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Abstract. A symmetric key cryptosysteni, called PGM, based on log- 
~ r i t h r n i ~  signatures for finite pcrmutation groups was invented by S. 
Magliveras in the late 1970's. PGM is intended to be used in cryptosys- 
tems with high data rates. This requires exploitation of the potential 
parallelism in composition of permutations. As a first step towards a 
full VLSI implementation, a parallel multiplier has been designed and 
implemented on an FPGA (Field Programmable Gate Array) chip. The 
chip works as a co-processor in a DSP syst,em. This paper explains the 
principles of the architccture, reports about implementation details and 
concludes by giving an estimate of the expected performance in VLSI. 

1 Introduction 

A symmetric key cryptosystem PGM based on logarzthmic signutures for finite 
permutation groups was invented by by S. Magliveras in the late 1970's. The 
system was described in [l], and its statistical and algebraic properties were 
studied in 121, 131, 141. Recent significant results have been obtained on closely 
related material by S.A. Vanstone and by M. Qu [5]. Here we include only a 
short description of PGM. 
Let be a finite permutation group of degrec ri. A logarathmzc signature for 
G is an ordered collection Q = {Ai  : i = 1, . . . , s} of ordered subsets, Ai = 
{ u i , ~ ,  . . . , U ~ , , . ~ - I }  of G, such that each element g E G can be expressed uniquely 
as a product of the forin 

Y 9 s  ' Y s - 1  . . . Q2 ' (11 ~z t Aj (1) 

The A, are called the blocks of CY and thr vector of block lengths ( T I  ' .  . . rS) is 
called t,he tyf~t'  of a .  A logarithmic signature is called t a m e  if Ihe factorization 
in equation (1) can be achieved i n  time polynomial in the degree 7~ of G; it is 
called supertame if the factorization can be achieved in time O ( n 2 ) .  A logarith- 
mic signature is called wild if it is not tame. In  [4] the aukhors describe how a 
logarithmicsignature cy induces an efficientsly computable bijection & : ZlGl t G. 
The inverse of 6 is efficiently computable only if cy is tame. Basic system PGM 
is described as follows: For a given pair of tame logarithmic signatures, a ,  p, the 
encryption transformation E,,p is the mapping E,,,o = ti,&' : %~q + 21~1. 
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The corresponding decryption transformation is obtained by reversing the order 
of the pair of logarithmic signatures, i.c. D,,p = E-' a ,P = E P , ~  = 8 G - l .  

To effect the fastest possible PGM encryption and decryption operations, one 
must compute efficiently products of permutations as in equation (1). Unlike 
multiplication of integers, coniposition of t,wo permutations is inherently paral- 
lelizable. Hence, we can achieve fast computation of ii and its inverse by designing 
a permutation multiplier which takes advantage of this property of permuta.tion 
composition. In this paper we describe a design for such a permutation multi- 
plier, as a first step towards a full VLSI implerrientation of PGM. 

2 

For easy understanding, we shall explain the principles by means of a simple 
example. We consider permutations of degree 4, and represent them in carte- 
szan form, r = [ . r r (O) ,  r( l ) ,  ~ ( 2 ) ,  r ( 3 ) ] .  This form is particularly convenient for 
representing permutations in hardware, where a vector register of length n is 
used to  represent a permutation of degree n. For example, r = [3 ,2 ,1 ,0]  is our 
notation for the permutation .rr = (0 3)(1 2) as the product of disjoint cycles. 
In general, this representation needs nlogan bits tjo store a permutation of de- 
gree n. Throughout the example, we define five input operands to work with, 
namely: 1. = [0, I ,  2 , 3 ]  (the identity permut,at,ion), cy = [ 2 , 3 , 0 ,  11, /3 = [l,  3 , 2 , 0 ] ,  
y = [3,2,0,1] and 6 = [ I  ~ 2,3,0] .  

