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Abstract

This paper deals with decision problems related to the star problem in trace monoids, which
means to determine whether the iteration of a recognizable trace language is recognizable. Due
to a theorem by G. RICHOMME from 1994 [32, 33], we know that the star problem is decidable
in trace monoids which do not contain a submonoid of the form {a,c}* x {b,d}*.

Here, we consider a more general problem: Is it decidable whether for some recognizable
trace language IR and some recognizable or finite trace language IP the intersection IR N IP*
is recognizable? If IP is recognizable, then we show that this problem is decidable iff the
underlying trace monoid does not contain a submonoid of the form {a,c}* x b*. In the case of
finite languages IP, we show several decidability and undecidability results.
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1 Introduction

Free partially commutative monoids, also called trace monoids, were introduced by P. CARTIER
and D. FOATA in 1969 [5]. In 1977, A. MAZURKIEWICZ proposed trace monoids as a potential
model for concurrent processes [25], which marks the beginning of a systematic study of trace
monoids by mathematicians and theoretical computer scientists, see e.g., [7, 8].

One main stream in trace theory is the study of recognizable trace languages, which can be
considered as an extension of the well studied concept of regular languages in free monoids. A major
step in this research is E. OCHMANSKI’s PhD thesis from 1984 [30]. Some of the results concerning
regular languages in free monoids can be generalized to recognizable languages in trace monoids.
However, there is one major difference: The iteration of a recognizable trace language does not
necessarily yield a recognizable language. This fact raises the so called star problem: Given a
recognizable language L, is L* recognizable? In general, it is not known whether the star problem
is decidable. The main result after a stream of publications dealing with this problem is a theorem
stated by G. RICHOMME in 1994, saying that the star problem is decidable in trace monoids
which do not contain a particular submonoid called C4 [32, 33]. It is not known whether the
star problem is decidable in trace monoids with a C4-submonoid. It is even unknown for finite
trace languages.

Recently, D. KIRSTEN has shown that in trace monoids with a C4-submonoid it is undecidable
whether for two recognizable trace languages IR and IP the intersection IRNIP* yields a recognizable
language [19, 22]. He also remarked that this problem is decidable in trace monoids without a
P3-submonoid due to results by J. SAKAROVITCH. Here, we show that this problem is already
undecidable in the trace monoids with a P3-submonoid. Consequently, the trace monoids without
a P3-submonoid are exactly the trace monoids in which we can decide recognizability of IR N IP*
for recognizable languages IR and IP.

Secondly, we improve D. KIRSTEN’s result to finite languages IP. In fact, in trace monoids with
a C4-submonoid, we cannot decide recognizability of IR N IP* for recognizable languages IR and
finite languages IP.

Surprisingly, the combination of both improvements yields a decidable problem: In P3, i.e. in
{a,b}* x b*, we can decide for a recognizable language IR and a finite language IP whether RNIP* is
recognizable. Moreover, provided that IP contains a trace of the form (b);), we can decide whether
IR NIP* is recognizable.

The paper is organized as follows. After this introduction, Section 2 gives a formal overview
consisting of an explanation of notions from algebra, formal language theory up to an overview of the
star problem. In Part 2.5, we state our results in complete detail and discuss some open questions.
In Section 3, we recall some classic results concerning automata and recognizable languages which
we will use in our main proofs. In Sections 4 and 5, we give the proofs of the decidability and
undecidability results, respectively.

2 Formal Definitions

2.1 Preliminaries

We introduce some notions from algebra and trace theory. By IN, we denote the set {0,1,2,...}.
We allow to denote some singleton set by its element, e.g., we write 5 to denote both the number
five and the singleton set consisting of the number five.

Assume some monoid IM. We denote its identity by Anr, or shortly by A. Usually, we denote
the product in IM by juxtaposition but sometimes by - or -p to avoid confusion.

For every n € IN and m € M, we define the n-fold product by m® = A\p; and m™+! = m"m.
We extend the product and the n-fold product to subsets of IM as usual. Note that for every subset
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L C M, we have LY := {A\y}. In particular, i°® = {A\py}. For subsets L C M, we define the
non-empty iteration Lt as the union L' U L? U L? U ... We denote the iteration of L by L* and
define it by L* := Apy U LT. For integers 4 < 5, we denote by L%/ the union L' U L'*' U... U LJ.

Assume two monoids IM and IM'. We denote their cartesian product by IM x IM’. For some
subsets L C IM and L' C IM', we denote their cartesian product by L x L', or sometimes, by ( LL,)
to visualize the componentwise concatenation.

Again, assume two monoids IM and IM’. We call a function h : IM — IM' a homomorphism iff h
preserves the product and the identity. We extend the notion of homomorphisms to subsets of IM
as usual. We denote the inverse of some homomorphism h by h~!. We call h an isomorphism iff h
is both injective and surjective, i.e., iff for every m € IM', the set h~'(m) is a singleton. Then, we
can regard h~" as a homomorphism from IM’ to IM. We call two monoids IM and IM" isomorphic
iff there exists an isomorphism between them.

2.2 Monoids, Languages and Traces

By an alphabet, we mean a finite set of symbols. We call its elements letters. Assume an alphabet 3.
We denote the free monoid over 3 by ¥*. For every word w € ¥*, we call the number of letters of
w the length of w, and denote it by |w|. We denote by alph(w) set of letters which occur in w.

P. CARTIER and D. FOATA introduced the concept of the free partially commutative monoids
in 1969 [5]. In 1977, A. MAZURKIEWICZ considered this concept as a potential model for concurrent
systems [25]. Since then, free partially commutative monoids are examined by both mathematicians
and theoretical computer scientists. For a general overview, I recommend the surveys [7, 8].

We call a binary relation I over some alphabet ¥ an independence relation iff I is irreflexive
and symmetric. For every pair of letters ¢ and b with alb, we say that a and b are independent,
otherwise a and b are dependent. We call the pair (X, ) an independence alphabet. We call two
words wy,wy € 3* equivalent w.r.t. I iff we can transform w; into ws by finitely many exchanges of
independent adjacent letters which we denote by wy ~ wse. For instance, if a and ¢ are independent
letters, baacbac, bacabac, and becaabca are mutually equivalent words.

The relation ~7 is an congruence relation w.r.t. the concatenation. For every word w € ¥*,
we denote by [w]; the congruence class of w. We call the factorization of the free monoid ¥*
under ~; the trace monoid over X and I and denote it by IM(X,I) . We call its elements, i.e.,
the congruence classes [w]; traces, its subsets trace languages or shortly languages. The function
[]r is a homomorphism from ¥* to IM(X,I). As long as no confusion arises, we omit the index I
at []7. We denote by []; ! the inverse of the homomorphism []7, i.e, for any trace t € IM(X, I),
[t];" denotes the set of all words in the trace (congruence class w.r.t. ~) t.

If I is the empty relation over X, then the trace monoid IM(X, ) is isomorphic to the free
monoid X*. If T is the largest irreflexive relation over X, i.e., two letters ¢ and b are independent
iff @ and b are different, then IM(X, I) is isomorphic to the free commutative monoid over X.

Because the words in some trace differ only in the order of their letters, we can define the length
|t| and the alphabet alph(¢) of some trace ¢ as the length and the alphabet of any word in the trace
(congruence class) t, respectively.

Assume some independence alphabet (3,). Every subset I' C 3 induces some independence
alphabet (I‘, INn(T XI‘)) which we denote for short by (T, I).

Assume that we can split ¥ into two non-empty, disjoint subsets I" and A such that (I'x A) C I,
i.e., we have alb for any letters ¢ € ' and b € A. Then, we call the independence alphabet non-
connected. The trace monoid IM(X, I) is isomorphic to the cartesian product IM(T', I) x IM(A, I).

Conversely, assume two independence alphabets (T, Ir) and (A, Ia) such that T N A = 0.
The cartesian product IM(T", It) x IM(A, Ia) is isomorphic to the trace monoid IM(X, I) where

Y=TUA and I=1Ix UIx U (('xA) U (AxT).
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Hence, we can regard the cartesian product of two (disjoint) trace monoids as a trace monoid.
Later, two trace monoids will play a crucial role: the so-called P3 and C4 which are defined (up to
isomorphism) by {a,c}* x b* and {a, c}* x {b,d}*, respectively.

We call some independence alphabet (3, 1) connected if we cannot split ¥ into two non-empty,
disjoint subsets I' and A with (I' x A) C I.

For some independence alphabet (X, 1), we call some trace t € IM(3,I) non-connected (resp.
connected) if the independence alphabet (alph(t), I) is non-connected (resp. connected). Equiva-
lently, some trace t € IM(X, I) is non-connected iff there are two non-empty traces t1,to € IM(X, 1)
with ¢ = ¢t such that alph(¢;) x alph(tz) C I. Some trace () in P3 or C4 is connected iff u or v
is the empty word A. For some trace language L € IM(X,I), we denote by NC(L) and Cn(L) the
set of the connected and non-connected traces in L, respectively. We call some trace language L
connected iff NC(L) = 0.

We call a homomorphism A between two trace monoids IM(X, Is) and IM(A, Ia) connected iff
for every t € Cn(IM(X, I,)), we have h(t) € Cn(IM(A, IA))

Assume traces t1,to € IM(X, I). We call ¢1 a prefiz of ty (for short t1 C to) iff t5 € ty IM(2, 1),
i.e., iff there is some trace s € IM(X, I) such that to = t1s. We call t; a proper prefiz of ty (for
short t1 C t9) iff t1 C to and t; # to. We call t1 and to prefiz-consistent (for short ¢ M ty) iff there
is some t € IM(X, I) with ¢; C ¢ and #2 C ¢, i.e., iff the languages ¢; IM (X2, I) and t2 IM(X, I) are not
disjoint. If IM(X, I) is a free monoid, then ¢y Mty iff t1 C t5 or £y C t4.

