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Abstra
tThis paper deals with de
ision problems related to the star problem in tra
e monoids, whi
hmeans to determine whether the iteration of a re
ognizable tra
e language is re
ognizable. Dueto a theorem by G. Ri
homme from 1994 [32, 33℄, we know that the star problem is de
idablein tra
e monoids whi
h do not 
ontain a submonoid of the form fa; 
g� � fb; dg�.Here, we 
onsider a more general problem: Is it de
idable whether for some re
ognizabletra
e language IR and some re
ognizable or �nite tra
e language IP the interse
tion IR \ IP�is re
ognizable? If IP is re
ognizable, then we show that this problem is de
idable i� theunderlying tra
e monoid does not 
ontain a submonoid of the form fa; 
g� � b�. In the 
ase of�nite languages IP, we show several de
idability and unde
idability results.
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1 Introdu
tionFree partially 
ommutative monoids, also 
alled tra
e monoids, were introdu
ed by P. Cartierand D. Foata in 1969 [5℄. In 1977, A. Mazurkiewi
z proposed tra
e monoids as a potentialmodel for 
on
urrent pro
esses [25℄, whi
h marks the beginning of a systemati
 study of tra
emonoids by mathemati
ians and theoreti
al 
omputer s
ientists, see e.g., [7, 8℄.One main stream in tra
e theory is the study of re
ognizable tra
e languages, whi
h 
an be
onsidered as an extension of the well studied 
on
ept of regular languages in free monoids. A majorstep in this resear
h is E. O
hma�nski's PhD thesis from 1984 [30℄. Some of the results 
on
erningregular languages in free monoids 
an be generalized to re
ognizable languages in tra
e monoids.However, there is one major di�eren
e: The iteration of a re
ognizable tra
e language does notne
essarily yield a re
ognizable language. This fa
t raises the so 
alled star problem: Given are
ognizable language L, is L� re
ognizable? In general, it is not known whether the star problemis de
idable. The main result after a stream of publi
ations dealing with this problem is a theoremstated by G. Ri
homme in 1994, saying that the star problem is de
idable in tra
e monoidswhi
h do not 
ontain a parti
ular submonoid 
alled C4 [32, 33℄. It is not known whether thestar problem is de
idable in tra
e monoids with a C4-submonoid. It is even unknown for �nitetra
e languages.Re
ently, D. Kirsten has shown that in tra
e monoids with a C4-submonoid it is unde
idablewhether for two re
ognizable tra
e languages IR and IP the interse
tion IR\IP� yields a re
ognizablelanguage [19, 22℄. He also remarked that this problem is de
idable in tra
e monoids without aP3-submonoid due to results by J. Sakarovit
h. Here, we show that this problem is alreadyunde
idable in the tra
e monoids with a P3-submonoid. Consequently, the tra
e monoids withouta P3-submonoid are exa
tly the tra
e monoids in whi
h we 
an de
ide re
ognizability of IR \ IP�for re
ognizable languages IR and IP.Se
ondly, we improve D. Kirsten's result to �nite languages IP. In fa
t, in tra
e monoids witha C4-submonoid, we 
annot de
ide re
ognizability of IR \ IP� for re
ognizable languages IR and�nite languages IP.Surprisingly, the 
ombination of both improvements yields a de
idable problem: In P3, i.e. infa; bg��b�, we 
an de
ide for a re
ognizable language IR and a �nite language IP whether IR\IP� isre
ognizable. Moreover, provided that IP 
ontains a tra
e of the form � �b+�, we 
an de
ide whetherIR \ IP� is re
ognizable.The paper is organized as follows. After this introdu
tion, Se
tion 2 gives a formal overview
onsisting of an explanation of notions from algebra, formal language theory up to an overview of thestar problem. In Part 2.5, we state our results in 
omplete detail and dis
uss some open questions.In Se
tion 3, we re
all some 
lassi
 results 
on
erning automata and re
ognizable languages whi
hwe will use in our main proofs. In Se
tions 4 and 5, we give the proofs of the de
idability andunde
idability results, respe
tively.2 Formal De�nitions2.1 PreliminariesWe introdu
e some notions from algebra and tra
e theory. By IN, we denote the set f0; 1; 2; : : :g.We allow to denote some singleton set by its element, e.g., we write 5 to denote both the number�ve and the singleton set 
onsisting of the number �ve.Assume some monoid IM. We denote its identity by �IM, or shortly by �. Usually, we denotethe produ
t in IM by juxtaposition but sometimes by � or �IM to avoid 
onfusion.For every n 2 IN and m 2 IM, we de�ne the n-fold produ
t by m0 = �IM and mn+1 = mnm.We extend the produ
t and the n-fold produ
t to subsets of IM as usual. Note that for every subset1



2 2 FORMAL DEFINITIONSL � IM, we have L0 := f�IMg. In parti
ular, ;0 = f�IMg. For subsets L � IM, we de�ne thenon-empty iteration L+ as the union L1 [ L2 [ L3 [ : : : We denote the iteration of L by L� andde�ne it by L� := �IM [ L+. For integers i � j, we denote by Li;:::;j the union Li [ Li+1 [ : : : [Lj .Assume two monoids IM and IM0. We denote their 
artesian produ
t by IM � IM0. For somesubsets L � IM and L0 � IM0, we denote their 
artesian produ
t by L� L0, or sometimes, by �LL0�to visualize the 
omponentwise 
on
atenation.Again, assume two monoids IM and IM0. We 
all a fun
tion h : IM! IM0 a homomorphism i� hpreserves the produ
t and the identity. We extend the notion of homomorphisms to subsets of IMas usual. We denote the inverse of some homomorphism h by h�1. We 
all h an isomorphism i� his both inje
tive and surje
tive, i.e., i� for every m 2 IM0, the set h�1(m) is a singleton. Then, we
an regard h�1 as a homomorphism from IM0 to IM. We 
all two monoids IM and IM0 isomorphi
i� there exists an isomorphism between them.2.2 Monoids, Languages and Tra
esBy an alphabet, we mean a �nite set of symbols. We 
all its elements letters. Assume an alphabet �.We denote the free monoid over � by ��. For every word w 2 ��, we 
all the number of letters ofw the length of w, and denote it by jwj. We denote by alph(w) set of letters whi
h o

ur in w.P. Cartier and D. Foata introdu
ed the 
on
ept of the free partially 
ommutative monoidsin 1969 [5℄. In 1977, A. Mazurkiewi
z 
onsidered this 
on
ept as a potential model for 
on
urrentsystems [25℄. Sin
e then, free partially 
ommutative monoids are examined by both mathemati
iansand theoreti
al 
omputer s
ientists. For a general overview, I re
ommend the surveys [7, 8℄.We 
all a binary relation I over some alphabet � an independen
e relation i� I is irre
exiveand symmetri
. For every pair of letters a and b with aIb, we say that a and b are independent,otherwise a and b are dependent. We 
all the pair (�; I) an independen
e alphabet. We 
all twowords w1; w2 2 �� equivalent w.r.t. I i� we 
an transform w1 into w2 by �nitely many ex
hanges ofindependent adja
ent letters whi
h we denote by w1 �I w2. For instan
e, if a and 
 are independentletters, baa
ba
, ba
aba
, and b
aab
a are mutually equivalent words.The relation �I is an 
ongruen
e relation w.r.t. the 
on
atenation. For every word w 2 ��,we denote by [w℄I the 
ongruen
e 
lass of w. We 
all the fa
torization of the free monoid ��under �I the tra
e monoid over � and I and denote it by IM(�; I) . We 
all its elements, i.e.,the 
ongruen
e 
lasses [w℄I tra
es, its subsets tra
e languages or shortly languages. The fun
tion[ ℄I is a homomorphism from �� to IM(�; I). As long as no 
onfusion arises, we omit the index Iat [ ℄I . We denote by [ ℄�1I the inverse of the homomorphism [ ℄I , i.e, for any tra
e t 2 IM(�; I),[t℄�1I denotes the set of all words in the tra
e (
ongruen
e 
lass w.r.t. �I) t.If I is the empty relation over �, then the tra
e monoid IM(�; I) is isomorphi
 to the freemonoid ��. If I is the largest irre
exive relation over �, i.e., two letters a and b are independenti� a and b are di�erent, then IM(�; I) is isomorphi
 to the free 
ommutative monoid over �.Be
ause the words in some tra
e di�er only in the order of their letters, we 
an de�ne the lengthjtj and the alphabet alph(t) of some tra
e t as the length and the alphabet of any word in the tra
e(
ongruen
e 
lass) t, respe
tively.Assume some independen
e alphabet (�; I). Every subset � � � indu
es some independen
ealphabet �� ; I \ (���) � whi
h we denote for short by (�; I).Assume that we 
an split � into two non-empty, disjoint subsets � and � su
h that (���) � I,i.e., we have aIb for any letters a 2 � and b 2 �. Then, we 
all the independen
e alphabet non-
onne
ted. The tra
e monoid IM(�; I) is isomorphi
 to the 
artesian produ
t IM(�; I)� IM(�; I).Conversely, assume two independen
e alphabets (�; I�) and (�; I�) su
h that � \ � = ;.The 
artesian produ
t IM(�; I�)� IM(�; I�) is isomorphi
 to the tra
e monoid IM(�; I) where� = � [� and I = I� [ I� [ (���) [ (���):



2.3 Automata and Re
ognizable Sets 3Hen
e, we 
an regard the 
artesian produ
t of two (disjoint) tra
e monoids as a tra
e monoid.Later, two tra
e monoids will play a 
ru
ial role: the so-
alled P3 and C4 whi
h are de�ned (up toisomorphism) by fa; 
g� � b� and fa; 
g� � fb; dg�, respe
tively.We 
all some independen
e alphabet (�; I) 
onne
ted if we 
annot split � into two non-empty,disjoint subsets � and � with (���) � I.For some independen
e alphabet (�; I), we 
all some tra
e t 2 IM(�; I) non-
onne
ted (resp.
onne
ted) if the independen
e alphabet (alph(t); I) is non-
onne
ted (resp. 
onne
ted). Equiva-lently, some tra
e t 2 IM(�; I) is non-
onne
ted i� there are two non-empty tra
es t1; t2 2 IM(�; I)with t = t1t2 su
h that alph(t1)� alph(t2) � I. Some tra
e �uv� in P3 or C4 is 
onne
ted i� u or vis the empty word �. For some tra
e language L 2 IM(�; I), we denote by NC(L) and Cn(L) theset of the 
onne
ted and non-
onne
ted tra
es in L, respe
tively. We 
all some tra
e language L
onne
ted i� NC(L) = ;.We 
all a homomorphism h between two tra
e monoids IM(�; I�) and IM(�; I�) 
onne
ted i�for every t 2 Cn(IM(�; I�)), we have h(t) 2 Cn(IM(�; I�))Assume tra
es t1; t2 2 IM(�; I). We 
all t1 a pre�x of t2 (for short t1 v t2) i� t2 2 t1 IM(�; I),i.e., i� there is some tra
e s 2 IM(�; I) su
h that t2 = t1s. We 
all t1 a proper pre�x of t2 (forshort t1 < t2) i� t1 v t2 and t1 6= t2. We 
all t1 and t2 pre�x-
onsistent (for short t1 u t2) i� thereis some t 2 IM(�; I) with t1 v t and t2 v t, i.e., i� the languages t1 IM(�; I) and t2 IM(�; I) are notdisjoint. If IM(�; I) is a free monoid, then t1 u t2 i� t1 v t2 or t2 v t1.Assume that IM(�; I) is isomorphi
 to some 
artesian produ
t IM(�; I) � IM(�; I). Then, twotra
es �u1v1�; �u2v2� 2 IM(�; I) are pre�x-
onsistent i� u1 u u2 and v1 u v2.Assume two alphabets � and � and a homomorphism h : �� ! ��. We 
all h a pre�x-homo-morphism i� for any letters a 6= b in � we have h(a) 6v h(b). We 
all h a bipre�x-homomorphismi� additionally for any letters a 6= b in � there is not any w 2 �� with wh(a) = h(b).2.3 Automata and Re
ognizable SetsWe introdu
e the notion of re
ognizable languages as far as we need it in this paper, for a moregeneral overview we re
ommend [2, 10℄.Assume some monoid IM. An IM-automaton is a triple A = [Q;h; F ℄, where Q is a �nitemonoid, h is a homomorphism h : IM ! Q and F is a subset of Q. We de�ne its language byL(A) = h�1(F ). We 
all Q the monoid of A and the elements of Q states. We 
all F the set ofa

