number of coefficients in fjk(xu, xu−1, . . . , x1) is N , the attacker can construct
fjk(xu, xu−1, . . . , x1) from different N pairs of plaintexts and ciphertexts. If we
define degxi fjk as the degree of fjk(xu, xu−1, . . . , x1) with respect to xi, N is
estimated as follows.

N ≤
∏

1≤i≤u

(degxi fjk + 1) (1)

Note that N can be overestimated when u is large and the polynomial is sparse.
Once the attacker constructs fjk(xu, xu−1, . . . , x1), (s)he can encrypt any

plaintext into the corresponding ciphertext for key k, without knowing the key.
This attack is called global deduction by Knudsen[4,3]. Similarly, by swapping ci-
phertexts and plaintexts, once the attacker can construct xi = f ′

ik(yu, yu−1, . . . , y1)
∈ GF(2m)[yu, yu−1, . . . , y1], (s)he can decrypt any ciphertext into the correspon-
ding plaintext for key k, without knowing the key.
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2.2 Instance Deduction

If some subblocks of plaintexts are fixed to some values as e.g., x = (0, . . . , 0, x1),
a ciphertext subblock yj ∈ GF(2m) can be expressed as a polynomial as follows:

yj = fjk(x1) ∈ GF(2m)[x1].

In this case, fjk(x1) is a polynomial in one variable x1. Generally, there are fewer
coefficients in fjk(x1) than in global deduction. Therefore, the attacker can con-
struct fjk(x1) from fewer chosen plaintexts and ciphertexts. Let N be the number
of coefficient and let degx1

fjk = d, and N is estimated as N ≤ d + 1. Once the
attacker can construct fjk(x1) from N pairs of plaintexts and ciphertexts, (s)he
can encrypt a subset of all plaintexts, e.g., x = (0, . . . , 0, x1), ∀x1 ∈ GF(2m), into
the corresponding ciphertexts for key k, without knowing the key. This attack
is called instance deduction by Knudsen[4,3]. Similarly, by swapping ciphertexts
and plaintexts, the attack where a subset of all ciphertexts are decrypted into
the corresponding plaintexts is possible.

2.3 Key Recovery

The attacker recovers the last round key as follows. We denote the output of the
(R − 1)-th round by ỹ = (ỹu, ỹu−1, . . . , ỹ1) ∈ GF(2m)u. A ciphertext subblock
ỹj ∈ GF(2m) can be expressed as a polynomial in {xu, xu−1, . . . , x1} as follows:

ỹj = f̃(xu, xu−1, . . . , x1) ∈ GF(2m)[xu, xu−1, . . . , x1].

Let N ′ be the number of coefficients in f̃(xu, xu−1, . . . , x1). On the other hand,
ỹj can be also expressed using the ciphertext y and the last round key k(R).
Therefore, if N ′ pairs of plaintexts x and ciphertexts y are available, the attacker
can construct f̃(xu, xu−1, . . . , x1) using ỹj which is computed using y and a
guessed k(R).

f̃(xu, xu−1, . . . , x1) = ỹj(y, k(R)) (2)

If Eq. (2) holds for another plaintext/ciphertext pair, the guessed k(R) is correct
with high probability. From the procedure above, the last round key is recovered
from any N ′ + 1 pairs of plaintexts and ciphertexts. The average of the required
complexity for recovering the last round key is (N ′ + 1)2l′−1, where l′ is the
number of last round key bits effective in Eq. (2). Repeating similar procedures,
the attacker can find all round keys.

In the above, we showed only how to recover the last round key in the case
of the global deduction attack, or known plaintext attack. Similarly the instance
deduction attack, or chosen plaintext attack is also possible. In the instance
deduction attack, the attacker can only use chosen plaintexts and ciphertexts,
but fewer pairs are required than in the global deduction attack.
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2.4 Meet-in-the-Middle Approach

The meet-in-the-middle approach in the interpolation attack was introduced by
Jakobsen and Knudsen[3], which is effective for some attacks on block ciphers.

We denote the output of a certain internal round by z = (zu, zu−1, . . . , z1) ∈
GF(2m)u. A subblock of z, zj ∈ GF(2m) can be expressed as a polynomial in
{xu, xu−1, . . . , x1} as follows:

zj = f(xu, xu−1, . . . , x1) ∈ GF(2m)[xu, xu−1, . . . , x1]

On the other hand, zj can be also expressed as a polynomial in {ỹu, ỹu−1, . . . ,
ỹ1} as follows:

zj = g(ỹu, ỹu−1, . . . , ỹ1) ∈ GF(2m)[ỹu, ỹu−1, . . . , ỹ1].