Assume that IM (3, I) is isomorphic to some cartesian product IM(A, I) x IM(T', I). Then, two
traces (1;11), (:ﬁ) € IM(X, I) are prefix-consistent iff uy Mug and vy Mwvs.

Assume two alphabets A and T' and a homomorphism A : A* — T'*. We call h a prefiz-homo-
morphism iff for any letters a # b in A we have h(a) Z h(b). We call h a biprefiz-homomorphism
iff additionally for any letters @ # b in A there is not any w € I'* with wh(a) = h(b).

2.3 Automata and Recognizable Sets

We introduce the notion of recognizable languages as far as we need it in this paper, for a more
general overview we recommend [2, 10].

Assume some monoid M. An IM-automaton is a triple A = [Q,h, F], where @ is a finite
monoid, h is a homomorphism A : IM — @ and F' is a subset of (). We define its language by
L(A) = h1(F). We call Q the monoid of A and the elements of Q states. We call F the set of
accepting states of A and h the homomorphism of A. Without loss of generality, we can assume
that h is a surjective homomorphism from M to Q.

We call some subset (resp. language ) L C IM recognizable iff there is some IM-automaton with
L = L(A). We denote the class of all recognizable sets over IM by REC(IM). In free monoids,
recognizable languages are usually called regular languages.

It is a classic result that for any monoid IM, REC(IM) contains the empty set (), IM itself and
it is closed under union, intersection, complement, and inverse homomorphisms [2, 10]. We need a
theorem by J. MEZEI concerning recognizable sets in Cartesian Products, cf. [2, 10].

Theorem 2.1 Assume two monoids IM and IM’'. Some set T is recognizable in IM x M’ iff
there are an integer n, sets Ki,..., K, € REC(IM) and sets L1, ..., L, € REC(IM') such that we
haveT:(leLl)U...U(KnXLn). O

The next lemma shows a widely used technique (cf. [2]).

Lemma 2.2 Assume some monoid IM and recognizable sets Lq,...,L, € IM for some n >
There are a finite monoid @), a surjective homomorphism h : M — @, and sets Fp,...,F, C

0.
Q
such that for ¢ € {1,...,n}, the automaton [Q, h, F;] defines L;. O
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Proof: Assume for i € {1,...,n} automata [Q;, h;, G;] for L;. We define Q = Q1 X ... X Q.
The homomorphism h maps every p € IM to (hi(p),...,hn(p)). For i € {1,...,n} we define
Fi=0Q1X...x Qi1 X G X Qit1 X ... X Q. It is an easy verification that for i € {1,...,n} the
automaton [Q, h, F;] defines L;. To obtain a surjective homomorphism h, we have to restrict @) and
F; for i € {1,...,n} to h(IM) and h(IM) N F;, respectively. 0

For any trace monoid IM(X, I), REC(IM(X, I)) contains all finite subsets of IM(X, I) and is closed
under concatenation [11] and iteration of connected recognizable trace languages [30, 6, 26]. In trace
monoids, recognizable languages are not closed under homomorphisms. However, we have the
following theorem:

Theorem 2.3 Assume two trace monoids IM(X, I) and IM(A, Ia), a homomorphism
h:M(X, Is) — IM(A, In), and some language L C IM(3, Iy).

1. If h is connected, then recognizability of L implies recognizability of h(L).
2. If h is injective, then recognizability of h(L) implies recognizability of L. O

Assertion (1) is due to C. DuBoc [9]. It is a generalization of the well-known fact that homo-
morphisms between free monoids preserve recognizability. Assertion (2) is obvious, because we
have L = h~'(h(L)) and the closureship of recognizable sets under inverse homomorphisms.
The survey article [29] gives an overview on recognizable trace languages including proofs of the
closure properties.

We need the following useful lemma concerning recognizable trace languages and the notions
of connected and non-connected traces.

Lemma 2.4 Assume some trace monoid IM(X, I). Some language L C IM(X, I) is recognizable iff
both NC(L) and Cn(L) are recognizable. O

Proof: We have L = NC(L) U Cn(L), i.e., recognizability of both NC(L) and Cn(L) implies
recognizability of L.

Assume that L is recognizable. We have NC(L) = LN NC(IM(X,I)) and Cn(L) = L\ NC(L),
i.e., it suffices to show that NC(IM(X, I)) is recognizable. We can construct an IM (3, I')-automaton
[2*, alph, F] for NC(IM(X, 1)), where 2* denotes the power set of ¥ with set union as product.
The set F consists of the subsets I' C 3 such that induced subalphabet (T", I') is non-connected. O

Let us shortly mention the notion of rational sets. Assume some monoid IM. The set of rational
expressions REX(IM) is the smallest set which contains the symbol (), the elements in IM and is
closed as follows: For some expressions r, 1,7, € REX(IM), the expressions r*, (14 Ursy), and (r172)
belong to REX(IM). Every rational expression r defines a language L(r) as usual.

We have KLEENE’s classic result which asserts that in free monoids the recognizable sets and
the rational sets coincide [37]. In trace monoids, we have just one direction due to a more general
result by J. MCKNIGHT [2, 10]: Every recognizable trace language is rational. Moreover, we can
transform every automaton into a rational expression which defines the same language. However,
there are rational trace languages which are not recognizable unless the underlying trace monoid
is a free monoid. See [3] for more information on rational trace languages.
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2.4 The Star Problem

The following questions concerning the gap between the classes of recognizable and rational lan-
guages in trace monoids arise:
Recognizability Problem: Can we decide whether the language of a rational expression is a
recognizable language?
Star Problem: Can we decide whether the iteration of a recognizable language yields a recogniz-
able language?

J. SAKAROVITCH answered the first question in 1992.

Theorem 2.5 Assume a trace monoid IM (X, I'). The following three assertions are equivalent:

(1) IM(3, 1) does not contain an P3-submonoid.
(2) The rational languages of IM(3, I') form an (effective) Boolean algebra.

(3) We can decide whether the language of a rational expression yields a recognizable language. O

The equivalence of (1) and (2) is proved in [4, 1, 35], assertion (3) is added in [36].

During the recent 16 years, many papers have dealt with the star problem. However, only
partial results have been achieved. We give a brief survey about its history. The star prob-
lem in the free monoid is trivial due to S. C. KLEENE, and it is decidable in free commutative
monoids due to S. GINSBURG and E. SPANIER [15, 16]. In 1984, E. OCHMANSKI examined recog-
nizable trace languages in his PhD thesis [30] and stated the star problem. During the eighties,
E. OcHMANSKI [30], M. CLERBOUT and M. LATTEUX, [6] and Y. METIVIER [26] independently
proved that the iteration of a connected recognizable trace language yields a recognizable trace
language. In 1992, J. SAKAROVITCH found the solution of the recognizability problem shown in
Theorem 2.5. This solution implies the decidability of the star problem in trace monoids which
do not contain a P3-submonoid. The attempt to extend SAKAROVITCH’s characterization to the
star problem failed, just in the same year, P. GASTIN, E. OCHMANSKI, A. PETIT, and B. Rozoy
showed the decidability of the star problem in P3 [12].

During the subsequent years, Y. METIVIER and G. RICHOMME developed these ideas. They
showed decidability of the star problem for trace languages containing at most four traces as well
as for finite sets containing at most two connected traces [27, 28]. Finally, G. RICHOMME proved
the following theorem [24, 33].

Theorem 2.6 The star problem is decidable in trace monoids without C4-submonoid. O

Recently, D. KIRSTEN and G. RICHOMME showed the equivalence between the star problem and the
so-called finite power problem, which means to determine whether some recognizable language L has
the finite power property, i.e., whether there is some integer n such that L* = LOU L' U... U L™.
Further, they reduced the remaining cases of the star problem to some particular languages in
certain trace monoids [24].

Recently, D. KIRSTEN introduced the so-called generalized star problem (for short GSP) [19, 22]:
Generalized Star Problem: Can we decide whether for two recognizable languages IR, IP in
some trace monoid the intersection IR N IP* yields a recognizable language?

In the particular case that IR is the complete trace monoid, the GSP is exactly the star problem.
As a conclusion from Theorem 2.5, the GSP is decidable in trace monoids without P3-submonoid.
To decide whether IR N IP* is recognizable, we construct rational expressions for IR and 1P, resp.,
a rational expression for IR N IP* by Theorem 2.5(2) and finally, we determine by Theorem 2.5(3)
whether this expression defines a recognizable language.

Recently, D. KIRSTEN has shown the following result [19, 22]:

Theorem 2.7 Assume some trace monoid IM(X, I) with a C4-submonoid. The GSP is undecid-
able in IM(X, I). O
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2.5 Main Results, Conclusions, and Future Steps

In this paper, we show various improvements of Theorem 2.7. We also show some decidability
results for particular cases of the GSP. Weaker versions of our theorems were already announced
in [23]. Theorem 2.10 already occurred in [21] among other results.

On one hand, we show the following improvements of Theorem 2.7:

Theorem 2.8

1. It is undecidable whether for some recognizable language IP C P3 = {a,c}* x {b}* the inter-
section (a{‘z’f}*) N ({a’gj’*a) N IP* is recognizable.

2. There is some fixed recognizable language IR, C C4 such that it is undecidable whether for
some finite language IP C C4 the intersection IR N IP* is recognizable.