epting states of A and h the homomorphism of A. Without loss of generality, we 
an assumethat h is a surje
tive homomorphism from IM to Q.We 
all some subset (resp. language ) L � IM re
ognizable i� there is some IM-automaton withL = L(A). We denote the 
lass of all re
ognizable sets over IM by REC(IM). In free monoids,re
ognizable languages are usually 
alled regular languages.It is a 
lassi
 result that for any monoid IM, REC(IM) 
ontains the empty set ;, IM itself andit is 
losed under union, interse
tion, 
omplement, and inverse homomorphisms [2, 10℄. We need atheorem by J. Mezei 
on
erning re
ognizable sets in Cartesian Produ
ts, 
f. [2, 10℄.Theorem 2.1 Assume two monoids IM and IM0. Some set T is re
ognizable in IM � IM0 i�there are an integer n, sets K1; : : : ;Kn 2 REC(IM) and sets L1; : : : ; Ln 2 REC(IM0) su
h that wehave T = (K1 � L1) [ : : : [ (Kn � Ln). 2The next lemma shows a widely used te
hnique (
f. [2℄).Lemma 2.2 Assume some monoid IM and re
ognizable sets L1; : : : ; Ln � IM for some n > 0.There are a �nite monoid Q, a surje
tive homomorphism h : IM ! Q, and sets F1; : : : ; Fn � Qsu
h that for i 2 f1; : : : ; ng, the automaton [Q;h; Fi℄ de�nes Li. 2



4 2 FORMAL DEFINITIONSProof: Assume for i 2 f1; : : : ; ng automata [Qi; hi; Gi℄ for Li. We de�ne Q = Q1 � : : :�Qn.The homomorphism h maps every p 2 IM to (h1(p); : : : ; hn(p)). For i 2 f1; : : : ; ng we de�neFi = Q1 � : : :�Qi�1 �Gi �Qi+1 � : : : �Qn. It is an easy veri�
ation that for i 2 f1; : : : ; ng theautomaton [Q;h; Fi℄ de�nes Li. To obtain a surje
tive homomorphism h, we have to restri
t Q andFi for i 2 f1; : : : ; ng to h(IM) and h(IM) \ Fi, respe
tively. 2For any tra
e monoid IM(�; I), REC(IM(�; I)) 
ontains all �nite subsets of IM(�; I) and is 
losedunder 
on
atenation [11℄ and iteration of 
onne
ted re
ognizable tra
e languages [30, 6, 26℄. In tra
emonoids, re
ognizable languages are not 
losed under homomorphisms. However, we have thefollowing theorem:Theorem 2.3 Assume two tra
e monoids IM(�; I�) and IM(�; I�), a homomorphismh : IM(�; I�)! IM(�; I�), and some language L � IM(�; I�).1. If h is 
onne
ted, then re
ognizability of L implies re
ognizability of h(L).2. If h is inje
tive, then re
ognizability of h(L) implies re
ognizability of L. 2Assertion (1) is due to C. Dubo
 [9℄. It is a generalization of the well-known fa
t that homo-morphisms between free monoids preserve re
ognizability. Assertion (2) is obvious, be
ause wehave L = h�1(h(L)) and the 
losureship of re
ognizable sets under inverse homomorphisms.The survey arti
le [29℄ gives an overview on re
ognizable tra
e languages in
luding proofs of the
losure properties.We need the following useful lemma 
on
erning re
ognizable tra
e languages and the notionsof 
onne
ted and non-
onne
ted tra
es.Lemma 2.4 Assume some tra
e monoid IM(�; I). Some language L � IM(�; I) is re
ognizable i�both NC(L) and Cn(L) are re
ognizable. 2Proof: We have L = NC(L) [ Cn(L), i.e., re
ognizability of both NC(L) and Cn(L) impliesre
ognizability of L.Assume that L is re
ognizable. We have NC(L) = L \ NC(IM(�; I)) and Cn(L) = L nNC(L),i.e., it suÆ
es to show that NC(IM(�; I)) is re
ognizable. We 
an 
onstru
t an IM(�; I)-automaton[2�; alph; F ℄ for NC(IM(�; I)), where 2� denotes the power set of � with set union as produ
t.The set F 
onsists of the subsets � � � su
h that indu
ed subalphabet (�; I) is non-
onne
ted. 2Let us shortly mention the notion of rational sets. Assume some monoid IM. The set of rationalexpressions REX(IM) is the smallest set whi
h 
ontains the symbol ;, the elements in IM and is
losed as follows: For some expressions r; r1; r2 2 REX(IM), the expressions r�, (r1[r2), and (r1r2)belong to REX(IM). Every rational expression r de�nes a language L(r) as usual.We have Kleene's 
lassi
 result whi
h asserts that in free monoids the re
ognizable sets andthe rational sets 
oin
ide [37℄. In tra
e monoids, we have just one dire
tion due to a more generalresult by J. M
Knight [2, 10℄: Every re
ognizable tra
e language is rational. Moreover, we 
antransform every automaton into a rational expression whi
h de�nes the same language. However,there are rational tra
e languages whi
h are not re
ognizable unless the underlying tra
e monoidis a free monoid. See [3℄ for more information on rational tra
e languages.



2.4 The Star Problem 52.4 The Star ProblemThe following questions 
on
erning the gap between the 
lasses of re
ognizable and rational lan-guages in tra
e monoids arise:Re
ognizability Problem: Can we de
ide whether the language of a rational expression is are
ognizable language?Star Problem: Can we de
ide whether the iteration of a re
ognizable language yields a re
ogniz-able language?J. Sakarovit
h answered the �rst question in 1992.Theorem 2.5 Assume a tra
e monoid IM(�; I). The following three assertions are equivalent:(1) IM(�; I) does not 
ontain an P3-submonoid.(2) The rational languages of IM(�; I) form an (e�e
tive) Boolean algebra.(3) We 
an de
ide whether the language of a rational expression yields a re
ognizable language. 2The equivalen
e of (1) and (2) is proved in [4, 1, 35℄, assertion (3) is added in [36℄.During the re
ent 16 years, many papers have dealt with the star problem. However, onlypartial results have been a
hieved. We give a brief survey about its history. The star prob-lem in the free monoid is trivial due to S. C. Kleene, and it is de
idable in free 
ommutativemonoids due to S. Ginsburg and E. Spanier [15, 16℄. In 1984, E. O
hma�nski examined re
og-nizable tra
e languages in his PhD thesis [30℄ and stated the star problem. During the eighties,E. O
hma�nski [30℄, M. Clerbout and M. Latteux, [6℄ and Y. M�etivier [26℄ independentlyproved that the iteration of a 
onne
ted re
ognizable tra
e language yields a re
ognizable tra
elanguage. In 1992, J. Sakarovit
h found the solution of the re
ognizability problem shown inTheorem 2.5. This solution implies the de
idability of the star problem in tra
e monoids whi
hdo not 
ontain a P3-submonoid. The attempt to extend Sakarovit
h's 
hara
terization to thestar problem failed, just in the same year, P. Gastin, E. O
hma�nski, A. Petit, and B. Rozoyshowed the de
idability of the star problem in P3 [12℄.During the subsequent years, Y. M�etivier and G. Ri
homme developed these ideas. Theyshowed de
idability of the star problem for tra
e languages 
ontaining at most four tra
es as wellas for �nite sets 
ontaining at most two 
onne
ted tra
es [27, 28℄. Finally, G. Ri
homme provedthe following theorem [24, 33℄.Theorem 2.6 The star problem is de
idable in tra
e monoids without C4-submonoid. 2Re
ently, D. Kirsten andG. Ri
homme showed the equivalen
e between the star problem and theso-
alled �nite power problem, whi
h means to determine whether some re
ognizable language L hasthe �nite power property, i.e., whether there is some integer n su
h that L� = L0 [ L1 [ : : : [ Ln.Further, they redu
ed the remaining 
ases of the star problem to some parti
ular languages in
ertain tra
e monoids [24℄.Re
ently, D. Kirsten introdu
ed the so-
alled generalized star problem (for short GSP) [19, 22℄:Generalized Star Problem: Can we de
ide whether for two re
ognizable languages IR, IP insome tra
e monoid the interse
tion IR \ IP� yields a re
ognizable language?In the parti
ular 
ase that IR is the 
omplete tra
e monoid, the GSP is exa
tly the star problem.As a 
on
lusion from Theorem 2.5, the GSP is de
idable in tra
e monoids without P3-submonoid.To de
ide whether IR \ IP� is re
ognizable, we 
onstru
t rational expressions for IR and IP, resp.,a rational expression for IR \ IP� by Theorem 2.5(2) and �nally, we determine by Theorem 2.5(3)whether this expression de�nes a re
ognizable language.Re
ently, D. Kirsten has shown the following result [19, 22℄:Theorem 2.7 Assume some tra
e monoid IM(�; I) with a C4-submonoid. The GSP is unde
id-able in IM(�; I). 2



6 2 FORMAL DEFINITIONS2.5 Main Results, Con
lusions, and Future StepsIn this paper, we show various improvements of Theorem 2.7. We also show some de
idabilityresults for parti
ular 
ases of the GSP. Weaker versions of our theorems were already announ
edin [23℄. Theorem 2.10 already o

urred in [21℄ among other results.On one hand, we show the following improvements of Theorem 2.7:Theorem 2.81. It is unde
idable whether for some re
ognizable language IP � P3 = fa; 
g��fbg� the inter-se
tion �afa;
g�b� � \ �fa;
g�ab� � \ IP� is re
ognizable.2. There is some �xed re
ognizable language IR � C4 su
h that it is unde
idable whether forsome �nite language IP � C4 the interse
tion IR \ IP� is re
ognizable.3. It is unde
idable whether for some re
ognizable language IP � C4 = fa; 
g��fb; dg� theinterse
tion �afa;
g�fb;dg� � \ IP� is re
ognizable. 2Note that the interse
tion in Assertion (1) just means to sele
t the tra
es from IP� whose �rst
omponent starts and ends with the letter a. We prove Assertion (1) in Part 5.1 by a redu
tionto some unde
idable problem 
on
erning pi
ture languages. Be
ause the GSP is de
idable in tra
emonoids without P3-submonoid, we obtain the following 
orollary from Assertion (1):Corollary 2.9 Assume some tra
e monoid IM(�; I). It is de
idable whether for two re
ognizablelanguages IR; IP � IM(�; I) the interse
tion IR \ IP� is re
ognizable i� IM(�; I) does not 
ontain aP3-submonoid. 2In Part 5.2, we show Assertions (2) and (3) by a redu
tion to a variant of the PCP. An examplefor some language IR in Assertion (2) is the languageIR =  faaa
aa


a

a; aaa
aa


a


g+aafbbbdbbdddbddb; bbbdbbdddbdddg+bb!(
f. Remark 5.13 on page 23.) On the other hand, at least in the tra
e monoid P3, the GSP isde
idable as far as IP satis�es some property:Theorem 2.10 It is de
idable whether for two re
ognizable languages IR; IP � P3 = fa; 
g��fbg�the interse
tion IR \ IP� is re
ognizable, provided that IP satis�es at least one of the followingproperties:1. There is some integer n su
h that NC(IP) � �fa;
g�b1;:::;n�, or2. some tra
e of the form � �b+� belongs to IP. 2We give its proof in Se
tion 4. We will use Hashigu
hi's distan
e automata in a 
ru
ial way aswell as some pumping te
hniques. For lu
idity, we state the following 
orollary whi
h is an obvious
on
lusion from Theorem 2.10:Corollary 2.11 It is de
idable whether for two re
ognizable languages IR; IP � P3 = fa; 
g��fbg�the interse
tion IR \ IP� is re
ognizable, provided that NC(IP) is �nite. 2Clearly, if NC(IP) is �nite, then IP satis�es Property (1) in Theorem 2.10. However, IP = �fa;
g�b �satis�es Property (1) in Theorem 2.10, although NC(IP) is in�nite, i.e., Corollary 2.11 is weakerthan Theorem 2.10.Although Theorem 2.8(3) seems to be 
lose to an answer to the star problem, we do notknow whether it is unde
idable in C4. We regard the star problem as the most important open