Note that ỹj can be computed from the ciphertext y and a guessed k(R).
Therefore, Eq. (3) is constructed by guessing k(R).

f(xu, xu−1, . . . , x1) = g(ỹu, ỹu−1, . . . , ỹ1) (3)

The number of pairs required for constructing Eq. (3) is computed as follows. If
f and g are represented as polynomials, the required number of pairs is

(# of coefs. in f) + (# of coefs. in g).

If f and g are represented as rational expressions f = f1
f2

and g = g1
g2

, where
f2 6= 0 and g2 6= 0, it is

((# of coefs. in f1) − 1) × (# of coefs. in g2)
+ (# of coefs. in f2) × ((# of coefs. in g1) − 1).

Note that we subtract 1’s because we can fix one of the coefficients in the rational
expression to a certain value, e.g., 1. The attacker can judge whether k(R) is
correct or not by examining if Eq. (3) holds for another plaintext/ciphertext
pair.

3 SNAKE

The cipher SNAKE is a Feistel cipher, which has two types, SNAKE(1) and
SNAKE(2), with different round functions. The general form is SNAKE(i)(m, s,
w, r), where

i – (= 1 or 2) the type of SNAKE described in the below,
m – the size of input and output of the S-box in bit,
s – the number of S-boxes used in the round function,
w – block size in bit (w = 2sm),
r – the number of rounds.
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SSSS

round key

XXXX

YYYY

1234

1234

Fig. 1. Round function of SNAKE(1)
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round key

XXXX

YYYY

1234

1234

Fig. 2. Round function of SNAKE(2)

Figures 1 and 2 show the round functions of SNAKE(1) and SNAKE(2) for
s = 4, which were demonstrated in [5]. For the S-box in the round function, the
inverse function S(x) = x−1 in GF(2m) is used, because differential probability
and linear probability of S(x) are 22−m when m is even. In this paper we define
the S-box as follows, though the output for input 0 is not defined in [5].

S(x) =
{

x−1 in GF(2m) x 6= 0
0 x = 0

Since SNAKE(i)(8, 4, 64, 16) is given as an example in [5], we apply the interpo-
lation attack to it in Section 4. Moreover, we also apply the interpolation attack
to a 128-bit variant, SNAKE(i)(16, 4, 128, 16) in Section 5, since in [5] it is clai-
med that one of merits of the cipher SNAKE is that its encrypting data block
length (=block size) is flexible.

4 Interpolation Attack of SNAKE(i)(8, 4, 64, r)

4.1 Rational Expression over GF(28) of SNAKE(i)(8, 4, 64, r)

In this section, we attack SNAKE(i)(8, 4, 64, r) using the interpolation attack.
If we represent the cipher SNAKE as a polynomial, the attack becomes imprac-
tical with only a few rounds, since the number of coefficients in the polynomial
increases to the upper bound of the number of pairs we can obtain. Therefore,
we represent SNAKE as a rational expression over GF(28).

Let the plaintext block and the ciphertext block be as follows.

x = (x8, x7, . . . , x1) ∈ GF(28)8, xi ∈ GF(28)
y = (y8, y7, . . . , y1) ∈ GF(28)8, yj ∈ GF(28)

We denote the i-th round key by

k(i) = (k(i)
4 , k

(i)
3 , k

(i)
2 , k

(i)
1 ) ∈ GF(28)4, k

(i)
j ∈ GF(28).
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Moreover, we denote the upper half (32 bits) of the output of the r-th round by

z(r) = (z(r)
4 , z

(r)
3 , z

(r)
2 , z

(r)
1 ) ∈ GF(28)4, z

(r)
j ∈ GF(28).

Global deduction. In the global deduction, we represent a ciphertext subblock
as a rational expression over GF(28) in {x8, x7, . . . , x1}. First of all, we show that
the round functions of SNAKE(1) and SNAKE(2) can be represented as simple
rational expressions as follows:

SNAKE(1)

Y2 =
1

X1

Y3 =
1

X2 + 1
X1

Y4 =
1

X3 + 1
X2+ 1

X1

Y1 =
1

X4 + 1
X3+ 1

X2+ 1
X1

SNAKE(2)

Y2 =
1

X1

Y3 =
1

X1 + X2

Y4 =
1

X1 + X2 + X3

Y1 =
1

X1 + X2 + X3 + X4
,

where variables Xi, Yj ∈ GF(28) are shown in Figures 1 and 2.
Next, we extend the expressions of the round function to the entire cipher. In

a Feistel cipher, there are XORs between 32-bit data in each round. These opera-
tions are regarded as four additions on GF(28). We’d like to find the rational ex-

pression over GF(28) of each subblock of the output of the r-th round, z
(r)
j =

f
(r)
j1

f
(r)
j2

,

where f
(r)
j1 , f

(r)
j2 (6= 0) ∈ GF(28)[x8, . . . , x1, k

(1)
4 , . . . , k

(1)
1 , . . . , k

(r)
4 , . . . , k

(r)
1 ].