3. It is undecidable whether for some recognizable language IP C C4 = {a,c}* x {b,d}* the

intersection (a{{b‘féc}i*) NTP* is recognizable. 0

Note that the intersection in Assertion (1) just means to select the traces from IP* whose first

component starts and ends with the letter a. We prove Assertion (1) in Part 5.1 by a reduction

to some undecidable problem concerning picture languages. Because the GSP is decidable in trace
monoids without P3-submonoid, we obtain the following corollary from Assertion (1):

Corollary 2.9 Assume some trace monoid IM(X, I). It is decidable whether for two recognizable
languages IR, IP C IM (3, I) the intersection IR, N IP* is recognizable iff IM(X, I) does not contain a
P3-submonoid. O

In Part 5.2, we show Assertions (2) and (3) by a reduction to a variant of the PCP. An example
for some language IR in Assertion (2) is the language

{bbbdbbdddbddb, bbbdbbdddbddd}+ bb

R ({CLCLCLCGGCCCCLCCCL, CLCLCLCCLCLCCCCLCCC}+ aa)

(cf. Remark 5.13 on page 23.) On the other hand, at least in the trace monoid P3, the GSP is
decidable as far as IP satisfies some property:

Theorem 2.10 It is decidable whether for two recognizable languages IR, IP C P3 = {a, c}* x{b}*
the intersection IR N IP* is recognizable, provided that TP satisfies at least one of the following
properties:

1. There is some integer n such that NC(IP) C (éf’c};), or

.....

2. some trace of the form (b);) belongs to IP. 0

We give its proof in Section 4. We will use HASHIGUCHI's distance automata in a crucial way as
well as some pumping techniques. For lucidity, we state the following corollary which is an obvious
conclusion from Theorem 2.10:

Corollary 2.11 It is decidable whether for two recognizable languages R, IP C P3 = {a, c}*x{b}*
the intersection IR N IP* is recognizable, provided that NC(IP) is finite. 0

Clearly, if NC(IP) is finite, then IP satisfies Property (1) in Theorem 2.10. However, IP = ({a’bc}*)
satisfies Property (1) in Theorem 2.10, although NC(IP) is infinite, i.e., Corollary 2.11 is weaker
than Theorem 2.10.

Although Theorem 2.8(3) seems to be close to an answer to the star problem, we do not
know whether it is undecidable in C4. We regard the star problem as the most important open
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question in this area. We leave it to the reader to use our results to obtain a conjecture for the
star problem. Corollary 2.9 states a characterization of the trace monoids with a decidable GSP.
An open question is to characterize the trace monoids in which the GSP is decidable under the
restriction to finite languages IP. For instance, in the trace monoid {a,c}* x ¢* x d* = P3 x d*
we can neither apply Theorem 2.8(2) nor Corollary 2.11. The attempt to show some variants of
Theorem 2.10 and Corollary 2.11 for P3 x d* by adapting the proof ideas for Theorem 2.10 leads
to serious problems, e.g., to some notion of HASHIGUCHI’s distance automata over P3 ...

One more remaining problem is to show some common improvement of Theorem 2.8(2) and
Theorem 2.8(3), i.e., to show Theorem 2.8(2) for R = (a{{b?éi}**) which means to show Theorem 2.8(3)
for finite languages IP.

Finally, a question is whether one can show Theorem 2.8(1) for the intersection (a{‘Z’f}*) NP
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3 Some Classic Results

In this section, we recall some classic notions and results which we will use in our main proofs.
In Part 3.1, we deal with transition automata by M. O. RABIN and D. ScoTT and distance
automata by K. HASHIGUCHI. Then, we consider transition automata over trace monoids.

In Part 3.3, we recall picture languages and finally, in Part 3.4, we deal with a variant of POST’s
Correspondence Problem which will be very suitable in the proof of Theorem 2.8.

3.1 Transition Automata over Free Monoids

We recall some notions from automata theory. At first, we deal with two technical lemmas con-
cerning recognizable languages in free monoids.

Lemma 3.1 Assume some alphabet ¥ and some automaton [@, h, F] such that h : ¥* — @ is a
surjection. For every ¢ € @, there is some word w € h™'(q) with |w| < |Q). O

Proof: Assume some ¢ € Q and some w € h~'(q). If jw| < |Q|, then we are done. Assume |w| > |Q].
Choose letters ay, ..., a), € ¥ such that a;...a}, =w. Because |w| > |Q|, there are two integers
0<i<j <|w| with h(ai...a;) = h(a1...a;), i.e, ¢=h(ar...a;,) = h(ar...a;a;41...a),,) and
lai...ajaj41...ap)| < |w|. By applying such a cut as many times a necessary, we construct some
word w' with |w'| < |Q]| and h(w') = q. 0

See [10, p. 101] for a proof of the following lemma.

Lemma 3.2 Some language L C b* is recognizable iff there are some finite language Lo C b* and

integers z, n, my,...,my such that L= (J L; with L; = b™i(b*)* for i € {1,...,n}. O
1€40,...,n}

Clearly, we can assume z,my,...,my > 0. If L is given by some automaton, then we can construct

Ly and the integers z, n, and mq, ..., my.

Transition automata originate from M. O. RABIN and D. Scott [31]. See [2, 10] for more
information. A transition automaton is a quadruple A = [Q, s, F, F], where

e (Q is a finite set called the states,
e s € () is called the initial state,
e F C Q x3XxQ is a set called the edges, and

e F' C ( are called the accepting states.

We call a path in A a finite sequence of edges (q1,a1,42)(q2,a2,43) - - - (qn, @n, @ny1) for some n > 0.
We call the word ay . ..a, the label of this path. We call a path accepting iff ¢ = s and ¢g,11 € F.
The language of A, denoted by L(.A), consists of the labels of accepting paths.

Sometimes, it is quite convenient to consider transition automata as devices which process with
some (read-only) head over a tape. In the beginning, the automaton rests in the initial state s, the
tape contains some word w € »*, and the head of the automaton is over the first letter of w. If the
first letter of w is a and there is some edge (s, a,q) € E, then the automaton can read a, i.e., it can
change the state to ¢ and move the head to the second letter of w.

It is a classic result in automata theory that transition automata over free monoids define exactly
the recognizable languages (cf. [2, 10]). Moreover, we can transform every transition automaton into
a Y*-automaton which defines the same language, and vice versa. Further, for every recognizable
language L C ¥* with A\ ¢ L, we can construct a transition automaton [Q, s, E/, F] for L such that

e |[F|=1and
« ECQ\F)xSx(Q\5)
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provided that L is given by, e.g., some transition automaton or some ¥*-automaton (cf. [2, 10]).
We can generalize transition automata by allowing that E is a finite subset of @ x T x Q.
Then, the label of some path (q1,u1,q2)(q2, u2,q3) - .. (qn, Un, gnr1) is the concatenation w; ... uy,.
As above, we define the language of such an automaton as the set of the labels of any accepting
path. We can transform some transition automaton [Q,s, F, F] with E C (Q x ¥* x Q) into a
transition automaton [Q', s, E', F] with E' C (Q' x ¥ x Q') which defines the same language. If we
consider such an automaton as a device over some tape, then this generalization simply means that
the automaton can read several letters in one step.

We can further generalize transition automata by allowing that F is some (not necessarily
finite) subset of @ x 1 x Q. However, these generalized transition automata exceed the concept
of recognizable languages in %*. Nevertheless, we will use them as a convenient tool in the proof
of Proposition 4.4.

Distance automata were introduced by K. HASHIGUCHI [17, 18]. We assume some element oo
which is bigger than every integer. A distance automaton is a tuple A = [Q, s, F, F, §] where

e [Q,s,E, F] is a transition automaton, and

¢ §:QxXxQ —{0,1,00} is a function called distance function such that for every ¢,q' € Q
and a € 3 we have 0(q,a,q') = 00 iff (¢,0a,¢') € E.

Opposed to K. HASHIGUCHI who considered distance automata with several initial states, we just
deal with distance automata with exactly one initial state.

We define the language of some distance automaton A = [Q, s, E, F, ] as the language of the
transition automaton [@Q, s, E, F]. We define the distance of some path (q1,a1,42) ... (qn,@n,Gn+1)
as the sum §(q1,a1,q2) + 0(g2,a2,q3) + ... + 0(qn, an, gn+1) where the sign “+” denotes common
integer addition. We denote the distance of some word w € L(A) by d(w) and define it as the least
integer n such that there is an accepting path in A with the label w and the distance n. We define
the distance of every word w ¢ L(A) by 6(w) = co. We call some distance automaton A limited
in distance iff there is some integer dnax such that for every word w € L(A) we have §(w) < dpax-
We use the following strong result by K. HAsHIGUCHI [17, 18] in a crucial way.

Theorem 3.3 It is decidable whether some distance automaton is limited in distance. O

3.2 Transition Automata over Trace Monoids

We assume some trace monoid IM(X, I') within this part. Transition automata over IM(X, ) are
defined as transition automata over ¥*. However, the label of some path (q1, a1, ¢2)(g2, a2,q3) - ..
(Gn» Gn, Gn+1) is the trace [a1as ... a,] € IM(X, I). Transition automata over IM(X, I') define exactly
the rational languages over IM(X, I).

A transition automaton A = [Q,s, F, F| respects I iff for every p,q,r € @ and for every
independent a,b € ¥ with (p,a,q), (¢,b,7) € E we have some ¢’ € @ and (p,b,q¢'),(¢,a,r) € E.
Transition automata over IM(3, I) which respect I define the recognizable languages over IM(%, I).

Similarly to transition automata over free monoids, we can also allow that F is some finite or
even infinite subset of @ x IM(X, I) x Q. However, infiniteness of E exceeds the concept of rational
trace languages.

If M(X, I) is a isomorphic to a monoid I'* x A*, then we can consider transition automata over
'™ x A* as devices which process with two heads over two tapes, respectively. In the beginning,
the automaton is in the initial state s, and some trace (:j) € I'™ x A* is represented on the tapes,
i.e., u and v are represented on the first and second tape, respectively. If there is some instruction
(s,a,q) € E, and u starts with some letter a € ', then the automaton can read a, i.e., it changes
its state to ¢, moves the first head to the second letter of u, and does not move the second head.
If we allow instructions @ x (I‘* X A*) X @, then the automaton can move both heads in one step.
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3.3 Picture Languages

Pictures and picture languages are a generalization of words and word languages. We use some
very basic notions from the theory of picture languages. See [14] for a recent survey. Assume
some alphabet I'. For two integers m,n > 1, a picture p over I' of the size (m,n) is a map-
ping p : {1,...,m} x {1,...,n} — T'. We call the numbers m and n the height and width of
p and denote them by hgt(p) and wdt(p), respectively. For convenience, we define the mapping
p:{0,...,m+1} x{0,...,n+1} = TU{#}. For every i € {1,...,m} and j € {1,...,n}, pi;
yields p; j. Otherwise, p yields #. We denote the set of all pictures over I' by ['**.