2.5 Main Results, Con
lusions, and Future Steps 7question in this area. We leave it to the reader to use our results to obtain a 
onje
ture for thestar problem. Corollary 2.9 states a 
hara
terization of the tra
e monoids with a de
idable GSP.An open question is to 
hara
terize the tra
e monoids in whi
h the GSP is de
idable under therestri
tion to �nite languages IP. For instan
e, in the tra
e monoid fa; 
g� � 
� � d� = P3 � d�we 
an neither apply Theorem 2.8(2) nor Corollary 2.11. The attempt to show some variants ofTheorem 2.10 and Corollary 2.11 for P3 � d� by adapting the proof ideas for Theorem 2.10 leadsto serious problems, e.g., to some notion of Hashigu
hi's distan
e automata over P3 . . .One more remaining problem is to show some 
ommon improvement of Theorem 2.8(2) andTheorem 2.8(3), i.e., to show Theorem 2.8(2) for IR = �afa;
g�fb;dg� � whi
h means to show Theorem 2.8(3)for �nite languages IP.Finally, a question is whether one 
an show Theorem 2.8(1) for the interse
tion �afa;
g�b� � \ IP�.



8 3 SOME CLASSIC RESULTS3 Some Classi
 ResultsIn this se
tion, we re
all some 
lassi
 notions and results whi
h we will use in our main proofs.In Part 3.1, we deal with transition automata by M. O. Rabin and D. S
ott and distan
eautomata by K. Hashigu
hi. Then, we 
onsider transition automata over tra
e monoids.In Part 3.3, we re
all pi
ture languages and �nally, in Part 3.4, we deal with a variant of Post'sCorresponden
e Problem whi
h will be very suitable in the proof of Theorem 2.8.3.1 Transition Automata over Free MonoidsWe re
all some notions from automata theory. At �rst, we deal with two te
hni
al lemmas 
on-
erning re
ognizable languages in free monoids.Lemma 3.1 Assume some alphabet � and some automaton [Q;h; F ℄ su
h that h : �� ! Q is asurje
tion. For every q 2 Q, there is some word w 2 h�1(q) with jwj < jQj. 2Proof: Assume some q 2 Q and some w 2 h�1(q). If jwj< jQj, then we are done. Assume jwj � jQj.Choose letters a1; : : : ; ajwj 2 � su
h that a1 : : : ajwj = w. Be
ause jwj � jQj, there are two integers0� i < j � jwj with h(a1 : : : ai) = h(a1 : : : aj), i.e., q = h(a1 : : : ajwj) = h(a1 : : : aiaj+1 : : : ajwj) andja1 : : : aiaj+1 : : : ajwjj < jwj. By applying su
h a 
ut as many times a ne
essary, we 
onstru
t someword w0 with jw0j < jQj and h(w0) = q. 2See [10, p. 101℄ for a proof of the following lemma.Lemma 3.2 Some language L � b� is re
ognizable i� there are some �nite language L0 � b� andintegers z, n, m1; : : : ;mn su
h that L = Si2f0;:::;ngLi with Li = bmi(bz)� for i 2 f1; : : : ; ng. 2Clearly, we 
an assume z;m1; : : : ;mn > 0. If L is given by some automaton, then we 
an 
onstru
tL0 and the integers z, n, and m1; : : : ;mn.Transition automata originate from M. O. Rabin and D. S
ott [31℄. See [2, 10℄ for moreinformation. A transition automaton is a quadruple A = [Q; s;E; F ℄, where� Q is a �nite set 
alled the states,� s 2 Q is 
alled the initial state,� E � Q� ��Q is a set 
alled the edges, and� F � Q are 
alled the a

epting states.We 
all a path in A a �nite sequen
e of edges (q1; a1; q2)(q2; a2; q3) : : : (qn; an; qn+1) for some n � 0.We 
all the word a1 : : : an the label of this path. We 
all a path a

epting i� q1 = s and qn+1 2 F .The language of A, denoted by L(A), 
onsists of the labels of a

epting paths.Sometimes, it is quite 
onvenient to 
onsider transition automata as devi
es whi
h pro
ess withsome (read-only) head over a tape. In the beginning, the automaton rests in the initial state s, thetape 
ontains some word w 2 ��, and the head of the automaton is over the �rst letter of w. If the�rst letter of w is a and there is some edge (s; a; q) 2 E, then the automaton 
an read a, i.e., it 
an
hange the state to q and move the head to the se
ond letter of w.It is a 
lassi
 result in automata theory that transition automata over free monoids de�ne exa
tlythe re
ognizable languages (
f. [2, 10℄). Moreover, we 
an transform every transition automaton intoa ��-automaton whi
h de�nes the same language, and vi
e versa. Further, for every re
ognizablelanguage L � �� with � 62 L, we 
an 
onstru
t a transition automaton [Q; s;E; F ℄ for L su
h that� jF j = 1 and� E � (Q n F )� �� (Q n s)



3.2 Transition Automata over Tra
e Monoids 9provided that L is given by, e.g., some transition automaton or some ��-automaton (
f. [2, 10℄).We 
an generalize transition automata by allowing that E is a �nite subset of Q � �+ � Q.Then, the label of some path (q1; u1; q2)(q2; u2; q3) : : : (qn; un; qn+1) is the 
on
atenation u1 : : : un.As above, we de�ne the language of su
h an automaton as the set of the labels of any a

eptingpath. We 
an transform some transition automaton [Q; s;E; F ℄ with E � (Q � �+ � Q) into atransition automaton [Q0; s; E0; F ℄ with E0 � (Q0���Q0) whi
h de�nes the same language. If we
onsider su
h an automaton as a devi
e over some tape, then this generalization simply means thatthe automaton 
an read several letters in one step.We 
an further generalize transition automata by allowing that E is some (not ne
essarily�nite) subset of Q� �+ �Q. However, these generalized transition automata ex
eed the 
on
eptof re
ognizable languages in ��. Nevertheless, we will use them as a 
onvenient tool in the proofof Proposition 4.4.Distan
e automata were introdu
ed by K. Hashigu
hi [17, 18℄. We assume some element 1whi
h is bigger than every integer. A distan
e automaton is a tuple A = [Q; s;E; F; Æ℄ where� [Q; s;E; F ℄ is a transition automaton, and� Æ : Q���Q! f0; 1;1g is a fun
tion 
alled distan
e fun
tion su
h that for every q; q0 2 Qand a 2 � we have Æ(q; a; q0) =1 i� (q; a; q0) 62 E.Opposed to K. Hashigu
hi who 
onsidered distan
e automata with several initial states, we justdeal with distan
e automata with exa
tly one initial state.We de�ne the language of some distan
e automaton A = [Q; s;E; F; Æ℄ as the language of thetransition automaton [Q; s;E; F ℄. We de�ne the distan
e of some path (q1; a1; q2) : : : (qn; an; qn+1)as the sum Æ(q1; a1; q2) + Æ(q2; a2; q3) + : : : + Æ(qn; an; qn+1) where the sign \+" denotes 
ommoninteger addition. We denote the distan
e of some word w 2 L(A) by Æ(w) and de�ne it as the leastinteger n su
h that there is an a

epting path in A with the label w and the distan
e n. We de�nethe distan
e of every word w 62 L(A) by Æ(w) = 1. We 
all some distan
e automaton A limitedin distan
e i� there is some integer Æmax su
h that for every word w 2 L(A) we have Æ(w) � Æmax.We use the following strong result by K. Hashigu
hi [17, 18℄ in a 
ru
ial way.Theorem 3.3 It is de
idable whether some distan
e automaton is limited in distan
e. 23.2 Transition Automata over Tra
e MonoidsWe assume some tra
e monoid IM(�; I) within this part. Transition automata over IM(�; I) arede�ned as transition automata over ��. However, the label of some path (q1; a1; q2)(q2; a2; q3) : : :(qn; an; qn+1) is the tra
e [a1a2 : : : an℄ 2 IM(�; I). Transition automata over IM(�; I) de�ne exa
tlythe rational languages over IM(�; I).A transition automaton A = [Q; s;E; F ℄ respe
ts I i� for every p; q; r 2 Q and for everyindependent a; b 2 � with (p; a; q); (q; b; r) 2 E we have some q0 2 Q and (p; b; q0); (q0; a; r) 2 E.Transition automata over IM(�; I) whi
h respe
t I de�ne the re
ognizable languages over IM(�; I).Similarly to transition automata over free monoids, we 
an also allow that E is some �nite oreven in�nite subset of Q� IM(�; I)�Q. However, in�niteness of E ex
eeds the 
on
ept of rationaltra
e languages.If IM(�; I) is a isomorphi
 to a monoid �����, then we 
an 
onsider transition automata over�� � �� as devi
es whi
h pro
ess with two heads over two tapes, respe
tively. In the beginning,the automaton is in the initial state s, and some tra
e �uv� 2 �� ��� is represented on the tapes,i.e., u and v are represented on the �rst and se
ond tape, respe
tively. If there is some instru
tion(s; a; q) 2 E, and u starts with some letter a 2 �, then the automaton 
an read a, i.e., it 
hangesits state to q, moves the �rst head to the se
ond letter of u, and does not move the se
ond head.If we allow instru
tions Q� ��������Q, then the automaton 
an move both heads in one step.