We use the computer algebra system Risa/Asir[7] to compute the rational
expressions. It usually takes much time and space complexity to find them since
the number of variables and the degree increases as the number of rounds in-
creases. However, it is possible to find the rational expressions of the cipher
SNAKE with only a few rounds. We show the actual numbers of coefficients in
the rational expressions in Table 1. The number of coefficients we find here is
very important and useful for evaluating the tighter upper bound of the com-
plexity and the number of p/c pairs in the key-recovery attack that uses the
meet-in-the-middle approach (see Section 5).

For estimating the number of coefficients in the rational expressions of SNAKE
with more rounds, we use the following two techniques.

– decrease the number of variables by representing each round key k
(r)
j as

κi ∈ GF(28), i.e., a monomial in κ, where κ ∈ GF(28) and i is randomly
chosen from GF(28) \ {0, 255}.

– estimate the upper bound of the number of coefficients using Eq. (1), since
it is easy to find the degree of the rational expression with respect to each
variable.
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Table 1. # of coef. in rational exp. over GF(28) of SNAKE(1) and SNAKE(2) (global
deduction)

SNAKE(1) SNAKE(2)
z

(1)
4 , z

(1)
3 , z

(1)
2 , z

(1)
1

(12)
(8) ,

(6)
(4) ,

(3)
(2) ,

(24)
(16)

(5)
(4) ,

(4)
(3) ,

(3)
(2) ,

(6)
(5)

z
(2)
4 , z

(2)
3 , z

(2)
2 , z

(2)
1

(432)
(352) ,

(108)
(88) ,

(40)
(32) ,

(1760)
(1540)

(85)
(72) ,

(34)
(27) ,

(14)
(10) ,

(198)
(185)

Note) (# of coefs. in the numerator)/(# of coefs. in the denominator)

We show the degrees of the rational expressions over GF(28) with respect to
each variable in Table 2. Since for every subblock of every round z

(r)
j ∈ GF(28),

the rational expressions of SNAKE(1) and SNAKE(2) are of the same degree
with respect to each variable, we put them together in one table, Table 2.

Instance deduction. In the instance deduction, we fix some subblocks of the
plaintexts x = (x8, x7, . . . , x1) to a certain value. For example, we fix {x7, . . . , x1}
to {0, . . . , 0}, and represent a ciphertext subblock as a rational expression over
GF(28) in x8. If the number of coefficients in this rational expression in x8,
denoted by N , does not exceed 28 = 256, we can construct the rational expression
using N pairs of chosen plaintexts and ciphertexts. Therefore, it is desirable to
find chosen p/c pairs such that the required number of pairs is as small as
possible.

Chosen plaintexts useful for attacking SNAKE(1). We decided to find the ra-
tional expression with the fewest coefficients from the rational expressions in
one variable. The reason for this is as follows. Let α and β be the numbers of
variables. For the rational expression of a subblock z

(r)
j , if α > β, the minimum

value of the number of coefficients in the rational expression in α variables is
larger than that in β variables.

It is easy to compute the rational expressions in one variable for all possible
chosen plaintexts, since there are only 28 combinations. Our experimental results
show that when we choose plaintexts s.t. (x8, 0, . . . , 0) the number of coefficients
in the rational expression in x8 is the smallest for SNAKE(1). Table 3 shows
the degrees of the rational expressions over GF(28) when we choose plaintexts
s.t. (x8, 0, . . . , 0) and (0, x7, 0, . . . , 0), respectively. The figures in brackets are
the numbers of coefficients in the numerator or denominator polynomials. From
Table 3, we can see that these rational expressions are dense, or all coefficients
are nonzero. Note that the degrees with respect to x8 and x7 in Table 2 are not
always equivalent to those in Table 3, though you may conjecture that they are
equivalent.

Chosen plaintexts useful for attacking SNAKE(2). For SNAKE(2), if we choose
plaintexts s.t. (x8, x8, 0, . . . , 0), the degree of the rational expression in x8 falls as
Table 4 shows. This is because the input to the leftmost S-box in the 2-nd round
function becomes constant. Our experimental results show that the plaintexts
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Table 2. Degrees of rational exp. over GF(28) of SNAKE(1) and SNAKE(2) (global
deduction)

