
A Parallel Permutation Multiplier for a PGM
Crypt o-chip

'rambs Horvbthl, Spyros S. Magliveras' and Tran van Trung'

' Institute for Experimental Mathematics, University of Essen, Ellcrnstrasse 29,
45326 Essen, Germany

Department of Computer Science and Enginecring, University of Nebraska, Lincoln
NE, 68588-0115, U.S.A.

Abstract. A symmetric key cryptosysteni, called PGM, based on log-
~ r i t h r n i ~ signatures for finite pcrmutation groups was invented by S.
Magliveras in the late 1970's. PGM is intended to be used in cryptosys-
tems with high data rates. This requires exploitation of the potential
parallelism in composition of permutations. As a first step towards a
full VLSI implementation, a parallel multiplier has been designed and
implemented on an FPGA (Field Programmable Gate Array) chip. The
chip works as a co-processor in a DSP syst,em. This paper explains the
principles of the architccture, reports about implementation details and
concludes by giving an estimate of the expected performance in VLSI.

1 Introduction

A symmetric key cryptosystem PGM based on logarzthmic signutures for finite
permutation groups was invented by by S. Magliveras in the late 1970's. The
system was described in [l], and its statistical and algebraic properties were
studied in 121, 131, 141. Recent significant results have been obtained on closely
related material by S.A. Vanstone and by M. Qu [5]. Here we include only a
short description of PGM.
Let be a finite permutation group of degrec ri. A logarathmzc signature for
G is an ordered collection Q = {Ai : i = 1, . . . , s} of ordered subsets, Ai =
{ u i , ~ , . . . , U ~ , , . ~ - I } of G, such that each element g E G can be expressed uniquely
as a product of the forin

Y 9 s ' Y s - 1 . . . Q2 ' (11 ~z t Aj (1)

The A, are called the blocks of CY and thr vector of block lengths (T I ' . . . rS) is
called t,he tyf~t' of a . A logarithmic signature is called t a m e if Ihe factorization
in equation (1) can be achieved i n time polynomial in the degree 7~ of G; it is
called supertame if the factorization can be achieved in time O (n 2) . A logarith-
mic signature is called wild if it is not tame. In [4] the aukhors describe how a
logarithmicsignature cy induces an efficientsly computable bijection & : ZlGl t G.
The inverse of 6 is efficiently computable only if cy is tame. Basic system PGM
is described as follows: For a given pair of tame logarithmic signatures, a , p, the
encryption transformation E,,p is the mapping E,,,o = ti,&' : %~q + 21~1.

Y.G. Desmedt (Ed.): Advances in Cryptology - CRYPT0 '94, LNCS 839, pp. 108-113, 1994.
Q Springer-Verlag Berlin Heidelberg 1994

109

The corresponding decryption transformation is obtained by reversing the order
of the pair of logarithmic signatures, i.c. D,,p = E-' a ,P = E P , ~ = 8 G - l .

To effect the fastest possible PGM encryption and decryption operations, one
must compute efficiently products of permutations as in equation (1). Unlike
multiplication of integers, coniposition of t,wo permutations is inherently paral-
lelizable. Hence, we can achieve fast computation of ii and its inverse by designing
a permutation multiplier which takes advantage of this property of permuta.tion
composition. In this paper we describe a design for such a permutation multi-
plier, as a first step towards a full VLSI implerrientation of PGM.

2

For easy understanding, we shall explain the principles by means of a simple
example. We consider permutations of degree 4, and represent them in carte-
szan form, r = [. r r (O) , r(l) , ~ (2) , r (3)] . This form is particularly convenient for
representing permutations in hardware, where a vector register of length n is
used to represent a permutation of degree n. For example, r = [3 ,2 ,1 ,0] is our
notation for the permutation .rr = (0 3)(1 2) as the product of disjoint cycles.
In general, this representation needs nlogan bits tjo store a permutation of de-
gree n. Throughout the example, we define five input operands to work with,
namely: 1. = [0, I , 2 , 3] (the identity permut,at,ion), cy = [2 , 3 , 0 , 11, /3 = [l, 3 , 2 , 0] ,
y = [3,2,0,1] and 6 = [I ~ 2,3,0] .