Assume two pictures p and s. The column concatenation p o s is defined iff hgt(p) = hgt(s).
Let us denote the size of p and s by (m,n) and (m,n'), respectively. Then, p o s is defined by:

pPia 0 Pin S1,10 0 Sin/
pos= : . )
Pma o PmpnSm,0  Smp/
The extension of the column concatenation to picture languages is obvious.
We call a set of pictures of the size (2,2) over I' U {#} a local representation over I'. Such a

local representation defines a picture language L(A). A picture p belongs to L(A) iff every (2,2)
sub-picture of p belongs to A:

L(A) = {p e T

i€ {0,... hgt(p)}, j € {0, wdt(p)}: [ Pii Pis+i GA}.
Pi+1,5 Pi+1,5+1

We use the following theorem from [13].

Theorem 3.4 It is not decidable whether the language of a local representation is empty or
whether it is finite. O

D. GIAMMARRESI and A. RESTIVO showed several closure properties of the class of picture lan-
guages of local representations [13]. We just need the following result:

Lemma 3.5 Assume an alphabet I and a letter b € I". We can transform some local representation
A over T" into a local representation A over I' U {b} such that L(A) = L(A) o {b}**. O

Proof (sketch): For any a,c € I we replace tiles (iﬁ), (’f;f), (;i) € A by (‘22), (ﬁif), ( a;&),
respectively, and we insert new tiles (#;f), (22), (;Z ;&)’ (fi), (Zi), (;i) into A, O

3.4 A variant of PosT’s Correspondence Problem

PosT’s Correspondence Problem (for short PCP) is one of the most common undecidable problems.
A PCP instance consists of two alphabets A and ¥ and two homomorphisms «a, 5 : A" — X*.
Assume such an instance for the rest of this part. A solution is a non-empty word w € A" such
that a(w) = S(w). The existence of a solution is undecidable. An infinite sequence iy,i9,%3 ... of
letters in A is called an infinite solution iff for any integer n, the words «(iy ...4,) and B(i1 ... ip)
are prefix consistent. We have the following result due to K. RUOHONEN [34].

Theorem 3.6 Assume a PCP instance such that both o and § are biprefix homomorphisms. It is
undecidable whether it has a solution and it is undecidable whether it has an infinite solution. O

We need the following lemma:

Lemma 3.7 A PCP instance has an infinite solution iff there are infinitely many words w € A*
such that a(w) and B(w) are prefix consistent. O
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Proof: Assume a PCP-instance consisting of A, ¥, «, and S. If it has is an infinite solution
01,19, . .., then we have a(iy ...i,) M B(41 ...1p) for n > 0, i.e., for infinitely many words iy ... y,.
Conversely, let L C A* denote the infinite language which consists of the words in w € A*
such that a(w) M B(w). Clearly, L is prefix-closed. We inductively construct an infinite solution.
Assume some integer n and some word iy ...4, € A* such that i;...4, satisfies two properties:
Firstly, a(iy...0n) M B(i1...10p), i, i1...9, € L. Secondly, 4y ...1i, is a prefix of infinitely many
words in L. Then, there is at least one letter 4,11 € A such that iy ...4,,1 satisfies the same
properties. We can use the empty word A as initial value for the iteration. O
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4 Some Decidable Cases

In this section, we prove Theorem 2.10. Assume two disjoint alphabets ¥ and T" and some letter
b ¢ 3 within this section. To prove Theorem 2.10, we have to show the decidability of a special case
of the GSP, i.e., we have to show that the recognizability of IR N IP* is decidable for recognizable
languages IR, IP C ¥* x b*, provided that IP is finite or some trace of the form (b);) belongs to IP.
Some of our intermediary results also hold for trace monoids of the form »* x I'*.

In Part 4.1, we consider some easy propositions which allow us to reduce the GSP to restricted
languages IR. Then, we consider two cases of Theorem 2.10. In Part 4.2, we show the decidability
of the GSP in trace monoids ¥* x I'* restricted to recognizable languages IP C (X1 x I'%") for
some integer n. This includes the case that IP is a finite subset of X7 x I'*.

In Part 4.3, we use HASHIGUCHI’s distance automata to show the decidability of the GSP in
trace monoids ¥* x I'* provided that some trace of the form (b);) belongs to IP.

4.1 Some Obvious Observations

For some finite language IR C (X* x I'*) and any language IP C (3* x I'*), the intersection IR N IP*
is recognizable because it is finite. We generalize this obvious fact.

Proposition 4.1 Assume two recognizable languages IR,IP C (X* x I'*). The intersection IR NIP*
is recognizable if IR satisfies one of the following conditions:

1. We have IR C (Z* x T'%") for some integer n, or
2. IR is a connected language. O

Proof: By Lemma 2.4, NC(IP) and Cn(IP) are recognizable. The concatenation of some traces
tiy.eoytm € (X% x T'*) for some m yields a non-connected trace if one of the traces ti,..., &, is
non-connected. Hence, if IR is connected, then we have IRNIP* = IRNCn(IP)* which is recognizable
by the closure properties of recognizable trace languages.

Assume that IR satisfies (1). We have IP* = Cn(IP)*(NC(IP)Cn(IP)*>*. Because every non-

connected trace in ¥* x I'* contains at least one letter from I', we have

0,...,n

RNP* = RN Cn(IP)* (NC(IP)Cn(IP)*)
This language is recognizable by the closure properties of recognizable trace languages. O

Proposition 4.2 Assume two recognizable languages IR, IP in some trace monoid. Assume some
integer n and recognizable languages IRy, ..., IR, with IR; U... UIR, = IR. Then, the intersection
IR NIP* is recognizable iff for 7 € {1,...,n} the intersection IR; N IP* is recognizable. 0

Proof: Fori € {1,...,n}, we have IR; NIP* = IR; N (IRNIP*). Hence, recognizability of IR N IP*
implies recognizability of IR; N TP*. Conversely, we have R N TP* = (IRy NTP*) U... U (IR, N TP¥).
Thus, recognizability of IR; N IP* for ¢ € {1,...,n} implies recognizability of IR N IP*. O

From these propositions, we immediately see that for two recognizable languages IR, IP C (X* x ')
the intersection IR N IP* is recognizable, provided that NC(IR) is finite.
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4.2 A Decidable Case in ¥* x IT'*
Now, we work on the GSP for restricted languages IP.

Proposition 4.3 Assume two recognizable languages R, IP C (X* x I'*). We can decide whether
IR N IP* is recognizable if IP C (XF x T'%+") for some integer n. 0

We forbid that the empty trace belongs to IP. However, this is not really a restriction, because
P* = (P (ﬁ))* Note that Proposition 4.3 includes the case that IP is a finite subset of X x I'*.

Proof: Let [Q,h, F] be some automaton for IR. We have Cn(IP) C (¥* x X). We abbreviate
Cn(IP)*NC(IP)Cn(IP)* by IPcne. We show the equivalence of three assertions:

1. The language IR N IP* is recognizable.

2. There is some integer n’ such that (IR N IP*) C (X* x T0-n),
3. The intersection IR.N IPJ;%E_L'“Q'Q'H is empty.

e (2)=(1) We have RNTP* = (£* x T0--"') 0 (R N TP*) which is ((2* x T0-n') IR) NP+,
By Proposition 4.1 (1), this language is recognizable.

e (1)=(2) Assume that IR N IP* is recognizable, but nevertheless, an integer n’ in (2) does
not exist. By MEZEI's Theorem, the intersection IR N IP* consists of finitely many cartesian
products (K x L) C (X* x I'*) with K # () and L # (). Because an integer n' in assertion (2)
does not exist, we can choose a cartesian product (K x L) C (RNIP*) such that L is infinite.
Choose some w € K. We have (wx L) C (IRNTP*) C TP*. Because every trace in IP contains
at least one letter in X, we have (w x L) C POl Because every trace in IP contains at
most n occurrences of letters from I, the length of the words in L cannot exceed n|w]|.
This contradicts that L is infinite.

e (2)=(3) We assume that the intersection in (3) is not empty. Consequently, there is an
integer | € {|Q|+1, ..., 2|Q|+1} and there are traces t1,...,t € Poxe C IP* such that
t1...t; € R. Because |Q| < [, there are two integers i,7 with 0 < ¢ < j < [ such that
h(ti...t;) = h(ti...t;). Then, “we can pump h(tjt1...1;)”. For k> 0, we have

h(t1 R ti) = h(t1 R ti)h(ti_H R t]‘)k and h(tl - tl) = h(tl - ti)h(ti-i-l R tj)kh(tj_H - tl)

This value belongs to F' such that we have (£ ...%;)(tit1...%;)"(tj+1... %) C IR. We also have
(t1.. i) (tigr - )" (tj41 - .- 1) C TP, because ty,...,t € IP*. The traces tj;1,...,t; contain
at least one non-connected trace, i.e., they contain one letter from I'. Hence, by pumping
tit1...tj, we see that an integer n’ as in assertion (2) cannot exist.

e (3)=(2) Let us assume that an integer n' does not exist. Every trace in IP contains at most
n occurrences of letters in I'. However, there are traces in IR N IP* containing arbitrary
many occurrences of letters in I'. Consequently, there are arbitrary big integers [ such that
P, contains traces in IR. So assume an integer [ > |@Q| 4+ 1 such that there are traces
t1,...,t; € Pone with ¢y ... 4 € R. If I < 2|Q| + 1, then we are done.