10 3 SOME CLASSIC RESULTS3.3 Pi
ture LanguagesPi
tures and pi
ture languages are a generalization of words and word languages. We use somevery basi
 notions from the theory of pi
ture languages. See [14℄ for a re
ent survey. Assumesome alphabet �. For two integers m;n � 1, a pi
ture p over � of the size (m;n) is a map-ping p : f1; : : : ;mg � f1; : : : ; ng ! �. We 
all the numbers m and n the height and width ofp and denote them by hgt(p) and wdt(p), respe
tively. For 
onvenien
e, we de�ne the mappingp̂ : f0; : : : ;m+ 1g � f0; : : : ; n+ 1g ! � [ f#g. For every i 2 f1; : : : ;mg and j 2 f1; : : : ; ng, p̂i;jyields pi;j. Otherwise, p̂ yields #. We denote the set of all pi
tures over � by ���.Assume two pi
tures p and s. The 
olumn 
on
atenation p Æ s is de�ned i� hgt(p) = hgt(s).Let us denote the size of p and s by (m;n) and (m;n0), respe
tively. Then, p Æ s is de�ned by:p Æ s = 0B� p1;1 � � � p1;n s1;1 � � � s1;n0... . . . ... ... . . . ...pm;1 � � � pm;n sm;1 � � � sm;n0 1CAThe extension of the 
olumn 
on
atenation to pi
ture languages is obvious.We 
all a set of pi
tures of the size (2; 2) over � [ f#g a lo
al representation over �. Su
h alo
al representation de�nes a pi
ture language L(�). A pi
ture p belongs to L(�) i� every (2; 2)sub-pi
ture of p belongs to �:L(�) = �p 2 ��� ���� i 2 f0; : : : ;hgt(p)g; j 2 f0; : : : ;wdt(p)g :  p̂i;j p̂i;j+1p̂i+1;j p̂i+1;j+1 ! 2 ��.We use the following theorem from [13℄.Theorem 3.4 It is not de
idable whether the language of a lo
al representation is empty orwhether it is �nite. 2D. Giammarresi and A. Restivo showed several 
losure properties of the 
lass of pi
ture lan-guages of lo
al representations [13℄. We just need the following result:Lemma 3.5 Assume an alphabet � and a letter b 62 �. We 
an transform some lo
al representation� over � into a lo
al representation �0 over � [ fbg su
h that L(�0) = L(�) Æ fbg��. 2Proof (sket
h): For any a; 
 2 � we repla
e tiles � a #
 # �; �# #
 # �; � a ## #� 2 � by � a b
 b �; �# #
 b �; � a b# #�,respe
tively, and we insert new tiles �# #b b �; � b bb b �; � b b# #�; �# #b # �; � b #b #�; � b ## #� into �0. 23.4 A variant of Post's Corresponden
e ProblemPost's Corresponden
e Problem (for short PCP) is one of the most 
ommon unde
idable problems.A PCP instan
e 
onsists of two alphabets � and � and two homomorphisms �; � : �� ! ��.Assume su
h an instan
e for the rest of this part. A solution is a non-empty word w 2 �+ su
hthat �(w) = �(w). The existen
e of a solution is unde
idable. An in�nite sequen
e i1; i2; i3 : : : ofletters in � is 
alled an in�nite solution i� for any integer n, the words �(i1 : : : in) and �(i1 : : : in)are pre�x 
onsistent. We have the following result due to K. Ruohonen [34℄.Theorem 3.6 Assume a PCP instan
e su
h that both � and � are bipre�x homomorphisms. It isunde
idable whether it has a solution and it is unde
idable whether it has an in�nite solution. 2We need the following lemma:Lemma 3.7 A PCP instan
e has an in�nite solution i� there are in�nitely many words w 2 ��su
h that �(w) and �(w) are pre�x 
onsistent. 2



3.4 A variant of Post's Corresponden
e Problem 11Proof: Assume a PCP-instan
e 
onsisting of �, �, �, and �. If it has is an in�nite solutioni1; i2; : : :, then we have �(i1 : : : in) u �(i1 : : : in) for n � 0, i.e., for in�nitely many words i1 : : : in.Conversely, let L � �� denote the in�nite language whi
h 
onsists of the words in w 2 ��su
h that �(w) u �(w). Clearly, L is pre�x-
losed. We indu
tively 
onstru
t an in�nite solution.Assume some integer n and some word i1 : : : in 2 �� su
h that i1 : : : in satis�es two properties:Firstly, �(i1 : : : in) u �(i1 : : : in), i.e., i1 : : : in 2 L. Se
ondly, i1 : : : in is a pre�x of in�nitely manywords in L. Then, there is at least one letter in+1 2 � su
h that i1 : : : in+1 satis�es the sameproperties. We 
an use the empty word � as initial value for the iteration. 2



12 4 SOME DECIDABLE CASES4 Some De
idable CasesIn this se
tion, we prove Theorem 2.10. Assume two disjoint alphabets � and � and some letterb 62 � within this se
tion. To prove Theorem 2.10, we have to show the de
idability of a spe
ial 
aseof the GSP, i.e., we have to show that the re
ognizability of IR \ IP� is de
idable for re
ognizablelanguages IR; IP � �� � b�, provided that IP is �nite or some tra
e of the form � �b+� belongs to IP.Some of our intermediary results also hold for tra
e monoids of the form �� � ��.In Part 4.1, we 
onsider some easy propositions whi
h allow us to redu
e the GSP to restri
tedlanguages IR. Then, we 
onsider two 
ases of Theorem 2.10. In Part 4.2, we show the de
idabilityof the GSP in tra
e monoids �� � �� restri
ted to re
ognizable languages IP � (�+ � �0;:::;n) forsome integer n. This in
ludes the 
ase that IP is a �nite subset of �+ � ��.In Part 4.3, we use Hashigu
hi's distan
e automata to show the de
idability of the GSP intra
e monoids �� � �� provided that some tra
e of the form � �b+� belongs to IP.4.1 Some Obvious ObservationsFor some �nite language IR � (�����) and any language IP � (�����), the interse
tion IR\ IP�is re
ognizable be
ause it is �nite. We generalize this obvious fa
t.Proposition 4.1 Assume two re
ognizable languages IR; IP � (�����). The interse
tion IR\ IP�is re
ognizable if IR satis�es one of the following 
onditions:1. We have IR � (�� � �0;:::;n) for some integer n, or2. IR is a 
onne
ted language. 2Proof: By Lemma 2.4, NC(IP) and Cn(IP) are re
ognizable. The 
on
atenation of some tra
est1; : : : ; tm 2 (�� � ��) for some m yields a non-
onne
ted tra
e if one of the tra
es t1; : : : ; tm isnon-
onne
ted. Hen
e, if IR is 
onne
ted, then we have IR\IP� = IR\Cn(IP)� whi
h is re
ognizableby the 
losure properties of re
ognizable tra
e languages.Assume that IR satis�es (1). We have IP� = Cn(IP)��NC(IP)Cn(IP)���. Be
ause every non-
onne
ted tra
e in �� � �� 
ontains at least one letter from �, we haveIR \ IP� = IR \ Cn(IP)��NC(IP)Cn(IP)��0;:::;nThis language is re
ognizable by the 
losure properties of re
ognizable tra
e languages. 2Proposition 4.2 Assume two re
ognizable languages IR, IP in some tra
e monoid. Assume someinteger n and re
ognizable languages IR1; : : : ; IRn with IR1 [ : : : [ IRn = IR. Then, the interse
tionIR \ IP� is re
ognizable i� for i 2 f1; : : : ; ng the interse
tion IRi \ IP� is re
ognizable. 2Proof: For i 2 f1; : : : ; ng, we have IRi \ IP� = IRi \ (IR \ IP�). Hen
e, re
ognizability of IR \ IP�implies re
ognizability of IRi \ IP�. Conversely, we have IR \ IP� = (IR1 \ IP�) [ : : : [ (IRn \ IP�).Thus, re
ognizability of IRi \ IP� for i 2 f1; : : : ; ng implies re
ognizability of IR \ IP�. 2From these propositions, we immediately see that for two re
ognizable languages IR; IP�(�����)the interse
tion IR \ IP� is re
ognizable, provided that NC(IR) is �nite.



4.2 A De
idable Case in �� � �� 134.2 A De
idable Case in �� � ��Now, we work on the GSP for restri
ted languages IP.Proposition 4.3 Assume two re
ognizable languages IR; IP � (�� � ��). We 
an de
ide whetherIR \ IP� is re
ognizable if IP � (�+ � �0;:::;n) for some integer n. 2We forbid that the empty tra
e belongs to IP. However, this is not really a restri
tion, be
auseIP� = (IP n ����)�. Note that Proposition 4.3 in
ludes the 
ase that IP is a �nite subset of �+���.Proof: Let [Q;h; F ℄ be some automaton for IR. We have Cn(IP) � (�� � �). We abbreviateCn(IP)�NC(IP)Cn(IP)� by IPCNC. We show the equivalen
e of three assertions:1. The language IR \ IP� is re
ognizable.2. There is some integer n0 su
h that (IR \ IP�) � (�� � �0;:::;n0).3. The interse
tion IR \ IPjQj+1;:::;2jQj+1CNC is empty.� (2))(1) We have IR \ IP� = (�� � �0;:::;n0) \ (IR \ IP�) whi
h is �(�� � �0;:::;n0) \ IR� \ IP�.By Proposition 4.1 (1), this language is re
ognizable.� (1))(2) Assume that IR \ IP� is re
ognizable, but nevertheless, an integer n0 in (2) doesnot exist. By Mezei's Theorem, the interse
tion IR \ IP� 
onsists of �nitely many 
artesianprodu
ts (K � L) � (�� � ��) with K 6= ; and L 6= ;. Be
ause an integer n0 in assertion (2)does not exist, we 
an 
hoose a 
artesian produ
t (K�L) � (IR\ IP�) su
h that L is in�nite.Choose some w 2 K. We have (w�L) � (IR\IP�) � IP�. Be
ause every tra
e in IP 
ontainsat least one letter in �, we have (w � L) � IP0;:::;jwj. Be
ause every tra
e in IP 
ontains atmost n o

urren
es of letters from �, the length of the words in L 
annot ex
eed njwj.This 
ontradi
ts that L is in�nite.� (2))(3) We assume that the interse
tion in (3) is not empty. Consequently, there is aninteger l 2 f jQj+1; : : : ; 2jQj+1 g and there are tra
es t1; : : : ; tl 2 IPCNC � IP� su
h thatt1 : : : tl 2 IR. Be
ause jQj < l, there are two integers i; j with 0 < i < j � l su
h thath(t1 : : : ti) = h(t1 : : : tj). Then, \we 
an pump h(ti+1 : : : tj)". For k � 0, we haveh(t1 : : : ti) = h(t1 : : : ti)h(ti+1 : : : tj)k and h(t1 : : : tl) = h(t1 : : : ti)h(ti+1 : : : tj)kh(tj+1 : : : tl)This value belongs to F su
h that we have (t1 : : : ti)(ti+1 : : : tj)�(tj+1 : : : tl) � IR. We also have(t1 : : : ti)(ti+1 : : : tj)�(tj+1 : : : tl) � IP�, be
ause t1; : : : ; tl 2 IP�. The tra
es ti+1; : : : ; tj 
ontainat least one non-
onne
ted tra
e, i.e., they 
ontain one letter from �. Hen
e, by pumpingti+1 : : : tj , we see that an integer n0 as in assertion (2) 
annot exist.� (3))(2) Let us assume that an integer n0 does not exist. Every tra
e in IP 
ontains at mostn o

urren
es of letters in �. However, there are tra
es in IR \ IP� 
ontaining arbitrarymany o

urren
es of letters in �. Consequently, there are arbitrary big integers l su
h thatIPlCNC 
ontains tra
es in IR. So assume an integer l � jQj + 1 su
h that there are tra
est1; : : : ; tl 2 IPCNC with t1 : : : tl 2 IR. If l � 2jQj+ 1, then we are done.So assume l > 2jQj + 1. As above, there are two integers i; j with 0 < i < j � jQj + 1 su
hthat h(t1 : : : ti) = h(t1 : : : tj). We have j � i � jQj. As above, we have t1 : : : titj+1 : : : tl 2 IR.Hen
e, t1 : : : titj+1 : : : tl belongs to the interse
tion IR \ IPl�j+iCNC . By applying su
h a 
ut asmany times as ne
essary, we obtain some tra
e in IR \ IPjQj+1;:::;2jQj+1CNC .Be
ause the 
losure properties of re
ognizable tra
e languages are e�e
tive, we 
an 
onstru
t anautomaton for IR \ IPjQj+1;:::;2jQj+1CNC and de
ide whether its language is empty. 2