z
(1)
4 , z

(1)
3

1,0,0,0,0,1,1,1
0,0,0,0,0,1,1,1 ,

0,1,0,0,0,0,1,1
0,0,0,0,0,0,1,1 ,

z
(1)
2 , z

(1)
1

0,0,1,0,0,0,0,1
0,0,0,0,0,0,0,1 ,

0,0,0,1,1,1,1,1
0,0,0,0,1,1,1,1

z
(2)
4 , z

(2)
3

0,1,1,1,2,1,2,3
0,1,1,1,1,1,2,3 ,

0,0,1,1,1,2,1,2
0,0,1,1,1,1,1,2 ,

z
(2)
2 , z

(2)
1

0,0,0,1,1,1,2,1
0,0,0,1,1,1,1,1 ,

1,1,1,1,1,2,3,5
1,1,1,1,1,2,3,4

z
(3)
4 , z

(3)
3

2,1,2,3,3,6,7,9
1,1,2,3,3,6,7,9 ,

1,2,1,2,2,3,6,7
1,1,1,2,2,3,6,7 ,

z
(3)
2 , z

(3)
1

1,1,2,1,1,2,3,6
1,1,1,1,1,2,3,6 ,

1,2,3,5,6,7,9,12
1,2,3,4,6,7,9,12

z
(4)
4 , z

(4)
3

3,6,7,9,11,13,20,28
3,6,7,9,10,13,20,28 ,

2,3,6,7,8,11,13,20
2,3,6,7,8,10,13,20 ,

z
(4)
2 , z

(4)
1

1,2,3,6,7,8,11,13
1,2,3,6,7,8,10,13 ,

6,7,9,12,13,20,28,39
6,7,9,12,13,20,28,38

z
(5)
4 , z

(5)
3

11,13,20,28,31,45,59,81
10,13,20,28,31,45,59,81 ,

8,11,13,20,22,31,45,59
9,10,13,20,22,31,45,59 ,

z
(5)
2 , z

(5)
1

7,8,11,13,14,22,31,45
7,8,10,13,14,22,31,45 ,

13,20,28,39,45,59,81,112
13,20,28,38,45,59,81,112

z
(6)
4 , z

(6)
3

31,45,59,81,92,125,177,244
31,45,59,81,91,125,177,244 ,

22,31,45,59,67,92,125,177
22,31,45,59,67,91,125,177 ,

z
(6)
2 , z

(6)
1

14,22,31,45,52,67,92,125
14,22,31,45,52,67,91,125 ,

45,59,81,112,125,177,244,255
45,59,81,112,125,177,244,255

z
(7)
4 , z

(7)
3

92,125,177,244,255,255,255,255
91,125,177,244,255,255,255,255 ,

67,92,125,177,199,255,255,255
67,91,125,177,199,255,255,255 ,

z
(7)
2 , z

(7)
1

52,67,92,125,139,199,255,255
52,67,91,125,139,199,255,255 ,

125,177,244,255,255,255,255,255
125,177,244,255,255,255,255,255

Note) Let degxi f be the degree of f with respect to xi, and the degrees in Table 2 are
shown as follows.

degx8
f

(r)
j1 , degx7

f
(r)
j1 , degx6

f
(r)
j1 , degx5

f
(r)
j1 , degx4

f
(r)
j1 , degx3

f
(r)
j1 , degx2

f
(r)
j1 , degx1

f
(r)
j1

degx8
f

(r)
j2 , degx7

f
(r)
j2 , degx6

f
(r)
j2 , degx5

f
(r)
j2 , degx4

f
(r)
j2 , degx3

f
(r)
j2 , degx2

f
(r)
j2 , degx1

f
(r)
j2

s.t. (x8, x8, 0, . . . , 0) bring about the rational expression in one variable of the
fewest coefficients for SNAKE(2). The plaintexts s.t. (0, x7, x7, 0, . . . , 0) bring
about the second fewest one.

4.2 Key Recovery

In this subsection, we demonstrate how to recover the last round key by ta-
king a simple example of a chosen plaintext attack of SNAKE(2) with 9 rounds,
i.e. SNAKE(2)(8, 4, 64, 9), (see also Figure 3 in Appendix). If we choose plain-
texts s.t. x = (x8, x8, 0, . . . , 0), the second subblock from the right of the out-
put of the 7-th round, z

(7)
2 ∈ GF(28), is represented as the rational expression

z
(7)
2 = f1(x8)

f2(x8) , where both f1(x8) and f2(x8) have 16 coefficients (see Table 4).
Therefore, if 16 + 15 = 31 pairs of plaintexts s.t. x = (x8, x8, 0, . . . , 0) and cor-
responding ciphertexts are given, we can construct the rational expression. The
attack equation is as follows.

f1(x8)
f2(x8)

= y6 + S(y1 + k
(9)
1 ) (4)
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Table 3. Degrees of rational exp. over GF(28) of SNAKE(1).