So assume [ > 2|Q| + 1. As above, there are two integers 4,7 with 0 <4 < 7 < |Q| + 1 such

that h(ti...t;) = h(t1...t;). We have j —i < |Q|. As above, we have t;...¢tj41...14 € R.
Hence, t1...t;tj41 ...t belongs to the intersection IR N PL . By applying such a cut as

. . . 1,...,2|Q|+1
many times as necessary, we obtain some trace in IR N IP(‘;?\I‘(;Ir r2|QIF

Because the closure properties of recognizable trace languages are effective, we can construct an

|QI+1,...,2|Q[+1
]PCNC

automaton for IR N and decide whether its language is empty. O
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4.3 Another Decidable Case in ¥* x b*

In this part, we complete the proof of Theorem 2.10 by showing the following proposition:

Proposition 4.4 Assume two recognizable languages IR, IP C ¥* x b* such that IP contains some
trace of the form (b);). We can decide whether the intersection IR N IP* is recognizable. O

Proof: We can split IR into NC(IR) and Cn(IR). By Proposition 4.2 and 4.1 (2), it suffices to
consider the intersection NC(IR) N IP*. Hence, we assume that IR contains only non-connected
traces in the rest of the proof.

By MEZzEI's Theorem, we can split IR into finitely many cartesian products and apply Proposi-
tion 4.2. Consequently, it suffices to consider the case that IR = K x L for recognizable languages
K C¥* and L Cb*. We have A ¢ K U L, because IR contains not any connected trace.

If L is finite, we know by Proposition 4.1 (1) that IR N IP* is recognizable. Hence, it suffices to
consider infinite languages L in the rest of the proof.

By Lemma 3.2, we can split L into a finite language and finitely many languages of the form
b™(b*)* for some integers m,z > 0. By splitting L, we can split IR to use Proposition 4.2, again.
Hence, it suffices to consider languages L = b™(b%)* for some integers m,z > 0.

We can assume (b):) e IP*. If (b):) ¢ IP*, then we proceed as follows: Assume some n > 0 such
that (b/)l) € IP. The language L is the union of the languages b™+7%(b"*)* for j € {0,...,n — 1}.
Then, (bi‘z) € IP*. As above, we can split IR by splitting L and use Proposition 4.2.

Now, we transform the language IP into a recognizable language TP’ with IR N IP* = IR N IP™*
such that IP’ satisfies some additional properties.

P’ = Cn(IP)*NC(IP)Cn(IP)* U NC(Cn(IP)*)

By Lemma 2.4, both Cn(IP) and NC(IP) are recognizable. Hence, by the closure properties of
recognizable trace languages, the language IP’ is recognizable.

Of course, we have IP’ C IP*, and thus, IP’t C IP*. Further, every trace in IP’* is non-connected
such that we have IP"t C NC(IP*). Assume some trace ¢ € NC(IP*). There is some integer n. > 0
and traces t1,...,t, € P with ¢;...¢, = t. If t1,...,t, € Cn(IP), then we have t = t;...t, €
NC(Cn(IP)*) C IP' C IP"*. Otherwise, we have ¢t € P!, where k is the number of non-connected
traces among t1,...,t,. Hence, we have NC(IP*) C P'*, i.e., we have NC(IP*) = IP’". Because
there are only non-connected traces in IR and in particular (:\\) ¢ IR, we have RN IP* = IR N IP"™*.
Consequently, we can decide whether IR N IP* is recognizable by deciding whether IR N P™* is
recognizable.

Let Py, P, ... be the unique family of languages in ¥* such that
RNP™ = (52) U (brf-llrz) U (mef%) U...
Because every trace in IP’ contains the letter b, we have for any integer 4
R NP/ %z (bm2+u) = (bmljfiz)

Hence, (bmljﬁiz) and by MEZEI's Theorem P; are recognizable for any integer i.
Because (;2) € Cn(IP)*, we have IP'() C IP". Because L = b™(b*)*, we have R(}}) C IR.
Thus, for every (%) € R NP, we have (“)():) € RNIP"*. Hence, we have Py C P, C P...

v
We show the equivalence of four assertions:
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1. R NIP™ is recognizable.
2. There is some integer [ such that for 7 > [ we have P, = F;.

Below, we will state assertion (3) and (4). If the integer / in (2) exists, then we have
P P P
]R, m ]P/* — (b’g) U - U (bm+l(l—11)z) U (bm+lzl(bz)*)

which is recognizable by MEZEI’s Theorem.

Conversely, assume that the integer [ in (2) does not exist. Let 41,49, ... an infinite sequence of
integers such that the languages P; , P;,,... are mutually different. Then, the homomorphism in
some automaton for IR N IP™* has to map the traces (bmf\u-z) for i € {iy,19,...} to mutually different
states, i.e., any automaton for IR N IP”* has infinitely many states. Hence, such an automaton
cannot exist, and thus, IR N IP’* is not recognizable.

In the rest of proof, we consider the decidability of the existence of the integer [ in assertion (2).
By MEZEI’s Theorem, we have P’ = (K x L) U ... U (Kj x L) for some integer k and recog-
nizable languages K1, L1,..., Ky, Ly. We have A € Ky, Lq,..., Ky, L. By MEZEl's Theorem and
Lemma, 2.2, we construct automata for K, K1,..., K} as follows: We construct a finite monoid P,
a surjective homomorphism ¢ : ¥* — P, and subsets G,G1,...,G, C P with K = ¢7'(G) and
K; =g YG;) fori € {1,...,k}. We also construct a finite monoid @, a surjective homomorphism
h:b* — Q, and sets F, Fy,...,F, C Q with L = h~'(F) and L; = h='(F;) fori € {1,...,k}.

We construct a distance automaton which is limited in distance iff some integer [ in (2) exists.
However, at first, we construct some transition automaton A with (possibly) infinitely many edges
as a preliminary tool to explain the idea. Its set of states is P x Q. Its initial state is @Z ), where
Ap and g are the identities in P and @), respectively. Its set of accepting states are G X F, i.e., the
cartesian product of the accepting states of the automata for K and L. For every state (Z) € (PxQ)

and every trace (;) € IP’, we insert an edge ((Z ), u, (2 ZE?;)) Probably, A has infinitely many edges,
i.e., A is not necessarily a transition automaton. Nevertheless, we can use the terms “path in A”,

“accepting path in A”... We state assertion (3).

3. There is some integer m such that any word which A accepts is the label of a path which
consists of at most n edges.

Before we show the equivalence (2)<>(3), we show that A accepts exactly the words which are first
components of traces in IR N IP"*, i.e., the language of A is the union Py U P; U... Assume some
integer i and some (%) € IP". Clearly, there is a path in A from (ig ) to (i(&g) which consists of i
edges and is labeled with u. If additionally (}') € IR, then we have g(u) € G and h(v) € F, and
thus, A accepts w.

Conversely, assume some integer i and some path in A from (ig ) to some state (2’) which

consists of 7 edges and is labeled with some word u. Then, we have p = g(u) and there is some
trace (j) € IP” with h(v) = g. If additionally () € F x G, then (;) € R, and thus, () € RNIP".

We show (2)=(3). Let n = m + lz. Assume some word w € L(A). We have w € P}, and thus,
(ymi1z) € RNIP™. Because the letter b occurs in every trace in IP’, we have (,.1:.) € P/Lmtlz,
Hence, A accepts w by a path consisting of at most m + [z edges.

We show (3)=-(2). Choose some integer [ such that m + Iz > n|Q|. Assume some word
w € Py U Py ... There is some n’ < n such that A accepts w by a path consisting of n' edges.
Hence, there are traces ti,...,t, € IP’ such that ¢;...t,, € IRNIP™* and the first component of
t1...ty is w. For i € {1,...,n'}, we denote t; = (ZZ) By Lemma 3.1, there is some word v} € b*
such that |vj| < |Q| and h(v;) = h(v}), for i € {1,...,n'}. Let t; = (};). We have ¢|...t], € R,
because h(v;) = h(v;). The first component of #} .../, is w. The second component of #} ...t,
consists of less than n'|Q| letters, i.e., less than n|Q| letters. Hence, we have w € Pj.
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It remains to show the decidability of the existence of the integer n in assertion (3). We construct
a distance automaton A’ which is limited in distance iff the integer in assertion (3) exists.

The distance automaton A’ has the same states, initial state, and accepting states as A. It has
beside the states of A some additional states. Assume any two states (¥), (g) € P x Q. Above, we
inserted probably infinitely many edges between these two states. We examine the set of all edge

labels of edges (i.e. paths of length one) between (2) and (2) in A. We define

— —1/. 1
T = U 97 ()
for any p'€P, ¢'€Q with pp'=p, ¢¢'=4,
and p'€G;, ¢ €F; for some i € {1,....k}

Assume some edge ((Z),u, (Z)) in A. There is some v € b* such that (})) € IP’ and (g) = (f]’i((gg)
To verify u € T, we set p’ = g(u) and ¢’ = h(v). We have (') € IP’, i.e., there is some i € {1,...,k}
with (¥') € K; x L;. Then, we have p’ = g(u) € G; and ¢’ = h(v) € F;.

Conversely, assume some u € T. Let p’ = g(u). Choose some ¢’ which satisfies the properties
in the expression for T. Because h is a surjection, there is some v € ¥* with h(v) = ¢'. There is
some i € {1,...,k} with p’ = g(u) € G; and ¢’ = h(v) € F;. Hence, () € (K; x L;) C IP'. Thus,

there is some edge ((7‘;),11, (2%%)), ie., ((2),11, (2)) in A.

Consequently, for any word u € ¥*, there is some edge ((2),u, (Z)) in AiffueT.

We can construct a transition automaton for 7. We construct some transition automaton for T'
with exactly one accepting state such that the initial state has no incoming edges and the accepting
state has no outgoing edges. Further, its edge labels are single letters from .. Instead of inserting

infinitely many edges between (Z) and (2), we insert the transition automaton for 7' between these

states, i.e., (2) and (g) are its initial and accepting state. The transition automaton for T' simulates
the formerly infinitely many edges between (Z) and (7‘;) The edges to (g) get the distance 1, all
other edges get the distance 0. A

We proceed this for every pair of states (7‘;), (g) € P x Q. We obtain the distance automaton 4’

with the same language as A but finitely many edges. We state assertion (4).
4. The distance automaton A’ is limited in distance.