14 4 SOME DECIDABLE CASES4.3 Another De
idable Case in �� � b�In this part, we 
omplete the proof of Theorem 2.10 by showing the following proposition:Proposition 4.4 Assume two re
ognizable languages IR; IP � ��� b� su
h that IP 
ontains sometra
e of the form � �b+�. We 
an de
ide whether the interse
tion IR \ IP� is re
ognizable. 2Proof: We 
an split IR into NC(IR) and Cn(IR). By Proposition 4.2 and 4.1 (2), it suÆ
es to
onsider the interse
tion NC(IR) \ IP�. Hen
e, we assume that IR 
ontains only non-
onne
tedtra
es in the rest of the proof.By Mezei's Theorem, we 
an split IR into �nitely many 
artesian produ
ts and apply Proposi-tion 4.2. Consequently, it suÆ
es to 
onsider the 
ase that IR = K � L for re
ognizable languagesK � �� and L � b�. We have � 62 K [ L, be
ause IR 
ontains not any 
onne
ted tra
e.If L is �nite, we know by Proposition 4.1 (1) that IR \ IP� is re
ognizable. Hen
e, it suÆ
es to
onsider in�nite languages L in the rest of the proof.By Lemma 3.2, we 
an split L into a �nite language and �nitely many languages of the formbm(bz)� for some integers m; z > 0. By splitting L, we 
an split IR to use Proposition 4.2, again.Hen
e, it suÆ
es to 
onsider languages L = bm(bz)� for some integers m; z > 0.We 
an assume � �bz� 2 IP�. If � �bz� 62 IP�, then we pro
eed as follows: Assume some n > 0 su
hthat � �bn� 2 IP. The language L is the union of the languages bm+jz(bnz)� for j 2 f0; : : : ; n � 1g.Then, � �bnz� 2 IP�. As above, we 
an split IR by splitting L and use Proposition 4.2.Now, we transform the language IP into a re
ognizable language IP0 with IR \ IP� = IR \ IP0�su
h that IP0 satis�es some additional properties.IP0 = Cn(IP)�NC(IP)Cn(IP)� [ NC(Cn(IP)�)By Lemma 2.4, both Cn(IP) and NC(IP) are re
ognizable. Hen
e, by the 
losure properties ofre
ognizable tra
e languages, the language IP0 is re
ognizable.Of 
ourse, we have IP0 � IP�, and thus, IP0+ � IP�. Further, every tra
e in IP0+ is non-
onne
tedsu
h that we have IP0+ � NC(IP�). Assume some tra
e t 2 NC(IP�). There is some integer n > 0and tra
es t1; : : : ; tn 2 IP with t1 : : : tn = t. If t1; : : : ; tn 2 Cn(IP), then we have t = t1 : : : tn 2NC(Cn(IP)�) � IP0 � IP0+. Otherwise, we have t 2 IP0k, where k is the number of non-
onne
tedtra
es among t1; : : : ; tn. Hen
e, we have NC(IP�) � IP0+, i.e., we have NC(IP�) = IP0+. Be
ausethere are only non-
onne
ted tra
es in IR and in parti
ular ���� 62 IR, we have IR \ IP� = IR \ IP0�.Consequently, we 
an de
ide whether IR \ IP� is re
ognizable by de
iding whether IR \ IP0� isre
ognizable.Let P0; P1; : : : be the unique family of languages in �� su
h thatIR \ IP0� = �P0bm� [ � P1bm+z� [ � P2bm+2z� [ : : :Be
ause every tra
e in IP0 
ontains the letter b, we have for any integer iIR \ IP0 0;:::;m+iz \ � ��bm+iz� = � Pibm+iz�Hen
e, � Pibm+iz� and by Mezei's Theorem Pi are re
ognizable for any integer i.Be
ause ��bz� 2 Cn(IP)�, we have IP0��bz� � IP0. Be
ause L = bm(bz)�, we have IR��bz� � IR.Thus, for every �uv� 2 IR \ IP0�, we have �uv���bz� 2 IR \ IP0�. Hen
e, we have P0 � P1 � P2 : : :We show the equivalen
e of four assertions:



4.3 Another De
idable Case in �� � b� 151. IR \ IP0� is re
ognizable.2. There is some integer l su
h that for i � l we have Pl = Pi.Below, we will state assertion (3) and (4). If the integer l in (2) exists, then we haveIR \ IP0� = �P0bm� [ : : : [ � Pl�1bm+(l�1)z� [ � Plbm+lz(bz)��whi
h is re
ognizable by Mezei's Theorem.Conversely, assume that the integer l in (2) does not exist. Let i1; i2; : : : an in�nite sequen
e ofintegers su
h that the languages Pi1 ; Pi2 ; : : : are mutually di�erent. Then, the homomorphism insome automaton for IR\ IP0� has to map the tra
es � �bm+iz� for i 2 fi1; i2; : : :g to mutually di�erentstates, i.e., any automaton for IR \ IP0� has in�nitely many states. Hen
e, su
h an automaton
annot exist, and thus, IR \ IP0� is not re
ognizable.In the rest of proof, we 
onsider the de
idability of the existen
e of the integer l in assertion (2).By Mezei's Theorem, we have IP0 = (K1 � L1) [ : : : [ (Kk � Lk) for some integer k and re
og-nizable languages K1; L1; : : : ;Kk; Lk. We have � 62 K1; L1; : : : ;Kk; Lk. By Mezei's Theorem andLemma 2.2, we 
onstru
t automata for K;K1; : : : ;Kk as follows: We 
onstru
t a �nite monoid P ,a surje
tive homomorphism g : �� ! P , and subsets G;G1; : : : ; Gk � P with K = g�1(G) andKi = g�1(Gi) for i 2 f1; : : : ; kg. We also 
onstru
t a �nite monoid Q, a surje
tive homomorphismh : b� ! Q, and sets F; F1; : : : ; Fk � Q with L = h�1(F ) and Li = h�1(Fi) for i 2 f1; : : : ; kg.We 
onstru
t a distan
e automaton whi
h is limited in distan
e i� some integer l in (2) exists.However, at �rst, we 
onstru
t some transition automaton A with (possibly) in�nitely many edgesas a preliminary tool to explain the idea. Its set of states is P �Q. Its initial state is ��P�Q�, where�P and �Q are the identities in P and Q, respe
tively. Its set of a

epting states are G�F , i.e., the
artesian produ
t of the a

epting states of the automata forK and L. For every state �pq� 2 (P�Q)and every tra
e �uv� 2 IP0, we insert an edge ��pq�; u; �p�g(u)q�h(v)��. Probably, A has in�nitely many edges,i.e., A is not ne
essarily a transition automaton. Nevertheless, we 
an use the terms \path in A",\a

epting path in A". . . We state assertion (3).3. There is some integer n su
h that any word whi
h A a

epts is the label of a path whi
h
onsists of at most n edges.Before we show the equivalen
e (2),(3), we show that A a

epts exa
tly the words whi
h are �rst
omponents of tra
es in IR \ IP0�, i.e., the language of A is the union P0 [ P1 [ : : : Assume someinteger i and some �uv� 2 IP0i. Clearly, there is a path in A from ��P�Q� to �g(u)h(v)� whi
h 
onsists of iedges and is labeled with u. If additionally �uv� 2 IR, then we have g(u) 2 G and h(v) 2 F , andthus, A a

epts u.Conversely, assume some integer i and some path in A from ��P�Q� to some state �pq� whi
h
onsists of i edges and is labeled with some word u. Then, we have p = g(u) and there is sometra
e �uv� 2 IP0i with h(v) = q. If additionally �pq� 2 F �G, then �uv� 2 IR, and thus, �uv� 2 IR \ IP0i.We show (2))(3). Let n = m+ lz. Assume some word w 2 L(A). We have w 2 Pl, and thus,� wbm+lz� 2 IR \ IP0�. Be
ause the letter b o

urs in every tra
e in IP0, we have � wbm+lz� 2 IP01;:::;m+lz.Hen
e, A a

epts w by a path 
onsisting of at most m+ lz edges.We show (3))(2). Choose some integer l su
h that m + lz � njQj. Assume some wordw 2 P0 [ P1 : : : There is some n0 � n su
h that A a

epts w by a path 
onsisting of n0 edges.Hen
e, there are tra
es t1; : : : ; tn0 2 IP0 su
h that t1 : : : tn0 2 IR \ IP0� and the �rst 
omponent oft1 : : : tn0 is w. For i 2 f1; : : : ; n0g, we denote ti = �uivi�. By Lemma 3.1, there is some word v0i 2 b�su
h that jv0ij < jQj and h(vi) = h(v0i), for i 2 f1; : : : ; n0g. Let t0i = �uiv0i�. We have t01 : : : t0n0 2 IR,be
ause h(vi) = h(v0i). The �rst 
omponent of t01 : : : t0n0 is w. The se
ond 
omponent of t01 : : : t0n0
onsists of less than n0jQj letters, i.e., less than njQj letters. Hen
e, we have w 2 Pl.



16 4 SOME DECIDABLE CASESIt remains to show the de
idability of the existen
e of the integer n in assertion (3). We 
onstru
ta distan
e automaton A0 whi
h is limited in distan
e i� the integer in assertion (3) exists.The distan
e automaton A0 has the same states, initial state, and a

epting states as A. It hasbeside the states of A some additional states. Assume any two states �pq�; �p̂̂q� 2 P �Q. Above, weinserted probably in�nitely many edges between these two states. We examine the set of all edgelabels of edges (i.e. paths of length one) between �pq� and �p̂̂q� in A. We de�neT = [for any p02P; q02Q with pp0=p̂; qq0=q̂;and p02Gi; q02Fi for some i2f1;:::;kg g�1(p0)Assume some edge ��pq�; u; �p̂̂q�� in A. There is some v 2 b� su
h that �uv� 2 IP0 and �p̂̂q� = �p�g(u)q�h(v)�.To verify u 2 T , we set p0 = g(u) and q0 = h(v). We have �uv� 2 IP0, i.e., there is some i 2 f1; : : : ; kgwith �uv� 2 Ki � Li. Then, we have p0 = g(u) 2 Gi and q0 = h(v) 2 Fi.Conversely, assume some u 2 T . Let p0 = g(u). Choose some q0 whi
h satis�es the propertiesin the expression for T . Be
ause h is a surje
tion, there is some v 2 �� with h(v) = q0. There issome i 2 f1; : : : ; kg with p0 = g(u) 2 Gi and q0 = h(v) 2 Fi. Hen
e, �uv� 2 (Ki � Li) � IP0. Thus,there is some edge ��pq�; u; �p�g(u)q�h(v)��, i.e., ��pq�; u; �p̂̂q�� in A.Consequently, for any word u 2 ��, there is some edge ��pq�; u; �p̂̂q�� in A i� u 2 T .We 
an 
onstru
t a transition automaton for T . We 
onstru
t some transition automaton for Twith exa
tly one a

epting state su
h that the initial state has no in
oming edges and the a

eptingstate has no outgoing edges. Further, its edge labels are single letters from �. Instead of insertingin�nitely many edges between �pq� and �p̂̂q�, we insert the transition automaton for T between thesestates, i.e., �pq� and �p̂̂q� are its initial and a

epting state. The transition automaton for T simulatesthe formerly in�nitely many edges between �pq� and �p̂̂q�. The edges to �p̂̂q� get the distan
e 1, allother edges get the distan
e 0.We pro
eed this for every pair of states �pq�; �p̂̂q� 2 P �Q. We obtain the distan
e automaton A0with the same language as A but �nitely many edges. We state assertion (4).4. The distan
e automaton A0 is limited in distan
e.We 
an easily verify (3),(4). Moreover, if both (3) and (4) are true, then the least integer n tosatisfy (3) is exa
tly the biggest value Æ(w) for w 2 L(A0) = L(A). We 
an de
ide by Theorem 3.3whether assertion (4) is true. Hen
e, we 
an de
ide the re
ognizability of IR \ IP0�. 2