when x = (x8, 0, . . . , 0)
z

(1)
4 , z

(1)
3 , z

(1)
2 , z

(1)
1

1
0

(2)
(1) ,

0
0

(1)
(1) ,

0
0

(1)
(1) ,

0
0

(1)
(1)

z
(2)
4 , z

(2)
3 , z

(2)
2 , z

(2)
1

0
0

(1)
(1) ,

0
0

(1)
(1) ,

0
0

(1)
(1) ,

0
1

(1)
(2)

z
(3)
4 , z

(3)
3 , z

(3)
2 , z

(3)
1

2
1

(3)
(2) ,

1
1

(2)
(2) ,

1
1

(2)
(2) ,

1
1

(2)
(2)

z
(4)
4 , z

(4)
3 , z

(4)
2 , z

(4)
1

3
3

(4)
(4) ,

2
2

(3)
(3) ,

1
1

(2)
(2) ,

5
6

(6)
(7)

z
(5)
4 , z

(5)
3 , z

(5)
2 , z

(5)
1

11
10

(12)
(11) ,

8
8

(9)
(9) ,

7
7

(8)
(8) ,

13
13

(14)
(14)

z
(6)
4 , z

(6)
3 , z

(6)
2 , z

(6)
1

31
31

(32)
(32) ,

22
22

(23)
(23) ,

14
14

(15)
(15) ,

44
45

(45)
(46)

z
(7)
4 , z

(7)
3 , z

(7)
2 , z

(7)
1

92
91

(93)
(92) ,

67
67

(68)
(68) ,

52
52

(53)
(53) ,

125
125

(126)
(126)

Note) degrees with respect to x8

when x = (0, x7, 0, . . . , 0)
z

(1)
4 , z

(1)
3 , z

(1)
2 , z

(1)
1

0
0

(1)
(1) ,

1
0

(2)
(1) ,

0
0

(1)
(1) ,

0
0

(1)
(1)

z
(2)
4 , z

(2)
3 , z

(2)
2 , z

(2)
1

0
1

(1)
(2) ,

0
0

(1)
(1) ,

0
0

(1)
(1) ,

0
1

(1)
(2)

z
(3)
4 , z

(3)
3 , z

(3)
2 , z

(3)
1

1
1

(2)
(2) ,

2
1

(3)
(2) ,

1
1

(2)
(2) ,

2
2

(3)
(3)

z
(4)
4 , z

(4)
3 , z

(4)
2 , z

(4)
1

5
6

(6)
(7) ,

3
3

(4)
(4) ,

2
2

(3)
(3) ,

6
7

(7)
(8)

z
(5)
4 , z

(5)
3 , z

(5)
2 , z

(5)
1

13
13

(14)
(14) ,

11
10

(12)
(11) ,

8
8

(9)
(9) ,

20
20

(21)
(21)

z
(6)
4 , z

(6)
3 , z

(6)
2 , z

(6)
1

44
45

(45)
(46) ,

31
31

(32)
(32) ,

22
22

(23)
(23) ,

58
59

(59)
(60)

z
(7)
4 , z

(7)
3 , z

(7)
2 , z

(7)
1

125
125

(126)
(126) ,

92
91

(93)
(92) ,

67
67

(68)
(68) ,

177
177

(178)
(178)

Note) degrees with respect to x7

The last round key k
(9)
1 is recovered as follows. For 31 plaintext/ciphertext pairs,

we compute the right side of Eq. (4) guessing k
(9)
1 . Thus all the coefficients in

f1(x8)
f2(x8) are determined. If the constructed Eq. (4) holds for the 32-nd pair of

plaintext and ciphertext, we can judge that the guessed k
(9)
1 is correct with high

probability. Since k
(9)
1 is 8 bits, the average of the required complexity of this

attack is about 32 × 28 × 1
2 ∼ 212 times the computation of an S-box. Note that

the required complexity for constructing the rational expression is negligible.

We apply similar key-recovery attacks to SNAKE with several rounds. We
show some best attacks in Table 5, for which I mean that there is trade-off
relations between the required number of p/c pairs and the complexity. The
complexity is measured by the times of computation of the round function. In
the column of strategy we show the attack strategies using simple symbols.

For example, the strategy “7i + 1k” means that the key-recovery attack uses
the instance deduction of 7-round and recovers the last round key (m bits) as
Figure 3 shows. The strategy “7i + 2k” means that the key-recovery attack uses
the instance deduction of 7-round and recovers the last round key (4m bits) and
a subblock of the key of the second round from the bottom (m bits). The strategy
“11i + 2g + 1k” means that the key-recovery attack uses the meet-in-the-middle
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Table 4. Degrees of rational expression over GF(28) of SNAKE(2)

when x = (x8, x8, 0, . . . , 0)
z

(1)
4 , z

(1)
3 , z

(1)
2 , z

(1)
1

1
0

(2)
(1) ,

1
0

(2)
(1) ,

0
0

(1)
(1) ,

0
0

(1)
(1)

z
(2)
4 , z

(2)
3 , z

(2)
2 , z

(2)
1

0
1

(1)
(2) ,

0
0

(1)
(1) ,

0
0

(1)
(1) ,

0
0

(1)
(1)