We can easily verify (3)<(4). Moreover, if both (3) and (4) are true, then the least integer n to
satisfy (3) is exactly the biggest value §(w) for w € L(A’) = L(A). We can decide by Theorem 3.3
whether assertion (4) is true. Hence, we can decide the recognizability of IR N TP"*. O
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5 Some Undecidable Cases

5.1 The Problem in ¥* x b* in general

Although we worked very hardly in the previous section, there are cases which remained open.
Surprisingly, improving Proposition 4.4 by cutting the presumption that some trace of the form
(b/\+) belongs to IP is not possible, because the problem becomes undecidable.

Within this subsection, we consider an alphabet ' and picture languages over I'. We further
consider the alphabet ¥ = T'U{#, &}. Assume two integers n,m > 1 and a picture p over I' of the
size (m,n). A word w € ¥* represents p iff w consists of the lines of p with & as separators, i.e.,

w= &#"? &Hpi1...piat &Hpei... ... Pt &#"T? &

We define some language IK C * by
3% + + 3 *
K = &#3# (&#r #) &HH* &

The language K is recognizable. The words in IK are not necessarily representations of pictures
over I', because “the lines can have different lengths”.

We call some trace t € X* x b* fair iff t = ((&#n(&#rz;z#)+&#n&) for some n > 3. The first
component of every fair trace represents a picture over I'. Moreover, for every picture p over T’
there is exactly one fair trace whose first component represents p.

We define a transition automaton A. It has the states start, chk (for check), and acc. The states
start and acc are the initial and accepting state, respectively. The instructions (edges) of A are:

0. [start, (E*bi]K), acc]

1. [start, (%,%), chk]
2. [chk, ("}#), chk]
3. [chk, (%}7), acc]

4. [chk, ((Fuf)x*),acc]
Lemma 5.1 Assume some trace ¢t € (X* xb*). The automaton A accepts ¢ iff ¢ is not fair. O

Proof: Assume a trace ¢t € (3* xb*) which is not fair. If the first component of ¢ does not belong
to IK, then A accepts ¢ by instruction (0). Otherwise, there are two words wy, w3 € ¥* and a word
wy € (TU#)*, such that ¢ = (“1%)("*) (“¥*) and |ws| # |v|. At first, the automaton parses (“1%)
using instruction (1). Then, it uses instruction (2) as many times as possible. Then, depending on
whether |wa| < |v| or |wa| > |v]|, it uses instruction (3) or (4), resp., to terminate.

Conversely, assume some trace t € (X* x b*) such that A accepts t. If A uses instruction (0),
then ¢ cannot be fair. Assume A starts with (1). Then, it uses instruction (2) several times, and it
terminates with instruction (3) or (4). After using instruction (1), A has parsed a trace of the form

(wi&) for some wy; € ¥*. Then, A uses several times instruction (2). Let n € IN be the number

how often A uses instruction (2). Thus, it parsed some trace (wlf,iw?) for some wy € (I'U #)™.
After that, the automaton terminates using instruction (3) or (4). If it uses (3), then it parsed a
first component with a subword &wq& with |ws| = n. However, because it used instruction (3)
there are more than n letters ¢ in the second component. If it uses instruction (4), then there is
some subword wez € (I’ U {#}) in the first component, but, there are n letters b in the second
component. Either way, ¢ is not fair. O
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Now, we extend the automaton A. We assume a local representation A over I'. We extend the
automaton A such that it accepts not only the unfair traces but also the fair traces whose first
component encodes a picture which does not belong to L(A).

We use one cheap trick. We do not use A. Assume a letter $ € I' which does not occur in A.
By Lemma 3.5, we construct a local representation A for the picture language L(A) o {$}**.
The language L(A) is either empty or it contains pictures of arbitrary width. We extend A such
that it accepts the unfair traces and the fair traces whose first component encodes a picture which
does not belong to L(4).

We define the automaton Ay . It has the same states as A and additionally, for every two letters
a,c € T'U#, the state chky.. The instructions of Ax are the instructions of A and additionally:

5. [start, (E*bac),chkac] for every a,c € T'U#
6. [chkqc, (%),chkac] for every a,c € T'U #
7. [chkac, (de/\z*), acc] for every a,c,d,e € TU# with (7)) ¢ A
Lemma 5.2 Assume some trace (') € (£* x b*). The automaton Ay accepts (7)) iff either
e (%) is not fair, or
e (V) is fair and w encodes some picture p € T** with p ¢ L(A). O

Proof: If () is not fair, then Ay accepts (}) as A accepts this trace (cf. Lemma 5.1).

Let us assume that (%)) is fair, and w encodes a picture p ¢ L(A). Let (m,n) denote the size
of p. Then, we have v = b"*2. There are integers i, j with 0 < i < m and 0 < j < n such that
( Aﬁz’,j Aﬁz’,j-}-l

Pi+1,5 Pi+1,5+1

We factorize w. There are wq, we, w3 € X* such that |ws| = n+1 and w = wiacwsdews. Hence,

Ax can accept (%) by using instruction (5) [start, (“'}"“), chkec], then using instruction (6) n 4 1

times, and finally using (7) [chkqe, (*4“%), acc].

Conversely, assume some trace (%) which Ay accepts. If (\) is not fair, then we are done.
We consider the case that ¢ is fair, i.e., ¢t encodes some picture p. Let (m,n) be the size of p.
Then, v = "2

The automaton Ay cannot accept (%) by instruction (0) or by a run starting with (1). Hence,
it suffices to consider the case that Ax accepts () by starting with instruction (5). Then, A
accepts (3) by a run using instruction (5) once, several times instruction (6), and once instruc-
tion (7). Because v = b"*2, it has to use instruction (6) exactly n + 1 times. Then, there are four
letters a, ¢, d, e from the instructions (5) and (7) in the run of the automaton and there are words
wy,we,ws € L* such that w = wiacwedews and |we| = n + 1. Hence, the letters a,c,d, e form a
subpicture in p of size (2,2) which does not belong to A, i.e., p & L(4A). O

) ¢ N. We denote p; j, Pij+1, Pi+1,4, and Pir1,j+1 by a, ¢, d, and e, respectively.

Now, we can show the following connection:
Proposition 5.3 The language of Ay is recognizable iff L(A) is empty. |

Proof: Assume that L(A) is empty. Then, L(4) is also empty. Thus, Ay accepts the complete
monoid >* x b* which is a recognizable language.

Conversely, assume that L(A) is not empty, but nevertheless, L(Ax) is recognized by the auto-
maton [Q, h, F]. Because L(A) = L(A) o {$}**, the language L(A) contains pictures of arbitrary
width. Hence, we can choose p,s € L(A) with wdt(p) # wdt(s) such that h(*?) = h("}’), where
wy and w; are the words which encode p and s, respectively. We have A (y,qin42) = B (jwat(p+2)-
Thus, either both or none of the traces (yuai(n+2) and (jwai(p+2) belongs to L(Ay). However,
(yuat(n+2)  L(Ax) by Lemma 5.2. On the other hand (juai(p)+2) € L(Ax), because it is not fair. O
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Based on Ay, we define the recognizable language IP. We introduce a new letter k£ ¢ ¥ and consider
the monoid (SUK)* x b*. We denote by 7 the homomorphism 7: ((SUK)* x b*) = (£* x b*) which
erases the letter k. Note that 7 is a connected homomorphism. Hence, 7(T') yields a recognizable
language for recognizable languages T

Let n = [(T U#)|? + 2. Hence, we can assign for a,c € (I' U #) the state chky. and the state
chk a number between 1 and n — 1.

Now, we define the language IP by defining several languages whose union yields IP. We are
interested in traces whose first component is of the form (Xk*)*Y. We distinguish two kinds of
these traces: well-formed traces which are traces whose first component is (X£")*%, and trash-
traces, i.e., traces whose first component belongs to (££*)*Y \ (Z2£™)*E. We define a so-called
trash language IPp.

Py = ((Ek*)*Eb\*(Ek")*E)

The traces in IP7 are not well-formed. Moreover, the concatenation of any trace in IPr and any
other trace yields a trace in IPp, i.e., there are not any well-formed traces in ((Ef*k)*)IPT((Ef*k)*).

We define IPj. It consists of well-formed traces.

P = { (") € ((Ekb’l)*E) ‘ﬂ,(u) c (E*I) IK)} — ((Ek;)*z) N W*I(E*bﬁ K

v v

The language IP is related to instruction (0) of the automaton. Accordingly, we define Py, ..., IPy.

P, = ((Ek”/\)*&k) P, = (k"—l(gu#)k) Py = (kn—lx;gcnz)*) P, — (k”_l(FUj\%)(k”E)*)
Before we continue to define IP, we examine the parts of IP which we already defined. Let IP7 4
denote the union IP7 UIPg U ... UIP;. We examine the well-formed traces in IP}, 4. We cannot
obtain a well-formed trace if we concatenate some traces in Py 4 and we use a trace in IPr.
Moreover, we easily see that the well formed traces in IP7, 4 are the traces in IPg and the traces
in IP,IP5(IP3 U IP,). Consequently, we have natural connection between the well-formed traces in
IP7. 4 and the paths of A. Therefore, if we erase the letter & in some well-formed trace in P74,
then we either obtain an unfair trace (cf. Lemma 5.1). Moreover, by applying 7 on the well-formed
traces in IP7, 4 we obtain any unfair trace.

Now, we define the remaining parts of IP. For every a,c € T' U #, we define three languages
IP5 oc, IP6.4c, and IP7 4.. For every a,c € I' U #, we choose some distinct 1 < z < n.