The multiplication unit is in essence a crossbar switching network. A 4x4 switch- 
ing matrix is depicted in Figure 1. The matrix has t,hree input ports, labeled 
A,  B and C respectively, and one output port named Q .  Ports B and C are 
connected to the vertical lines in the mat,rix, whereas A and Q to the horizontal 
lines. A t  t8he cross-point,s of vertical and horizontal lines reside the switching 
cells, each consisting of a transfer gate  and cell-logic. The cell-logic controls the 
transfer gate. If the gate is open, which is dcnoted by a dot (e) in t h e  Figures, 
it allows the signal to propagate from the vertical line onto the corresponding 
horizontal line. A closed gate does not inflnence the signal on the horizontal line. 
Multiplication takes place in two phases: 

(a) In the first, so-called setup phase the contents of A and B appear on the 
horizontal and vertical lines respectively. At each cross-point , the corresponding 
cell-logic unit compares the horizontal input to the vertical input and saves the 
result of the comparison: 1 in case of a match, arid 0 otherwise. (See Figure l(a))  

(b) In the second, so-called pass-through phase, t,hr t,rarisfer gates at cells where 
a match was found, open. The  C: operand is placed onto the vertical lines and 
is transferred via the open gates onto port, Q as the result. (See Figure l ( b ) )  
It is now relatively easy to see that the resull Q can be expressed in terms of 
the other operands as Q = ( A  o R - l )  o C, where o denotes composition of per- 
mutations. We verify the result Q when A = a = [2 ,3 ,0 ,1] ,  B = ,B = [l,  3,2,O] 
and C = y = [ 3 , 2 , 0 ,  11 as in Figurc 1: ([2,3,O, 11 0 [ l ,  3 ,  2,O]-') o [ 3 , 2 , 0 ,  I] = 
[ a ,  3,O, 11 0 [3,O, 2,1] 0 [3 ,2 ,0 ,1]  = [O,2,1,3].  

Principles of multiplication in parallel 
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Fig. 1. Principlc of multiplication in  the switching matrix. 

We remark here that the partial product K = cy o p-' is implicitly stored in 
the state of the transfer gates, and can be retrieved by passing C = L through 
the matrix. Furthermore, it is possible to  compute several products with the 
same first operand 7r, without setting up the matrix again. This kind of oper- 
ation we call contznuous mode. By dedicating separate lines to A ,  B ,  C and Q 
respectively, it becomes possible to overlap in time the pass-through phase of a 
multiplication and the setup phase of the next one. This two-stage pipelining is 
shown in Figure 2.  The state of the gates is always changed at the end of the 
phases, thus pass-through operations can take place using the previous setup. 

Fig. 2. Pipelining wtiip and pass-through stages. 

A particular case of the pipelined operation is used in the implementation. The 
contents of port Q are fed back as input l o  port A ,  within the same phase. By 
letting B = L constantly, the matrix evaluates products of the form o 7r2 ... 0 K, 
in exactly n cycles, i.e. without losing cycles, by merely loading back partial 
products as input operands. This mode of operation is called feedback mode. 
The computation of cr o yo b = [2 ,3 ,0 ,  I ]  o [3 ,2 ,0 ,  I] o [l,  2 ,3 ,0 ]  = [l, 2 , 0 , 3 ]  can 
be followed in Figure 3 .  

I 

A = f f  Q 
(a) Phase 1 

A t Q = a o y  Q 
(b) Phase 2 

Y 
L 

A Q = c u o y  

(c) Phase 3 

6 

0 6  

Fig. 3. Feeding back Q to A to compute a o y o 6 
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3 Implementation details 

As a first step towards a VLSI implementation of PGM, a hybrid hardware- 
software prototype has been developed based on a ‘Texas Instruments 320C30 
DSP processor. Multiplication of permutations is effected in the permutation 
co-processor chip, which is connected to the DSP system via a 16 bit peripheral 
bus, called DSPLINK. The DSP accesses the co-processor through I / O  instruc- 
tions. The co-processor is an  XC3190 FPGA (Field Programmable Gate Array) ,  
a product of the Xilinx Corporation. The FPGA is a perfect prototyping tool, 
in view of the flexibility it affords for design changes. However, the achievable 
complexity is rather low, only a. few thousand gate equivalents. This constraint 
limits the degree n of permutations that are processed on the chip to n = 16. 