z
(3)
4 , z

(3)
3 , z

(3)
2 , z

(3)
1

1
0

(2)
(1) ,

1
0

(2)
(1) ,

0
0

(1)
(1) ,

1
1

(2)
(2)

z
(4)
4 , z

(4)
3 , z

(4)
2 , z

(4)
1

2
3

(2)
(4) ,

1
1

(2)
(2) ,

1
1

(2)
(2) ,

1
1

(2)
(2)

z
(5)
4 , z

(5)
3 , z

(5)
2 , z

(5)
1

4
3

(5)
(4) ,

3
2

(4)
(3) ,

1
1

(2)
(2) ,

7
7

(8)
(8)

z
(6)
4 , z

(6)
3 , z

(6)
2 , z

(6)
1

13
14

(14)
(15) ,

9
9

(10)
(10) ,

8
8

(9)
(9) ,

14
14

(15)
(15)

z
(7)
4 , z

(7)
3 , z

(7)
2 , z

(7)
1

35
34

(36)
(35) ,

25
24

(26)
(25) ,

15
15

(16)
(16) ,

52
52

(53)
(53)

z
(8)
4 , z

(8)
3 , z

(8)
2 , z

(8)
1

105
106

(106)
(107) ,

76
76

(77)
(77) ,

60
60

(61)
(61) ,

139
139

(140)
(140)

Note) degrees with respect to x8

Table 5. Interpolation attacks of SNAKE(i)(8, 4, 64, r)

SNAKE(1)
#rounds(r) #pairs complexity chosen plaintexts strategy

9 59 237 (x8, 0, . . . , 0) 6i+ 1g + 1k
106 214 (x8, 0, . . . , 0) 7i+ 1k

10 106 246 (x8, 0, . . . , 0) 7i+ 2k
211 239 (x8, 0, . . . , 0) 7i+ 1g + 1k

11 211 247 (x8, 0, . . . , 0) 7i+ 1g + 2k
SNAKE(2)

#rounds(r) #pairs complexity chosen plaintexts strategy
9 32 212 (x8, x8, 0, . . . , 0) 7i+ 1k
10 32 243 (x8, x8, 0, . . . , 0) 7i+ 2k

63 238 (x8, x8, 0, . . . , 0) 7i+ 1g + 1k
122 214 (x8, x8, 0, . . . , 0) 8i+ 1k

11 122 246 (x8, x8, 0, . . . , 0) 8i+ 2k

approach where the instance deduction of 11-round and the global deduction of
2-round are used, and recovers the last round key (4m bits) as Figure 4 shows.

5 Interpolation Attack of SNAKE(i)(16, 4, 128, r)

We apply the interpolation attack to a 128-bit variant, SNAKE(i)(16, 4, 128, r).
When the block size is 128 bits and the size of input and output of the S-box is
16 bits, the maximum number of available p/c pairs for the attacker increases
compared with the case when the block size is 64 bits. Thus, some attacks become
possible that would be impractical when the block size was 64 bits.

For example, we demonstrate the interpolation attack of SNAKE(2) with
15 rounds, i.e. SNAKE(2)(16, 4, 128, 15) (see also Figure 4 in Appendix). If
we choose plaintexts s.t. x = (x8, x8, 0, . . . , 0), the second subblock from the
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Table 6. Degrees of rational exp. over GF(216) of SNAKE(1)

when x = (x8, 0, . . . , 0)
z

(8)
4 , z

(8)
3 , z

(8)
2 , z

(8)
1

275
275 ,

199
199 ,

139
139 ,

380
381

z
(9)
4 , z

(9)
3 , z

(9)
2 , z

(9)
1

811
810 ,

587
587 ,

433
433 ,

1119
1119

z
(10)
4 , z

(10)
3 , z

(10)
2 , z

(10)
1

2414
2414 ,

1751
1751 ,

1258
1258 ,

3330
3331

z
(11)
4 , z

(11)
3 , z

(11)
2 , z

(11)
1

7151
7150 ,

5176
5176 ,

3764
3764 ,

9873
9873

z
(12)
4 , z

(12)
3 , z

(12)
2 , z

(12)
1

21227
21227 ,

15388
15388 ,

11131
11131 ,

29294
29294

z
(13)
4 , z

(13)
3 , z

(13)
2 , z

(13)
1 – , – , 33059

33059 , –
Note) degrees with respect to x8

Table 7. Degrees of rational exp. over GF(216) of SNAKE(2)