175 Some Unde
idable Cases5.1 The Problem in �� � b� in generalAlthough we worked very hardly in the previous se
tion, there are 
ases whi
h remained open.Surprisingly, improving Proposition 4.4 by 
utting the presumption that some tra
e of the form� �b+� belongs to IP is not possible, be
ause the problem be
omes unde
idable.Within this subse
tion, we 
onsider an alphabet � and pi
ture languages over �. We further
onsider the alphabet � = �[f#;&g. Assume two integers n;m � 1 and a pi
ture p over � of thesize (m;n). A word w 2 �� represents p i� w 
onsists of the lines of p̂ with & as separators, i.e.,w = &#n+2 &#p1;1 : : : p1;n# &#p2;1 : : : : : : pm;n# &#n+2 &We de�ne some language IK � �� byIK = &#3#��&#�+#�+&#3#�&:The language IK is re
ognizable. The words in IK are not ne
essarily representations of pi
turesover �, be
ause \the lines 
an have di�erent lengths".We 
all some tra
e t 2 ���b� fair i� t = �(&#n(&#�n�2#)+&#n&bn � for some n � 3. The �rst
omponent of every fair tra
e represents a pi
ture over �. Moreover, for every pi
ture p over �there is exa
tly one fair tra
e whose �rst 
omponent represents p.We de�ne a transition automaton A. It has the states start, 
hk (for 
he
k), and a

. The statesstart and a

 are the initial and a

epting state, respe
tively. The instru
tions (edges) of A are:0. [start; ���nIKb� �; a

℄1. [start; ���&� �; 
hk℄2. [
hk; ��[#b �; 
hk℄3. [
hk; �&��b+ �; a

℄4. [
hk; �(�[#)��� �; a

℄Lemma 5.1 Assume some tra
e t2(���b�). The automaton A a

epts t i� t is not fair. 2Proof: Assume a tra
e t2 (���b�) whi
h is not fair. If the �rst 
omponent of t does not belongto IK, then A a

epts t by instru
tion (0). Otherwise, there are two words w1; w3 2 �� and a wordw2 2 (� [#)+, su
h that t = �w1&� ��w2v ��&w3� � and jw2j 6= jvj. At �rst, the automaton parses �w1&� �using instru
tion (1). Then, it uses instru
tion (2) as many times as possible. Then, depending onwhether jw2j < jvj or jw2j > jvj, it uses instru
tion (3) or (4), resp., to terminate.Conversely, assume some tra
e t 2 (���b�) su
h that A a

epts t. If A uses instru
tion (0),then t 
annot be fair. Assume A starts with (1). Then, it uses instru
tion (2) several times, and itterminates with instru
tion (3) or (4). After using instru
tion (1), A has parsed a tra
e of the form�w1&� � for some w1 2 ��. Then, A uses several times instru
tion (2). Let n 2 IN be the numberhow often A uses instru
tion (2). Thus, it parsed some tra
e �w1&w2bn � for some w2 2 (� [ #)n.After that, the automaton terminates using instru
tion (3) or (4). If it uses (3), then it parsed a�rst 
omponent with a subword &w2& with jw2j = n. However, be
ause it used instru
tion (3)there are more than n letters 
 in the se
ond 
omponent. If it uses instru
tion (4), then there issome subword w2x 2 (� [ f#g) in the �rst 
omponent, but, there are n letters b in the se
ond
omponent. Either way, t is not fair. 2



18 5 SOME UNDECIDABLE CASESNow, we extend the automaton A. We assume a lo
al representation � over �. We extend theautomaton A su
h that it a

epts not only the unfair tra
es but also the fair tra
es whose �rst
omponent en
odes a pi
ture whi
h does not belong to L(�).We use one 
heap tri
k. We do not use �. Assume a letter $ 2 � whi
h does not o

ur in �.By Lemma 3.5, we 
onstru
t a lo
al representation �0 for the pi
ture language L(�) Æ f$g��.The language L(�0) is either empty or it 
ontains pi
tures of arbitrary width. We extend A su
hthat it a

epts the unfair tra
es and the fair tra
es whose �rst 
omponent en
odes a pi
ture whi
hdoes not belong to L(�0).We de�ne the automaton A�0 . It has the same states as A and additionally, for every two lettersa; 
 2 � [#, the state 
hka
. The instru
tions of A�0 are the instru
tions of A and additionally:5. [start; ���a
b �; 
hka
℄ for every a; 
 2 � [#6. [
hka
; ��b�; 
hka
℄ for every a; 
 2 � [#7. [
hka
; �de��� �; a

℄ for every a; 
; d; e 2 � [# with � a 
d e� 62 �0Lemma 5.2 Assume some tra
e �wv� 2 (�� � b�). The automaton A�0 a

epts �wv� i� either� �wv� is not fair, or� �wv� is fair and w en
odes some pi
ture p 2 ��� with p 62 L(�0). 2Proof: If �wv� is not fair, then A�0 a

epts �wv� as A a

epts this tra
e (
f. Lemma 5.1).Let us assume that �wv� is fair, and w en
odes a pi
ture p 62 L(�0). Let (m;n) denote the sizeof p. Then, we have v = bn+2. There are integers i, j with 0 � i � m and 0 � j � n su
h that� p̂i;j p̂i;j+1p̂i+1;j p̂i+1;j+1� 62 �0. We denote p̂i;j, p̂i;j+1, p̂i+1;j, and p̂i+1;j+1 by a, 
, d, and e, respe
tively.We fa
torize w. There are w1; w2; w3 2 �� su
h that jw2j = n+1 and w = w1a
w2dew3. Hen
e,A�0 
an a

ept �wv� by using instru
tion (5) [start; �w1a
b �; 
hka
℄, then using instru
tion (6) n + 1times, and �nally using (7) [
hka
; �dew3� �; a

℄.Conversely, assume some tra
e �wv� whi
h A�0 a

epts. If �wv� is not fair, then we are done.We 
onsider the 
ase that t is fair, i.e., t en
odes some pi
ture p. Let (m;n) be the size of p.Then, v = bn+2.The automaton A�0 
annot a

ept �wv� by instru
tion (0) or by a run starting with (1). Hen
e,it suÆ
es to 
onsider the 
ase that A�0 a

epts �wv� by starting with instru
tion (5). Then, Aa

epts �wv� by a run using instru
tion (5) on
e, several times instru
tion (6), and on
e instru
-tion (7). Be
ause v = bn+2, it has to use instru
tion (6) exa
tly n+ 1 times. Then, there are fourletters a; 
; d; e from the instru
tions (5) and (7) in the run of the automaton and there are wordsw1; w2; w3 2 �� su
h that w = w1a
w2dew3 and jw2j = n + 1. Hen
e, the letters a; 
; d; e form asubpi
ture in p̂ of size (2; 2) whi
h does not belong to �0, i.e., p 62 L(�0). 2Now, we 
an show the following 
onne
tion:Proposition 5.3 The language of A�0 is re
ognizable i� L(�) is empty. 2Proof: Assume that L(�) is empty. Then, L(�0) is also empty. Thus, A�0 a

epts the 
ompletemonoid �� � b� whi
h is a re
ognizable language.Conversely, assume that L(�) is not empty, but nevertheless, L(A�0) is re
ognized by the auto-maton [Q;h; F ℄. Be
ause L(�0) = L(�) Æ f$g��, the language L(�0) 
ontains pi
tures of arbitrarywidth. Hen
e, we 
an 
hoose p; s 2 L(�0) with wdt(p) 6= wdt(s) su
h that h�wp� � = h�ws� �, wherewp and ws are the words whi
h en
ode p and s, respe
tively. We have h� wpbwdt(p)+2� = h� wsbwdt(p)+2�.Thus, either both or none of the tra
es � wpbwdt(p)+2� and � wsbwdt(p)+2� belongs to L(A�0). However,� wpbwdt(p)+2� 62L(A�0) by Lemma 5.2. On the other hand � wsbwdt(p)+2�2L(A�0), be
ause it is not fair. 2



5.1 The Problem in �� � b� in general 19Based on A�0 , we de�ne the re
ognizable language IP. We introdu
e a new letter k 62 � and 
onsiderthe monoid (�[k)�� b�. We denote by � the homomorphism � : �(�[k)�� b��!(��� b�) whi
herases the letter k. Note that � is a 
onne
ted homomorphism. Hen
e, �(T ) yields a re
ognizablelanguage for re
ognizable languages T .Let n = j(� [#)j2 + 2. Hen
e, we 
an assign for a; 
 2 (� [#) the state 
hka
 and the state
hk a number between 1 and n� 1.Now, we de�ne the language IP by de�ning several languages whose union yields IP. We areinterested in tra
es whose �rst 
omponent is of the form (�k�)��. We distinguish two kinds ofthese tra
es: well-formed tra
es whi
h are tra
es whose �rst 
omponent is (�kn)��, and trash-tra
es, i.e., tra
es whose �rst 
omponent belongs to (�k�)�� n (�kn)��. We de�ne a so-
alledtrash language IPT .IPT = �(�k�)�� n (�kn)��b� �The tra
es in IPT are not well-formed. Moreover, the 
on
atenation of any tra
e in IPT and anyother tra
e yields a tra
e in IPT , i.e., there are not any well-formed tra
es in �(�[k)�b� �IPT �(�[k)�b� �.We de�ne IP0. It 
onsists of well-formed tra
es.IP0 = n �uv� 2 �(�kn)��b� � �����uv� 2 ��� n IKb� �o = �(�kn)��b� � \ ��1��� n IKb� �The language IP0 is related to instru
tion (0) of the automaton. A

ordingly, we de�ne IP1; : : : ; IP4.IP1 = �(�kn)�&k� � IP2 = �kn�1(�[#)kb � IP3 = �kn�1&(kn�)�b+ � IP4 = �kn�1(�[#)(kn�)�� �Before we 
ontinue to de�ne IP, we examine the parts of IP whi
h we already de�ned. Let IPT;:::;4denote the union IPT [ IP0 [ : : : [ IP4. We examine the well-formed tra
es in IP�T;:::;4. We 
annotobtain a well-formed tra
e if we 
on
atenate some tra
es in IPT;:::;4 and we use a tra
e in IPT .Moreover, we easily see that the well formed tra
es in IP�T;:::;4 are the tra
es in IP0 and the tra
esin IP1IP�2(IP3 [ IP4). Consequently, we have natural 
onne
tion between the well-formed tra
es inIP�T;:::;4 and the paths of A. Therefore, if we erase the letter k in some well-formed tra
e in IP�T;:::;4,then we either obtain an unfair tra
e (
f. Lemma 5.1). Moreover, by applying � on the well-formedtra
es in IP�T;:::;4 we obtain any unfair tra
e.Now, we de�ne the remaining parts of IP. For every a; 
 2 � [ #, we de�ne three languagesIP5;a
, IP6;a
, and IP7;a
. For every a; 
 2 � [#, we 
hoose some distin
t 1 < z < n.IP5;a
 = �(�kn)akn
kzb � IP6;a
 = �kn�z�kzb �IP7;a
 = n �kn�zdkze(kz�)�� � ��� d; e 2 (� [#) with � a 
d e� 62 �0 oNow, we de�ne IP as the union:IP = IPT [ IP0 [ : : : [ IP4 [ Sa;
2(�[#)(IP5;a
 [ IP6;a
 [ IP7;a
)The language IP is re
ognizable, be
ause it is the union of �nitely many re
ognizable languages.We examine the well-formed tra
es in IP�. We have�(�kn)��b� � \ IP� = IP0 [ IP1IP�2IP3 [ IP1IP�2IP4 [ Sa;
2(�[#)(IP5;a
IP�6;a
IP7;a
)Remark 5.4 Consequently, there is a 
orresponden
e between the well-formed tra
es in IP� and thea

epting paths in A�0 . For every well-formed tra
e �uv� 2 IP�, we have ��uv� 2 L(A�0). Conversely,for every t 2 L(A�0), there is some well-formed tra
e �uv� 2 IP� su
h that ��uv� = t. 2