]P5,ac = ((Ekn)zkanz) IPG,ac = (k"’ZZkz)

Proe = { ("THYEE) [de e (TUH) with (5) ¢ A}
Now, we define IP as the union:

P=PrulPyu...ulPy4U U (IPS,ac U Pﬁ’ac U IP?,ac)
a,ce(TUH#)

The language IP is recognizable, because it is the union of finitely many recognizable languages.
We examine the well-formed traces in IP*. We have

(BEIENP* = Py U P PPy UP PSP, U U (P5,P% 0 Prac)
a,c€(TU#)

Remark 5.4 Consequently, there is a correspondence between the well-formed traces in IP* and the
accepting paths in Ay. For every well-formed trace (})) € IP*, we have n(}) € L(Ay). Conversely,
for every ¢t € L(Au), there is some well-formed trace (}) € IP* such that () = ¢. O
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Now, we can show the following connection:

Proposition 5.5 The intersection ((EIZ?*E) NIP* is recognizable iff L(Ay) is recognizable. O
Proof: We split ((EIZ:L)*E) into two recognizable languages by ((EIZ:L)*E) =PrU ((Ekbi)*z) and apply
Proposition 4.1. We have IPr N IP* = IPr, i.e., IP7 N IP* is recognizable. Hence, ((Ek ) ) NIP* i

recognizable iff the set of the well-formed traces in IP* is recognizable. Consequently, it suffices to
show that the set of the well-formed traces in IP* is recognizable iff L(Ax) is recognizable.

Assume that ((Ekbi)*z) NIP* is recognizable. By Remark 5.4, we have

L(Ay) = =((Ph)) npr)

Because 7 preserves recognizability, L(Ay) is recognizable. Conversely, assume L(Ap) is recog-
nizable. By Remark 5.4, we have

(%) e — (7)o (1 A)

The set 7 '(L(Ax)) is recognizable because of the closure of recognizable sets under inverse
(Skm)*S
b+

homomorphisms. We immediately see that ( ) NTP* is recognizable. 0

From Theorem 3.4, Lemma 5.3, Proposition 5.4, we obtain the following corollary:

Corollary 5.6 Assume some alphabet ¥ and two letters b,k ¢ X. It is not decidable whether for
a recognizable language TP C (X U k)* x b*, the intersection ((Ekb*) E) N IP* is recognizable. O

Finally, we boil down this result to P3.

Theorem 5.7 It is not decidable whether for some recognizable language IP C {a,c}* x b*, the
intersection ((acb**)*a) N IP* is recognizable. O
Proof: Assume such an algorithm. Then, we can contradict Corollary 5.6. Assume X, b, k,
and IP as in Corollary 5.6. We show how to decide whether ((Ekc*) ) N IP* is recognizable.
Let h: (X Uk)* — {a,c}* be an injective homomorphism with h(k) € (ca™)*c and h(X) C (ac*)*a.
We extend h to an injective and connected homomorphism & : (X Uk)* x b* — {a,c}* x b* by
setting () = (}). Then, ((EIC "®) N IP* is recognizable iff h(( N IP*) is recognizable.
We have
h(((Ek ) ) N IP*) _ h((Ekb**)*z) N h(P)* = ((acb**)*a) N h(IP)*

We can decide recognizability of the last set by the assumed algorithm. O

5.2 The Problem in ¥* x I'*

In this part, we consider the problem whether IR N IP* is recognizable for recognizable languages
in trace monoids of the form ¥* x I'*. We assume a PCP-instance consisting of alphabets A and
Y. and biprefix homomorphisms «a, 8 : A* — ¥*. We assume |X| = 2. Let [ be an integer such that
for every i € A, we have |a(i)| <! and |5(i)| <.

In our constructions, below, it will be more convenient to consider monoids ¥* x 3*. Note that
the monoid ¥* x ¥* is isomorphic to a trace monoid ¥* x I'* where I' is any disjoint copy of .

Similar to the previous part, we construct some automaton step by step. At first, we consider
an automaton A with the states start, loop;, and err. The states start and err are the initial and
accepting state, respectively. The instructions (edges) of A are:
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e

[start, (i), loop,]

—

. [loopy, (%), loop,] for every a € &

[N

. [loopy, (3),err] for every a,b € ¥ with a # b

3. [err, (§),err] and [err, (2),err] for every a € ¥

Lemma 5.8 Assume some trace () € (X*x X*). The automaton A accepts () iff u [ v. O

Proof: Assume that u and v are not prefix consistent, i.e., there are z,u',v' € ¥* anda #b € X

such that (7)) = (2‘;;‘,,) Then, A accepts (}) by instruction (0), several times instruction (1) to

parse (7), instruction (2) to parse (;), and several times instruction (3) to parse (Z,,)
Conversely, if u Mwv, then A is forced to use instruction (0) and several times instruction (1),
i.e., it remains in the state loop;. O

We define the automaton A’ by adding a state loop, and some edges to A:

4. [start, (i),loopZ]
5. [loopy, (ggg), loops,] for every 1 € A

6. [loopy, (3),err] for u,v € X1 with (%) 1 (ggg) for every i € A
Lemma 5.9 The automaton A’ accepts some trace (1) € (X*xX*) iff one of the following conditions
is true:

(A) u v,

(B) for every w € A* with (ggzg) M (), we have a(w) C u and S(w) C v. 0
Proof: At first, we show that if u and v satisfy (A) or (B), then A accepts (}). If u and v satisfy
condition (A), then A" accepts (%) as A does (cf. Lemma 5.8).

Assume that u and v satisfy (B). Let w € A* be the longest word with (gwg) M (¥). The word
w is unique, because o and 8 are biprefix homomorphisms.

There are non-empty words u’,v' € ¥F such that (7)) = (%E:ﬁ;z’,) Assume there is an 7 € A

such that (gg;) M (’;:) Then, we also have (gggg) M (%). If«' C i) or o' C B(i), then we have

u C a(wi) or v C B(wi) which contradicts condition (B). Hence, we have «(i) C «' and §(i) C v'.

Then, we have (gggg) C () which contradicts the choice of the longest word w. Thus, for every
(i

i € A, we have (503) 7 (%).

v

Above, we defined an integer [ such that |«(i)] < [ and |B(¢)] < | for i € A. We factorize

v into uy,us € ¥* such that |u1| = min{|u'|,l}. Accordingly, we factorize v’ into vy,vy € X*.
We have () = (%((71“0))2522) Because for every i € A, we have (ggg) N (%), we also have (ggg) NG

Consequently, there is some instruction (6) [loop,, (;),err] in A",

Now, it is immediate ;ch)at A" accepts () = (%((ﬁ))zg;) It uses instruction (4) and |w| times
a\w

instruction (5) to parse ( B(w))' Then, it uses instruction (6) to parse (;,') and several times instruc-
tion (3) parse (;2) and to terminate.

Conversely, assume words u,v € ¥* such that A" accepts (})). If A" accepts (}) by run which
uses just the instructions (0) to (3), then u and v are not prefix consistent. Hence, we just have to
consider the case that A’ accepts (;) by a run (4)(5)*(6)(3)*. Therefore, we have (7)) = (ale)uruzy

v B(z)viva



22 5 SOME UNDECIDABLE CASES

for some z € A*, uj,v; € 1, and ug, v € ¥*, and A’ parsed (ggig), (o,
(5) (|z| times), instruction (6), and (3) respectively.

We show that « and v satisfy condition (B). Assume some word w € A* with (gggg) M (%((Zz))’;i:j)
If lw| < |z|, then we have w C z, because o and 3 are biprefix homomorphisms. Then, we have
a(w) C a(z) C a(z)uiug = v and B(w) C B(z) C B(z)vive = v, ie., (B) is verified. So assume

that || < |w|. We have z C w. Choose the i € A such that zi C w. From (2{%)) 7 (42)u142) e

), and (;?) by instructions

_ . . B(w) B(z)vivz
have (ggzg) M (%((Zz))iﬁ:j) Then, we also have (ggg) M (5y) and (ggg) M (,!). Thus, A’ cannot parse
(41) by instruction (6) as we assumed, above. Consequently, there is not any word w € X* with

1
(50 11 (4) and [2] < [w]. O

Lemma 5.10 If the PCP instance has no infinite solution, then there is some integer n such that
A’ accepts every trace () € X*xX* with |u| > n and |v| > n. ]

Proof: If the PCP instance has no infinite solution, then there are only finitely many words
w € A* such that a(w) M B(w) (cf. Lemma 3.7). Let n' be an integer such that for every w € A*
with |w| > n’, we have a(w) [1 B(w). Let n =n'l.

Assume words u,v € ¥* with [u| > n and |[v| > n. If u flv, then A" accepts () (cf. condition (A)
of Lemma 5.9). Assume uMv. We show that v and v satisfy condition (B) in Lemma 5.9. Assume
some w € A* such that (ggzg) M (7). If lw| < »', then |a(w)| < n. Because |u| > n, we have
a(w) T u. Accordingly, we have S(w) C v. Assume |w| > n’. Let w' be the prefix of w with
|w'| = n'. Then, we have a(w’) [l B(w'). We have (gg:g) M (;). We have |a(w')| < n and n < |ul,
i.e., we have a(w') C u. Accordingly, we obtain S(w') C v. This contradicts that u and v are prefix
consistent. Consequently, u and v satisfy condition (B) in Lemma 5.9. 0

Lemma 5.11 If the PCP instance has a an infinite solution, then there is an infinite sequence of
words u; C ug C ... € ¥* and for every integers 0 < i < j there is some word v such that A’ does
not accept (%), but A" accepts ("7). O

Proof: Let i1i5... be an infinite solution. We choose a sequence wy; T wsy... € A* of prefixes
of i142... such that for every ¢ > 0, we have |3(w;)| < |a(w;t1)], i.e., we have S(w;) T a(wit1).
We set for i > 0, u; = a(w;). Then, we have uy Cug C ...