when x = (x8, x8, 0, . . . , 0)
z

(9)
4 , z

(9)
3 , z

(9)
2 , z

(9)
1

310
309 ,

224
223 ,

154
154 ,

433
433

z
(10)
4 , z

(10)
3 , z

(10)
2 , z

(10)
1

916
917 ,

663
663 ,

493
493 ,

1258
1258

z
(11)
4 , z

(11)
3 , z

(11)
2 , z

(11)
1

2724
2723 ,

1975
1974 ,

1412
1412 ,

3764
3764

z
(12)
4 , z

(12)
3 , z

(12)
2 , z

(12)
1

8067
8068 ,

5839
5839 ,

4257
4257 ,

11131
11131

z
(13)
4 , z

(13)
3 , z

(13)
2 , z

(13)
1

23951
23950 ,

17363
17362 ,

12543
12543 ,

33059
33059

Note) degrees with respect to x8

right of the output of the 11-th round, z
(11)
2 ∈ GF(216), is represented as the

rational expression z
(11)
2 = f1(x8)

f2(x8) . According to Table 7, degx8
f1 = 1412 and

degx8
f2 = 1412. On the other hand, z

(11)
2 is also represented using ỹ, which can

be computed from y and a guessed k(15): z
(11)
2 = g1(ỹ)

g2(ỹ) . Using the meet-in-the-
middle approach, we have the attack equation as follows.

f1(x8)
f2(x8)

=
g1(ỹ(y, k(15)))
g2(ỹ(y, k(15)))

(5)

From Table 1, the numbers of coefficients in g1 and g2 are 14 and 10, respectively.
The numbers of coefficients in f1 and f2 are estimated to be at most 1413.
Therefore, the required number of p/c pairs for constructing Eq. (5) is at most
(14 − 1) × (1413 − 1) + 10 × 1413 ∼ 215 for a guessed k(15). Since k(15) is 64 bits,
the average of the required complexity of this attack is at most 215 × 264 × 1

2 ∼
about 278 times of computation of the round function.

If we didn’t know the actual numbers of coefficients in g1 and g2, we would
estimate them to be 48 and 32, respectively, from Eq. (1) and the degrees of
z

(2)
2 in Table 1. Then, the attack would be considered as impossible because the

required number of pairs exceeds 216.
We applied similar key-recovery attacks to SNAKE with the blocksize of 128

bits with several rounds. Similarly to Section 4, we show some best attacks in
Table 9. As a practical attack of SNAKE(2)(16, 4, 128, 16), we give the attack
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Table 8. Degrees of rational expression over GF(216) of SNAKE(2)

when x = (x8, x8 + x7, x7, . . . , 0)
z

(1)
4 , z

(1)
3 , z

(1)
2 , z

(1)
1

1,0
0,0 ,

1,1
0,0 ,

0,1
0,0 ,

0,0
0,0

z
(2)
4 , z

(2)
3 , z

(2)
2 , z

(2)
1

0,0
1,0 ,

0,0
0,1 ,

0,0
0,0 ,

0,0
0,0

z
(3)
4 , z

(3)
3 , z

(3)
2 , z

(3)
1

1,1
0,1 ,

1,1
0,0 ,

0,1
0,0 ,

1,1
1,1

z
(4)
4 , z

(4)
3 , z

(4)
2 , z

(4)
1

2,1
3,1 ,

1,2
1,3 ,

1,1
1,1 ,

1,2
1,2

z
(5)
4 , z

(5)
3 , z

(5)
2 , z

(5)
1

4,7
3,7 ,

3,4
2,3 ,

1,3
1,2 ,

7,8
7,8

z
(6)
4 , z

(6)
3 , z

(6)
2 , z

(6)
1

13,14
14,14 ,

9,13
9,14 ,

8,9
8,9 ,

14,22
14,22

z
(7)
4 , z

(7)
3 , z

(7)
2 , z

(7)
1

35,52
34,52 ,

25,35
24,34 ,

15,25
15,24 ,

52,67
52,67

z
(8)
4 , z

(8)
3 , z

(8)
2 , z

(8)
1

105,139
106,139 ,

76,105
76,106 ,

60,76
60,76 ,

139,199
139,199

z
(9)
4 , z

(9)
3 , z

(9)
2 , z

(9)
1

310,433
309,433 ,

224,310
223,309 ,

154,224
154,223 ,

433,587
433,587

z
(10)
4 , z

(10)
3 , z

(10)
2 , z

(10)
1

916,1258
917,1258 ,

663,916
663,917 ,

493,663
493,663 ,

1258,1751
1258,1751

z
(11)
4 , z

(11)
3 , z

(11)
2 , z

(11)
1

2724,3764
2723,3764 ,

1975,2724
1974,2723 ,

1412,1975
1412,1974 ,

3764,5176
3764,5176

z
(12)
4 , z

(12)
3 , z

(12)
2 , z

(12)
1

8067,11131
8068,11131 ,

5839,8067
5839,8068 ,

4257,5839
4257,5839 ,

11131,15388
11131,15388

z
(13)
4 , z

(13)
3 , z

(13)
2 , z

(13)
1

23951,33059
23950,33059 ,

17363,23951
17362,23950 ,

12543,17363
12543,17362 ,

33059,45602
33059,45602

z
(14)
4 , z

(14)
3 , z

(14)
2 , z

(14)
1 – , – , 37316,51441

37316,51441 , –
Note) degrees with respect to x8 and x7

which requires < 232 p/c pairs and complexity of 247 times the computation of
the round function. It uses the chosen plaintexts s.t. x = (x8, x8+x7, x7, 0, . . . , 0).
This brings about the rational expression in two variable of the fewest coefficients
for SNAKE(2).