The multiplication unit is in essence a crossbar switching network. A 4x4 switch-
ing matrix is depicted in Figure 1. The matrix has t,hree input ports, labeled
A, B and C respectively, and one output port named Q . Ports B and C are
connected to the vertical lines in the mat,rix, whereas A and Q to the horizontal
lines. A t t8he cross-point,s of vertical and horizontal lines reside the switching
cells, each consisting of a transfer gate and cell-logic. The cell-logic controls the
transfer gate. If the gate is open, which is dcnoted by a dot (e) in t h e Figures,
it allows the signal to propagate from the vertical line onto the corresponding
horizontal line. A closed gate does not inflnence the signal on the horizontal line.
Multiplication takes place in two phases:

(a) In the first, so-called setup phase the contents of A and B appear on the
horizontal and vertical lines respectively. At each cross-point , the corresponding
cell-logic unit compares the horizontal input to the vertical input and saves the
result of the comparison: 1 in case of a match, arid 0 otherwise. (See Figure l(a))

(b) In the second, so-called pass-through phase, t,hr t,rarisfer gates at cells where
a match was found, open. The C: operand is placed onto the vertical lines and
is transferred via the open gates onto port, Q as the result. (See Figure l (b))
It is now relatively easy to see that the resull Q can be expressed in terms of
the other operands as Q = (A o R - l) o C, where o denotes composition of per-
mutations. We verify the result Q when A = a = [2 ,3 ,0 ,1] , B = ,B = [l, 3,2,O]
and C = y = [3 , 2 , 0 , 11 as in Figurc 1: ([2,3,O, 11 0 [l , 3 , 2,O]-') o [3 , 2 , 0 , I] =
[a , 3,O, 11 0 [3,O, 2,1] 0 [3 ,2 ,0 ,1] = [O,2,1,3].

Principles of multiplication in parallel

110

setup 1

C u I l G

A=CY i= Q
(a) Setup phase

pass- through 1

setup 2 pass-through 2

P

setup 3

A
(b) Pass-through phase

pass-through 3

Fig. 1. Principlc of multiplication in the switching matrix.

We remark here that the partial product K = cy o p-' is implicitly stored in
the state of the transfer gates, and can be retrieved by passing C = L through
the matrix. Furthermore, it is possible to compute several products with the
same first operand 7r, without setting up the matrix again. This kind of oper-
ation we call contznuous mode. By dedicating separate lines to A , B , C and Q
respectively, it becomes possible to overlap in time the pass-through phase of a
multiplication and the setup phase of the next one. This two-stage pipelining is
shown in Figure 2. The state of the gates is always changed at the end of the
phases, thus pass-through operations can take place using the previous setup.

Fig. 2. Pipelining wtiip and pass-through stages.

A particular case of the pipelined operation is used in the implementation. The
contents of port Q are fed back as input l o port A , within the same phase. By
letting B = L constantly, the matrix evaluates products of the form o 7r2 ... 0 K,
in exactly n cycles, i.e. without losing cycles, by merely loading back partial
products as input operands. This mode of operation is called feedback mode.
The computation of cr o yo b = [2 ,3 ,0 , I] o [3 ,2 ,0 , I] o [l, 2 ,3 ,0] = [l, 2 , 0 , 3] can
be followed in Figure 3 .

I

A = f f Q
(a) Phase 1

A t Q = a o y Q
(b) Phase 2

Y
L

A Q = c u o y

(c) Phase 3

6

0 6

Fig. 3. Feeding back Q to A to compute a o y o 6

111

3 Implementation details

As a first step towards a VLSI implementation of PGM, a hybrid hardware-
software prototype has been developed based on a ‘Texas Instruments 320C30
DSP processor. Multiplication of permutations is effected in the permutation
co-processor chip, which is connected to the DSP system via a 16 bit peripheral
bus, called DSPLINK. The DSP accesses the co-processor through I / O instruc-
tions. The co-processor is an XC3190 FPGA (Field Programmable Gate Array) ,
a product of the Xilinx Corporation. The FPGA is a perfect prototyping tool,
in view of the flexibility it affords for design changes. However, the achievable
complexity is rather low, only a. few thousand gate equivalents. This constraint
limits the degree n of permutations that are processed on the chip to n = 16.