In order t o  be able to  carry out one setup or pass-through operation in each 
cycle, the operands have to be led through the crossbar network in parallel, i.e. 
needing logzn lines per operand. For practical applications n should be at  least 
32, requiring thus at least 5.25 = 160 lines. Although a fully parallel implemen- 
tation may still be feasible on a VLSI chip, we follow a different approach. The 
vectors of first, second, etc. bits of the n elemerils in  the permutation are sent 
through the crossbar serially, in loyzn cycles. This principle reduces dramatically 
the total number of lines needed, the complexity of t,he cells, and hence the over- 
all chip area. Due l o  shorter lines, propagation delays shorten considerably, too. 
We estimate the performance of a serialized multiplier to be about 50% that of 
a fully parallel one. This seems to be a good trade-off between price and speed. 

Let us now take a closer look at  the FPGA multiplier. The circuitry belonging 
to one cell is depicted in Figure 4. As a convention, the vector of least signifi- 
cant bits (LSBs) is processed first, followed by the other bit layers in order of 
significance. The cells function as follows: 
0 Essentially, the XOR gate compares the corresponding bits of the operands A 
and B ,  received from the neighboring horizontal and, respeclive vertical lines. 
The result of a bit comparison is AND-ed with the accumulated result of previous 
comparisons, and is reflected by the state of ACCUFF.  The output of the A N D  
function becomes the iiew accumulated result, and is written into ACCUFF at the 
end of the cycle due to a low-high transition on the global ACCU clock net. 

During the first cycle of the setup phase a global signal, called INIT,  is acti- 
vated. This makes the cells ignore the accumulated result, and simply enter the 
output of the XOR gate into ACCUFF. 

0 At the end of t8he last, cycle a transition occurs in FIRE,  the sccond global 
clock net, which causes the final result to be cntered into FIREFF. The output of 
this flip-flop controls GATE,  a tri-state buffer, thus a new setup also comes into 
effect at this moment. 
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Fig. 4. The logic scheme of a cell.

The data-path of the permutation chip, reduced to 4 bit vector length, can be
seen in Figure 5. Ports A and Q of the multiplier array are unified as port AQ
on the left edge. Similarly, ports B and C are fused to form port BC on the
top edge. The external pins of AQ and BC are also connected together on the
embedding card to form one data bus for connecting to DSPLINK. The identity
operand I is hard-wired on the chip in units icoDEn All signals controlling the
ports and cells, are generated in unit CTRLOGIC.

Fig. 5. The data path of the chip, reduced to vector length 4.

The 4 bit address bus of DSPLINK presents the instruction code to the chip,
thus instruction and data are transferred at the same time. An instruction set of
6 elements has been defined to control the assembly. Because of space limitations
we can not go into their semantics here.

4 Conclusions

A permutation multiplier chip has been developed, verified by simulation, at-
tached to a DSP system and successfully tested by means of a simple DSP
program. The processing speed is satisfactory, 100ns for one cycle.
In our implementation the degree of processed permutations was set to n — 16.
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This is of course too small for practical applications. Nevertheless, we consider 
this prototyping work an important step towards a full VLSI implementation 
of PGM. Our multiplier architecture can be easily extended to  larger n, and be 
quickly transferred to larger scale technology. 

For future work we plan to complete the DSP implementation so as to gain 
more insight into the actual processing and storage requirements of the PGM 
algorithm. Afterwards we intend to augment the perinutation matrix with other 
hardware units t o  embrace the entire algorithm with fast, special-purpose hard- 
ware. 
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