6 Discussion and Concluding Remarks

Division by 0. Here we discuss a problem in the interpolation attack using
rational expressions, which wasn’t pointed out in [3]. The problem is that we
can’t always construct correct rational expressions if at least one of the inputs
of S-boxes are 0 in the encryption process. We can detect this by comparing the
degree of the constructed rational expression with that in Table 2 etc. The de-
gree often gets higher. If this happens, we may construct the rational expression
again using different pairs of plaintexts and ciphertexts. In this case the requi-
red number of p/c pairs can be estimated by the cryptanalysis with probabilistic
non-linear relations shown by Jakobsen [2]. This is based on Sudan’s algorithm
for decoding Reed-Solomon codes beyond the error-correction diameter. If we
apply Jakobsen’s result to this problem, when the rational expression holds with
probability µ, the attack is possible with N = N

µ2 p/c pairs in time polynomial in
N , where N is the number of coefficients in the rational expression. The probabi-
lity µ is equal to the probability with which none of the inputs of S-boxes are zero
in the encryption process. Therefore, µ =

( 2m−1
2m

)4r
for SNAKE(i)(m, 4, 8m, r),

if we assume every input of the S-box is random and independent. For example,
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Table 9. Interpolation attacks of SNAKE(i)(16, 4, 128, r)

SNAKE(1)
#rounds(r) #pairs complexity chosen plaintexts strategy

13 213 228 (x8, 0, . . . , 0) 11i+ 1k
14 215 230 (x8, 0, . . . , 0) 12i+ 1k
15 215 294 (x8, 0, . . . , 0) 12i+ 2k

216 279 (x8, 0, . . . , 0) 12i+ 1g + 1k
SNAKE(2)

#rounds(r) #pairs complexity chosen plaintexts strategy
13 211 274 (x8, x8, 0, . . . , 0) 10i+ 1g + 1k

212 227 (x8, x8, 0, . . . , 0) 11i+ 1k
14 214 229 (x8, x8, 0, . . . , 0) 12i+ 1k
15 214 293 (x8, x8, 0, . . . , 0) 12i+ 2k

215 230 (x8, x8, 0, . . . , 0) 13i+ 1k
16 215 294 (x8, x8, 0, . . . , 0) 13i+ 2k

232 247 (x8, x8 + x7, x7, 0, . . . , 0) 14i+ 1k

the attack for SNAKE(i)(8, 4, 64, 11) is possible with N = N
µ2 ∼ 1.411N p/c

pairs in time polynomial in N , and the attack for SNAKE(2)(16, 4, 128, 16) is
possible with N ′ = N ′

µ2 ∼ 1.002N ′ p/c pairs in time polynomial in N ′.

Diffusion layer. It is the plain diffusion layer that makes the interpolation attack
on the cipher SNAKE(2) easier. The diffusion layer of the cipher SNAKE(2)
keeps the outputs of some subblocks constant for some chosen plaintexts. We
have to consider this in designing the diffusion layer.

Concluding remarks. We presented an efficient interpolation attack using a
computer algebra system. We succeeded in attacking the block cipher SNAKE
efficiently – with smaller complexity and fewer p/c pairs – 1) by finding the
actual number of coefficients in the rational expression used in the attack and
2) by finding the rational expression with the fewest coefficients by choosing the
plaintexts. We found some attacks feasible which we would consider as impossible
by the interpolation attack described in [3]. When we evaluate the resistance of a
block cipher to the interpolation attack, it is necessary to apply the interpolation
attack described in this paper.

We showed that when the block size is 64 bits and m = 8, all round keys
are recovered for SNAKE(1) and SNAKE(2) with up to 11 rounds. Moreover,
when the block size is 128 bits and m = 16, all round keys are recovered for
SNAKE(1) with up to 15 rounds and SNAKE(2) with up to 16 rounds.
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Appendix

instance deduction

k
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th round

8 th round

7 th round

z(7)
2

y6 y1

Fig. 3. A chosen plaintext attack
of SNAKE(2)(8,4,64,9)

instance deduction

k
(15)
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(x  ,x  ,0 ,0) (0,0,0,0)8 8

th round

12 th round

11 th round
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2

y

global deduction

14 th round

15 th round
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Fig. 4. A chosen plaintext attack
of SNAKE(2)(16,4,128,15)
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