In order t o be able to carry out one setup or pass-through operation in each
cycle, the operands have to be led through the crossbar network in parallel, i.e.
needing logzn lines per operand. For practical applications n should be at least
32, requiring thus at least 5.25 = 160 lines. Although a fully parallel implemen-
tation may still be feasible on a VLSI chip, we follow a different approach. The
vectors of first, second, etc. bits of the n elemerils in the permutation are sent
through the crossbar serially, in loyzn cycles. This principle reduces dramatically
the total number of lines needed, the complexity of t,he cells, and hence the over-
all chip area. Due l o shorter lines, propagation delays shorten considerably, too.
We estimate the performance of a serialized multiplier to be about 50% that of
a fully parallel one. This seems to be a good trade-off between price and speed.

Let us now take a closer look at the FPGA multiplier. The circuitry belonging
to one cell is depicted in Figure 4. As a convention, the vector of least signifi-
cant bits (LSBs) is processed first, followed by the other bit layers in order of
significance. The cells function as follows:
0 Essentially, the XOR gate compares the corresponding bits of the operands A
and B , received from the neighboring horizontal and, respeclive vertical lines.
The result of a bit comparison is AND-ed with the accumulated result of previous
comparisons, and is reflected by the state of ACCUFF. The output of the A N D
function becomes the iiew accumulated result, and is written into ACCUFF at the
end of the cycle due to a low-high transition on the global ACCU clock net.

During the first cycle of the setup phase a global signal, called INIT, is acti-
vated. This makes the cells ignore the accumulated result, and simply enter the
output of the XOR gate into ACCUFF.

0 At the end of t8he last, cycle a transition occurs in FIRE, the sccond global
clock net, which causes the final result to be cntered into FIREFF. The output of
this flip-flop controls GATE, a tri-state buffer, thus a new setup also comes into
effect at this moment.

112

Fig. 4. The logic scheme of a cell.

The data-path of the permutation chip, reduced to 4 bit vector length, can be
seen in Figure 5. Ports A and Q of the multiplier array are unified as port AQ
on the left edge. Similarly, ports B and C are fused to form port BC on the
top edge. The external pins of AQ and BC are also connected together on the
embedding card to form one data bus for connecting to DSPLINK. The identity
operand I is hard-wired on the chip in units icoDEn All signals controlling the
ports and cells, are generated in unit CTRLOGIC.

Fig. 5. The data path of the chip, reduced to vector length 4.

The 4 bit address bus of DSPLINK presents the instruction code to the chip,
thus instruction and data are transferred at the same time. An instruction set of
6 elements has been defined to control the assembly. Because of space limitations
we can not go into their semantics here.

4 Conclusions

A permutation multiplier chip has been developed, verified by simulation, at-
tached to a DSP system and successfully tested by means of a simple DSP
program. The processing speed is satisfactory, 100ns for one cycle.
In our implementation the degree of processed permutations was set to n — 16.

113

This is of course too small for practical applications. Nevertheless, we consider
this prototyping work an important step towards a full VLSI implementation
of PGM. Our multiplier architecture can be easily extended to larger n, and be
quickly transferred to larger scale technology.

For future work we plan to complete the DSP implementation so as to gain
more insight into the actual processing and storage requirements of the PGM
algorithm. Afterwards we intend to augment the perinutation matrix with other
hardware units t o embrace the entire algorithm with fast, special-purpose hard-
ware.

References

1. S. S. Magliveras, A cryptosystem from logarithmic signatures of finite groups, In
Proceedings of the 99’th Midwest Symposium on Circuits a n d Systems, Elsevier
Publishing Company (1986), pp 972-975.

2 . S. S. Magliveras and N. D. Memon, The Linear Complexity Profile of Cryptosys-
tern PGM, Coriyressus Numerantium, Utilitas Mathematica, 72 (l989), pp 51-60.

3 . S. S. Magliveras, N. L). Memon and K.C. Tarn, Complexity tests for cryptosystem
PGM, Congressus Numerantium, Utilitas Mathematica, 79 (1990), pp 61-68.

4. S. S. Magliveras and N. D. Memon, Algebraic Properties of Cryptosystem PGM,
in Journal of Cryptology, 5 (1992), pp 167 -183.

5. M. Qu and S. A. Vanstone, Factorizations of elementary Abelian p-groups and
their cryptngraphic significance, to appear in J . of Cryptology.

	Introduction
	Principles of multiplication in parallel
	Implementation details
	Conclusions
	References