20 5 SOME UNDECIDABLE CASESNow, we 
an show the following 
onne
tion:Proposition 5.5 The interse
tion �(�k�)��b+ � \ IP� is re
ognizable i� L(A�0) is re
ognizable. 2Proof: We split �(�k�)��b+ � into two re
ognizable languages by �(�k�)��b+ � = IPT [ �(�kn)��b+ � and applyProposition 4.1. We have IPT \ IP� = IPT , i.e., IPT \ IP� is re
ognizable. Hen
e, �(�k�)��b+ � \ IP� isre
ognizable i� the set of the well-formed tra
es in IP� is re
ognizable. Consequently, it suÆ
es toshow that the set of the well-formed tra
es in IP� is re
ognizable i� L(A�0) is re
ognizable.Assume that �(�kn)��b+ � \ IP� is re
ognizable. By Remark 5.4, we haveL(A�0) = ���(�kn)��b+ � \ IP��Be
ause � preserves re
ognizability, L(A�0) is re
ognizable. Conversely, assume L(A�0) is re
og-nizable. By Remark 5.4, we have�(�kn)��b+ � \ IP� = �(�kn)��b+ � \ ��1(L(A�0))The set ��1(L(A�0)) is re
ognizable be
ause of the 
losure of re
ognizable sets under inversehomomorphisms. We immediately see that �(�kn)��b+ � \ IP� is re
ognizable. 2From Theorem 3.4, Lemma 5.3, Proposition 5.4, we obtain the following 
orollary:Corollary 5.6 Assume some alphabet � and two letters b; k 62 �. It is not de
idable whether fora re
ognizable language IP � (� [ k)� � b�, the interse
tion �(�k�)��b� � \ IP� is re
ognizable. 2Finally, we boil down this result to P3.Theorem 5.7 It is not de
idable whether for some re
ognizable language IP � fa; 
g� � b�, theinterse
tion �(a
�)�ab� � \ IP� is re
ognizable. 2Proof: Assume su
h an algorithm. Then, we 
an 
ontradi
t Corollary 5.6. Assume �, b, k,and IP as in Corollary 5.6. We show how to de
ide whether �(�k�)��
� � \ IP� is re
ognizable.Let h : (� [ k)� ! fa; 
g� be an inje
tive homomorphism with h(k) 2 (
a�)�
 and h(�) � (a
�)�a.We extend h to an inje
tive and 
onne
ted homomorphism h : (� [ k)� � b� ! fa; 
g� � b� bysetting h��b� = ��b�. Then, �(�k�)��b� � \ IP� is re
ognizable i� h��(�k�)��b� � \ IP�� is re
ognizable.We have h��(�k�)��b� � \ IP�� = h�(�k�)��b� � \ h(IP)� = �(a
�)�ab� � \ h(IP)�We 
an de
ide re
ognizability of the last set by the assumed algorithm. 25.2 The Problem in �� � ��In this part, we 
onsider the problem whether IR \ IP� is re
ognizable for re
ognizable languagesin tra
e monoids of the form �� � ��. We assume a PCP-instan
e 
onsisting of alphabets � and� and bipre�x homomorphisms �; � : �� ! ��. We assume j�j = 2. Let l be an integer su
h thatfor every i 2 �, we have j�(i)j < l and j�(i)j < l.In our 
onstru
tions, below, it will be more 
onvenient to 
onsider monoids �����. Note thatthe monoid �� ��� is isomorphi
 to a tra
e monoid �� � �� where � is any disjoint 
opy of �.Similar to the previous part, we 
onstru
t some automaton step by step. At �rst, we 
onsideran automaton A with the states start, loop1, and err. The states start and err are the initial anda

epting state, respe
tively. The instru
tions (edges) of A are:



5.2 The Problem in �� � �� 210. [start; ����; loop1℄1. [loop1; �aa�; loop1℄ for every a 2 �2. [loop1; �ab�; err℄ for every a; b 2 � with a 6= b3. [err; �a��; err℄ and [err; ��a�; err℄ for every a 2 �Lemma 5.8 Assume some tra
e �uv�2(�����). The automaton A a

epts �uv� i� u u= v. 2Proof: Assume that u and v are not pre�x 
onsistent, i.e., there are x; u0; v0 2 �� and a 6= b 2 �su
h that �uv� = �xau0xbv0�. Then, A a

epts �uv� by instru
tion (0), several times instru
tion (1) toparse �xx�, instru
tion (2) to parse �ab�, and several times instru
tion (3) to parse �u0v0�.Conversely, if u u v, then A is for
ed to use instru
tion (0) and several times instru
tion (1),i.e., it remains in the state loop1. 2We de�ne the automaton A0 by adding a state loop2 and some edges to A:4. [start; ����; loop2℄5. [loop2; ��(i)�(i)�; loop2℄ for every i 2 �6. [loop2; �uv�; err℄ for u; v 2 �1;:::;l with �uv� u= ��(i)�(i)� for every i 2 �Lemma 5.9 The automaton A0 a

epts some tra
e �uv�2(�����) i� one of the following 
onditionsis true:(A) u u= v,(B) for every w 2 �� with ��(w)�(w)� u �uv�, we have �(w) < u and �(w) < v. 2Proof: At �rst, we show that if u and v satisfy (A) or (B), then A a

epts �uv�. If u and v satisfy
ondition (A), then A0 a

epts �uv� as A does (
f. Lemma 5.8).Assume that u and v satisfy (B). Let w 2 �� be the longest word with ��(w)�(w)� u �uv�. The wordw is unique, be
ause � and � are bipre�x homomorphisms.There are non-empty words u0; v0 2 �+ su
h that �uv� = ��(w)u0�(w)v0�. Assume there is an i 2 �su
h that ��(i)�(i)� u �u0v0�. Then, we also have ��(wi)�(wi)� u �uv�. If u0 < �(i) or v0 < �(i), then we haveu < �(wi) or v < �(wi) whi
h 
ontradi
ts 
ondition (B). Hen
e, we have �(i) v u0 and �(i) v v0.Then, we have ��(wi)�(wi)� v �uv� whi
h 
ontradi
ts the 
hoi
e of the longest word w. Thus, for everyi 2 �, we have ��(i)�(i)� u= �u0v0�.Above, we de�ned an integer l su
h that j�(i)j < l and j�(i)j < l for i 2 �. We fa
torizeu0 into u1; u2 2 �� su
h that ju1j = minfju0j; lg. A

ordingly, we fa
torize v0 into v1; v2 2 ��.We have �uv� = ��(w)u1u2�(w)v1v2 �. Be
ause for every i 2 �, we have ��(i)�(i)� u= �u0v0�, we also have ��(i)�(i)� u= �u1v1�.Consequently, there is some instru
tion (6) [loop2; �u1v1�; err℄ in A0.Now, it is immediate that A0 a

epts �uv� = ��(w)u1u2�(w)v1v2 �. It uses instru
tion (4) and jwj timesinstru
tion (5) to parse ��(w)�(w)�. Then, it uses instru
tion (6) to parse �u1v1� and several times instru
-tion (3) parse �u2v2� and to terminate.Conversely, assume words u; v 2 �� su
h that A0 a

epts �uv�: If A0 a

epts �uv� by run whi
huses just the instru
tions (0) to (3), then u and v are not pre�x 
onsistent. Hen
e, we just have to
onsider the 
ase that A0 a

epts �uv� by a run (4)(5)�(6)(3)�. Therefore, we have �uv� = ��(z)u1u2�(z)v1v2 �



22 5 SOME UNDECIDABLE CASESfor some z 2 ��, u1; v1 2 �+, and u2; v2 2 ��, and A0 parsed ��(z)�(z)�, �u1v1�, and �u2v2� by instru
tions(5) (jzj times), instru
tion (6), and (3) respe
tively.We show that u and v satisfy 
ondition (B). Assume some word w 2 �� with ��(w)�(w)� u ��(z)u1u2�(z)v1v2 �.If jwj � jzj, then we have w v z, be
ause � and � are bipre�x homomorphisms. Then, we have�(w) v �(z) < �(z)u1u2 = u and �(w) v �(z) < �(z)v1v2 = v, i.e., (B) is veri�ed. So assumethat jzj < jwj. We have z < w. Choose the i 2 � su
h that zi v w. From ��(w)�(w)� u ��(z)u1u2�(z)v1v2 �, wehave ��(zi)�(zi)� u ��(z)u1u2�(z)v1v2 �. Then, we also have ��(i)�(i)� u �u1u2v1v2 � and ��(i)�(i)� u �u1v1�. Thus, A0 
annot parse�u1v1� by instru
tion (6) as we assumed, above. Consequently, there is not any word w 2 �� with��(w)�(w)� u �uv� and jzj < jwj. 2Lemma 5.10 If the PCP instan
e has no in�nite solution, then there is some integer n su
h thatA0 a

epts every tra
e �uv� 2 ����� with juj � n and jvj � n. 2Proof: If the PCP instan
e has no in�nite solution, then there are only �nitely many wordsw 2 �� su
h that �(w) u �(w) (
f. Lemma 3.7). Let n0 be an integer su
h that for every w 2 ��with jwj � n0, we have �(w) u= �(w). Let n = n0l.Assume words u; v 2 �� with juj � n and jvj � n. If u u= v, then A0 a

epts �uv� (
f. 
ondition (A)of Lemma 5.9). Assume uu v. We show that u and v satisfy 
ondition (B) in Lemma 5.9. Assumesome w 2 �� su
h that ��(w)�(w)� u �uv�. If jwj < n0, then j�(w)j < n. Be
ause juj � n, we have�(w) < u. A

ordingly, we have �(w) < v. Assume jwj � n0. Let w0 be the pre�x of w withjw0j = n0. Then, we have �(w0) u= �(w0). We have ��(w0)�(w0)� u �uv�. We have j�(w0)j � n and n � juj,i.e., we have �(w0) v u. A

ordingly, we obtain �(w0) v v. This 
ontradi
ts that u and v are pre�x
onsistent. Consequently, u and v satisfy 
ondition (B) in Lemma 5.9. 2Lemma 5.11 If the PCP instan
e has a an in�nite solution, then there is an in�nite sequen
e ofwords u1 < u2 < : : : 2 �� and for every integers 0 < i < j there is some word v su
h that A0 doesnot a

ept �uiv �, but A0 a

epts �ujv �. 2Proof: Let i1i2 : : : be an in�nite solution. We 
hoose a sequen
e w1 < w2 : : : 2 �� of pre�xesof i1i2 : : : su
h that for every i > 0, we have j�(wi)j < j�(wi+1)j, i.e., we have �(wi) < �(wi+1).We set for i > 0, ui = �(wi). Then, we have u1 < u2 < : : :Assume some 0 < i < j. We show the existen
e of the desired word v 2 ��. Let z be the longerword of �(wi) and �(wi). We have �(wi) v z, �(wi) v z, and z < �(wj). Let a 2 � be a lettersu
h that �(wj) u= za. Let v = za.The tra
e �uiv � = ��(wi)za � does not satisfy 
ondition (A) in Lemma 5.9, be
ause �(wi) v z < za.It does not satisfy (B), be
ause we have ��(wi)�(wi)� u ��(wi)za � but we have not �(wi) < �(wi). Hen
e,A0 does not a

ept �uivi� = ��(wi)za �. However, it a

epts �ujvi� = ��(wj)za �, be
ause �(wj) u= za. 2Now, we 
an de�ne suitable languages. . .We enri
h � by new letters s, l1, l2, and e whi
h standfor start, loop1, loop2, and err, respe
tively. We set � = � [ fs; l1; l2; eg, and examine re
ognizablelanguages in �� � ��. We de�neIR = �(el1l2s�)+e(el1l2s�)+e� � �� � ��We further de�ne �nite languages IP0; : : : ; IP6 � �� � �� whi
h 
orrespond to the instru
tions (0)to (6) of A0. Let IP = IP0 [ : : : [ IP6.IP0 = n�el1el1�oIP1 = n �l2sael1l2sael1� ��� a 2 �o