Assume some 0 < ¢ < j. We show the existence of the desired word v € ¥*. Let 2z be the longer
word of a(w;) and f(w;). We have a(w;) C z, B(w;) C z, and z C a(w;). Let a € ¥ be a letter
such that a(w;) /1 za. Let v = za.

The trace (%) = (a(;gl)) does not satisfy condition (A) in Lemma 5.9, because a(w;) C 2z C za.

It does not satisfy (B), because we have (ggzlg) M (O‘(Z“;)) but we have not a(w;) C a(w;). Hence,

A’ does not accept (i) = (“12D). However, it accepts (3) = (*123)) | because a(w;) 1 za. O

Now, we can define suitable languages. .. We enrich 3 by new letters s, |y, ls, and e which stand
for start, loop;, loopy, and err, respectively. We set I' = ¥ U {s, l1, |2, e}, and examine recognizable
languages in I'* x I'*. We define

IR — ((eI1I252)+e) g F* % 1—1*

(e|1|252)+e

We further define finite languages Py, ..., IPg C I'* x I'* which correspond to the instructions (0)
to (6) of A'. Let P =Py U...UPg.

Py ={(&)}

Py ={ (%) [aen}
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={ (P=) |a,b e =, a;éb}
{ I1|zsae }U {(III;\sae) aGE}

=

Il
{(:.;;)}
To define IP5 and IPg, we introduce a mapping v: ¥ — I'". For any a € ¥ and any w € ©T, we
define v(a) = a and y(wa) = y(w) elilys a. For instance, we have y(abc) = aeljlasbelilssc.

4

a(i))el |
Ps = { (o)

ieA}

u,v € B with () 7 (ggg) for every i € A}

There is an obvious correspondence between the traces in IR N IP* and the runs of A’. It accepts
some trace (;) € (X* x ¥*) iff (::ﬂjg%ﬁ;:) € R N IP*. Hence, we obtain the following proposition:

Proposition 5.12 The set RNIP* is recognizable iff the PCP instance has no infinite solution. O
Proof: Assume that the PCP instance has no infinite solution. By Lemma 5.10, there is some n

such that A" accepts any trace (7)) € (X*xX*) if both |u| > n and |[v| > n. To show recognizability
of IR NIP*, we split IR into three recognizable languages

..... ") R3 = RN (hansip)

By Proposition 4.2 and 4.1, it suffices to show that IR3NIP* is recognizable. We show recognizability
of R3 NIP* by showing IR3 NIP* = IR3, i.e., we show IR3 C IP*. Indeed, every trace in IR3 is of the

form (Z:ﬂi?y% )) ) for some u,v € ¥* with |u| > n and |v| > n. By Lemma 5.10, A" accepts (%), and
thus, we have (::féggvge) € IP*. Consequently, IR3 C IP*.

Conversely, assume that the PCP instance has an infinite solution, but nevertheless, IR N IP* is
recognized by some automaton [@, h, F']. Let u; T us... be an infinite sequence as in Lemma 5.11.
We choose two integers 0 < 7 < j such that h(ehbw(“l) ) = h(elllzs'/y\(“j)e). Then, for every word
v € ¥T, the automaton [Q, h, F] accepts either none or both of the traces (ﬂllllf;gy(gj)?) and (eelllllf;zy(g)):).
Hence, for any v € £7, A" accepts either both or none of the traces (%) and ("/). This contradicts
Lemma 5.11. O
Proof of Theorem 2.8(2): By Proposition 5.12 and Theorem 3.6, it is undecidable whether for

some finite language IP C (I'* x I'*) the intersection IR N IP* is recognizable. By choosing some
connected and injective homomorphism from I'* x T to C4, we obtain Theorem 2.8(2). O

Remark 5.13 For instance, we can use the homomorphism h : (I'* x I'*) — ({a,c}* x {b,d}*)
which maps (5), (3). (2). () (9 () to (5). (4, (). (). (%) (%), and the traces in X x T

similarly to traces in ({b/;}*). O

We make some slight modifications to prove Theorem 2.8(3). We define so-called trash languages

Pr= U Tyl Pr = (p,) U (7)
2,y€T, zy¢fels, lil2, los,sT, De} "
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Clearly, Pr and Py are infinite recognizable languages in I'* and T'* x I'*, respectively. We define
another language

P =P UPrU{(}),(), ("), ()}

Ila
Now, we can show the following Proposition:

Proposition 5.14 The intersection (elf**) NIP™* is recognizable iff the PCP instance has no infinite

solution. 0
Proof: At first, we assume that the PCP instance has an infinite solution, but (elf) N P~
is recognized by some automaton [@Q,h,F]. There is some infinite sequence u; T us C ... by
Lemma 5.11. We choose 0 < i < j such that h(®"5])%) = h(elﬂ?sz\(“j)e). By Lemma 5.11,
there is some word v € ¥* such that A’ accepts ('7), but it does not accept (%). Because A’

accepts (“7), we have (Hesr(u)ey e (R A IP*) C ((81)) NTP™). We have chosen ¢ and j such that

elilasy(v)e I*
h(eh'?s}(“i)e) = h(elll?s')y\(“f)e). Consequently, we have (eelllllfjgy(gj)):) € ((eFF*) N1P™).
We examine some factorization of (eelllllf;;(& i)):) into traces from IP’. There are some integer k
and traces tq,...,t; € IP' such that t; ..., = (eelllllfjgy(gj)):). Clearly, t1,...,tr &€ IP7. We choose the

biggest integer k' < k such that tq,...,t € IP. We have t1,t5 € P, i.e., k' > 2.
Now, we show that we have ...t € (R NIP*). It suffices to show ¢, ...t € R. If k' =k,
then we have t{...tp = t1...tp = (elll?s'Y("i)e) € R. So assume k' < k. We examine ¢;...¢.

elilzsy(v)e
We have t41 € {(}), (l)l‘), ("), (|1/\|2)} Consequently, one of the two last letters of 1 ... ¢ is the
letter e, i.e., the first or the second component of ¢; ...#; ends with the letter e. By an induction
on ty, tite, ..., tita...ty, we can show that the first and the second component of ¢;...¢; end

with the same letter. Consequently, both components of ¢ ...%; end with the letter e. Further,
t1... .t Cty ...t = (elllzsfy(ui)e)_ Thus, ¢ ...t € R.

elilasy(v)e

Consequently, there are u/,v" € ¥* with (:f,,) C (%) such that we have t;...ty = (z:ﬂjggzg(‘:)

Because t ...t € (IR NIP*), the automaton A’ accepts the trace (;f,,), i.e., it can reach the state
err by reading (Z,, ). Because (Z,, ) C (}), the automaton A’ also accepts (''). This is a contradiction.

Conversely, assume that the PCP instance has no infinite solution. By Lemma 5.10, there is
some n such that A’ accepts any trace ()) € (¥* xX*) if both |u| > n and |v] > n. To show

recognizability of (ely) NIP™, we split (eFF) into recognizable languages

Ry = () \Pr) n (G- fo 1 2))

Ry = () \Pr\ Ry \ Ry \ Rs

By Proposition 4.2, we can show recognizability of (elf) NIP™* by showing recognizability of IR; NIP"*
for 1 € {0,...,4}. We have Ry C Py C TP’ C P™, and thus, lRg N IP"* yields Ry which is
recognizable. Recognizability of IRy NIP"™* and IRy N IP™* follows from Proposition 4.1.

We show that Ry NP = (). Assume some t € (IR4 N P™*). Traces from Py cannot occur in
factorizations of ¢, otherwise we have ¢t € IPr, i.e., t € IR4. The second component of ¢ is non-empty,
otherwise ¢ € IRy and t € R4.
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Assume that the last letter of first or second component of ¢ is some letter from 3 Us. Then,
there is some trace from IPr in every factorization of  into traces of IP"*. This implies ¢t € IP7 and
t € IR4. Thus, the last letters of both components of ¢ are e, Iy, or Io.

Assume that the first letter of the second component of ¢ is the letter e. Then, we have t € TPy
or t € R3. Either way, ¢t € IR4. Hence, the first letter of the second component of # is different

from e. Hence, any factorization of ¢ into traces from IP’ has to start with several times (I/}) or (| 1/\|2),

and to continue with some trace from 1Py or IP4. However, two or more traces of (I)l‘) or (| I)I‘Q) at
the beginning would imply ¢ € IPr which is a contradiction. Hence, any factorization of ¢ starts
with exactly one of the traces (I/:) and (| 3‘2) followed by some trace from IPy or IP4. However, this
yields a subword l;e or lse in the second component of ¢ and implies ¢ € IPr. Consequently, it is
not possible to factorize ¢ into traces from IP’. Thus, ¢ does not exist, i.e., IRy N IP"™* = (.

We show IR3 N IP* = IR3. Assume some ¢ € IR3. Both components of ¢ start with the letter e

and end with e, |1, or 5. Further, we have t € IPy and both components of ¢ are longer than 5n + 3

letters. Consequently, we can factorize t as t = titot3, where t; € IR = (g::i:ig;ig) (as above),
t, € {(i), (I)l\), (Il/\b)}, and ty € {(i), (l)l‘), (|1)|‘2)} Both components of #; are longer than 5n + 1.

As in the proof of Proposition 5.12, we have t; € IP* C IP™*. Because, t3,t3 € IP™*, we have
titaly =t € P’

Hence, IR; N P™* is recognizable for i € {0,...,4}, i.e., (elf**) NP’ is recognizable. O

Proof of Theorem 2.8(3): By Proposition 5.14 and Theorem 3.6, it is undecidable whether
for some alphabet I' with some letter e € I' and some recognizable language IP’*, the intersection
(elf) N IP™* is recognizable. As in the proof of Theorem 5.7, we define an injective and connected

homomorphism A : I'* x I'* — {a,b}* x {c,d}*. We define h such that for every letter z € T the
first component of h(}) starts with an a iff z = e. Then, Theorem 2.8(3) is immediate. 0
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