5.2 The Problem in �� � �� 23IP2 = n �l2sael2sbe� ��� a; b 2 �; a 6= boIP3 = n �l1l2sae� � ��� a 2 �o [ n � �l1l2sae� ��� a 2 �oIP4 = n�el1l2el1l2�oTo de�ne IP5 and IP6, we introdu
e a mapping 
 : �+ ! �+. For any a 2 � and any w 2 �+, wede�ne 
(a) = a and 
(wa) = 
(w) el1l2s a. For instan
e, we have 
(ab
) = a el1l2s b el1l2s 
.IP5 = n �s
(�(i))el1 l2s
(�(i))el1 l2� ��� i 2 �oIP6 = n �s
(u)es
(v)e� ���u; v 2 �1;:::;l with �uv� u= ��(i)�(i)� for every i 2 �oThere is an obvious 
orresponden
e between the tra
es in IR \ IP� and the runs of A0. It a

eptssome tra
e �uv� 2 (�� ���) i� �el1l2s
(u)eel1l2s
(v)e� 2 IR \ IP�. Hen
e, we obtain the following proposition:Proposition 5.12 The set IR\ IP� is re
ognizable i� the PCP instan
e has no in�nite solution. 2Proof: Assume that the PCP instan
e has no in�nite solution. By Lemma 5.10, there is some nsu
h that A0 a

epts any tra
e �uv� 2 (�����) if both juj � n and jvj � n. To show re
ognizabilityof IR \ IP�, we split IR into three re
ognizable languagesIR1 = IR \ ��0;:::;5n�� � IR2 = IR \ � ���0;:::;5n� IR3 = IR \ ��5n+1���5n+1���By Proposition 4.2 and 4.1, it suÆ
es to show that IR3\IP� is re
ognizable. We show re
ognizabilityof IR3 \ IP� by showing IR3 \ IP� = IR3, i.e., we show IR3 � IP�. Indeed, every tra
e in IR3 is of theform �el1l2s
(u)eel1l2s
(v)e� for some u; v 2 �� with juj � n and jvj � n. By Lemma 5.10, A0 a

epts �uv�, andthus, we have �el1l2s
(u)eel1l2s
(v)e� 2 IP�. Consequently, IR3 � IP�.Conversely, assume that the PCP instan
e has an in�nite solution, but nevertheless, IR\ IP� isre
ognized by some automaton [Q;h; F ℄. Let u1 < u2 : : : be an in�nite sequen
e as in Lemma 5.11.We 
hoose two integers 0 < i < j su
h that h�el1l2s
(ui)e� � = h�el1l2s
(uj)e� �. Then, for every wordv 2 �+, the automaton [Q;h; F ℄ a

epts either none or both of the tra
es �el1l2s
(ui)eel1l2s
(v)e � and �el1l2s
(uj)eel1l2s
(v)e �.Hen
e, for any v 2 �+, A0 a

epts either both or none of the tra
es �uiv � and �ujv �. This 
ontradi
tsLemma 5.11. 2Proof of Theorem 2.8(2): By Proposition 5.12 and Theorem 3.6, it is unde
idable whether forsome �nite language IP � (�� � ��) the interse
tion IR \ IP� is re
ognizable. By 
hoosing some
onne
ted and inje
tive homomorphism from �� � �� to C4, we obtain Theorem 2.8(2). 2Remark 5.13 For instan
e, we 
an use the homomorphism h : (�� � ��) ! (fa; 
g� � fb; dg�)whi
h maps �e��, �l1��, �l2��, �s��, �a��, �b�� to �aa� �, �aba� �, �abb� �, �ba� �, �bba� �, �bbb� �, and the tra
es in �� �similarly to tra
es in � �fb;dg��. 2We make some slight modi�
ations to prove Theorem 2.8(3). We de�ne so-
alled trash languagesPT = Sx;y2�; xy=2fel1; l1l2; l2s; s�;�eg��xy�� IPT = ���PT � [ �PT���



24 5 SOME UNDECIDABLE CASESClearly, PT and IPT are in�nite re
ognizable languages in �� and �� � ��, respe
tively. We de�neanother languageIP0 = IP [ IPT [ f�l1��; ��l1�; �l1l2� �; � �l1l2�gNow, we 
an show the following Proposition:Proposition 5.14 The interse
tion �e���� �\ IP0� is re
ognizable i� the PCP instan
e has no in�nitesolution. 2Proof: At �rst, we assume that the PCP instan
e has an in�nite solution, but �e���� � \ IP0�is re
ognized by some automaton [Q;h; F ℄. There is some in�nite sequen
e u1 < u2 < : : : byLemma 5.11. We 
hoose 0 < i < j su
h that h�el1l2s
(ui)e� � = h�el1l2s
(uj)e� �. By Lemma 5.11,there is some word v 2 �� su
h that A0 a

epts �ujv �, but it does not a

ept �uiv �. Be
ause A0a

epts �ujv �, we have �el1l2s
(uj)eel1l2s
(v)e � 2 (IR \ IP�) � (�e���� � \ IP0�). We have 
hosen i and j su
h thath�el1l2s
(ui)e� � = h�el1l2s
(uj)e� �. Consequently, we have �el1l2s
(ui)eel1l2s
(v)e � 2 (�e���� � \ IP0�).We examine some fa
torization of �el1l2s
(ui)eel1l2s
(v)e � into tra
es from IP0. There are some integer kand tra
es t1; : : : ; tk 2 IP0 su
h that t1 : : : tk = �el1l2s
(ui)eel1l2s
(v)e �. Clearly, t1; : : : ; tk 62 IPT . We 
hoose thebiggest integer k0 � k su
h that t1; : : : ; tk0 2 IP. We have t1; t2 2 IP, i.e., k0 � 2.Now, we show that we have t1 : : : tk0 2 (IR \ IP�). It suÆ
es to show t1 : : : tk0 2 IR. If k0 = k,then we have t1 : : : tk0 = t1 : : : tk = �el1l2s
(ui)eel1l2s
(v)e � 2 IR. So assume k0 < k. We examine t1 : : : tk0 .We have tk0+1 2 f�l1��; ��l1�; �l1l2� �; � �l1l2�g. Consequently, one of the two last letters of t1 : : : tk0 is theletter e, i.e., the �rst or the se
ond 
omponent of t1 : : : tk0 ends with the letter e. By an indu
tionon t1, t1t2, . . . , t1t2 : : : tk0, we 
an show that the �rst and the se
ond 
omponent of t1 : : : tk0 endwith the same letter. Consequently, both 
omponents of t1 : : : tk0 end with the letter e. Further,t1 : : : tk0 v t1 : : : tk = �el1l2s
(ui)eel1l2s
(v)e �. Thus, t1 : : : tk0 2 IR.Consequently, there are u0; v0 2 �� with �u0v0� v �uiv � su
h that we have t1 : : : tk0 = �el1l2s
(u0)eel1l2s
(v0)e�.Be
ause t1 : : : tk0 2 (IR \ IP�), the automaton A0 a

epts the tra
e �u0v0�, i.e., it 
an rea
h the stateerr by reading �u0v0�. Be
ause �u0v0� v �uv�, the automaton A0 also a

epts �uiv �. This is a 
ontradi
tion.Conversely, assume that the PCP instan
e has no in�nite solution. By Lemma 5.10, there issome n su
h that A0 a

epts any tra
e �uv� 2 (�����) if both juj � n and jvj � n. To showre
ognizability of �e���� � \ IP0�, we split �e���� � into re
ognizable languagesIR0 = �e���� � \ IPTIR1 = �e���� � \ ��0;:::;5n�� �IR2 = �e���� � \ � ���0;:::;5n�IR3 = ��e���� � n IPT� \ �e��fe; l1; l2ge��fe; l1; l2g�IR4 = �e���� � n IPT n IR1 n IR2 n IR3By Proposition 4.2, we 
an show re
ognizability of �e���� �\IP0� by showing re
ognizability of IRi\IP0�for i 2 f0; : : : ; 4g. We have IR0 � IPT � IP0 � IP0�, and thus, IR0 \ IP0� yields IR0 whi
h isre
ognizable. Re
ognizability of IR1 \ IP0� and IR2 \ IP0� follows from Proposition 4.1.We show that IR4 \ IP0� = ;. Assume some t 2 (IR4 \ IP0�). Tra
es from IPT 
annot o

ur infa
torizations of t, otherwise we have t 2 IPT , i.e., t 62 IR4. The se
ond 
omponent of t is non-empty,otherwise t 2 IR2 and t 62 IR4.



REFERENCES 25Assume that the last letter of �rst or se
ond 
omponent of t is some letter from � [ s. Then,there is some tra
e from IPT in every fa
torization of t into tra
es of IP0�. This implies t 2 IPT andt 62 IR4. Thus, the last letters of both 
omponents of t are e, l1, or l2.Assume that the �rst letter of the se
ond 
omponent of t is the letter e. Then, we have t 2 IPTor t 2 IR3. Either way, t 62 IR4. Hen
e, the �rst letter of the se
ond 
omponent of t is di�erentfrom e. Hen
e, any fa
torization of t into tra
es from IP0 has to start with several times ��l1� or � �l1l2�,and to 
ontinue with some tra
e from IP0 or IP4. However, two or more tra
es of ��l1� or � �l1l2� atthe beginning would imply t 2 IPT whi
h is a 
ontradi
tion. Hen
e, any fa
torization of t startswith exa
tly one of the tra
es ��l1� and � �l1l2� followed by some tra
e from IP0 or IP4. However, thisyields a subword l1e or l2e in the se
ond 
omponent of t and implies t 2 IPT . Consequently, it isnot possible to fa
torize t into tra
es from IP0. Thus, t does not exist, i.e., IR4 \ IP0� = ;.We show IR3 \ IP0� = IR3. Assume some t 2 IR3. Both 
omponents of t start with the letter eand end with e, l1, or l2. Further, we have t 62 IPT and both 
omponents of t are longer than 5n+3letters. Consequently, we 
an fa
torize t as t = t1t2t3, where t1 2 IR = �(el1l2s�)+e(el1l2s�)+e� (as above),t1 2 f����; �l1��; �l1l2� �g, and t2 2 f����; ��l1�; � �l1l2�g. Both 
omponents of t1 are longer than 5n + 1.As in the proof of Proposition 5.12, we have t1 2 IP� � IP0�. Be
ause, t2; t3 2 IP0�, we havet1t2t3 = t 2 IP0�.Hen
e, IRi \ P 0� is re
ognizable for i 2 f0; : : : ; 4g, i.e., �e���� � \ IP0� is re
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