Language Dependent Secure Bit Commitment

Toshiya Itoh¹ Yuji Ohta¹ Hiroki Shizuya²

 Department of Information Processing,
 Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology,
 4259 Nagatsuta, Midori-ku, Yokohama 227, Japan.

² Education Center for Information Processing, Tohoku University, Kawauchi, Aoba-ku, Sendai 980, Japan.

Abstract. In this paper, we define two classes of languages, one induces opaque/transparent bit commitments and the other induces transparent/opaque bit commitments. As an application of opaque/transparent and transparent/opaque properties, we first show that if a language L induces an opaque/transparent bit commitment, then there exists a proverpractical perfect zero-knowledge proof for L, and we then show that if a language L induces a transparent/opaque bit commitment, then there exists a bounded round perfect zero-knowledge proof for L.

1 Introduction

A bit commitment is a two party (interactive) protocol between a sender S and a receiver R in which after the sender S commits to a bit $b \in \{0, 1\}$ at hand, (1) the sender S cannot change his mind in a computational or an informationtheoretic sense; and (2) the receiver R learns nothing about the bit $b \in \{0, 1\}$ in a computational or an information-theoretic sense. Bit commitments have diverse applications to cryptographic protocols, especially to zero-knowledge proofs (see, e.g., [6], [1], [11], [9], [4], etc). For simplicity, we assume that a bit commitment f is noninteractive, i.e., the sender S sends to the receiver R only a single message C. According to computational power of senders and receivers, bit commitments can be classified into the following four possible types (see, e.g., [12]).

	Power of Sender S	Power of Receiver R
Type A	poly-time bounded	poly-time bounded
Туре В	poly-time bounded	unbounded
Туре С	unbounded	poly-time bounded
Type D	unbounded	unbounded

Feige and Shamir [6] used a bit commitment of Type A to show that any language $L \in \mathcal{NP}$ has a two round perfect zero-knowledge proof of knowledge. Brassard, Chaum, and Crépeau [1] and Naor et al [11] showed that any language $L \in \mathcal{NP}$ has a perfect zero-knowledge argument assuming the existence of a bit commitment of Type B and Bellare, Micali, and Ostrovsky [4] showed that

any honest verifier statistical zero-knowledge proof for a language L can be transformed to a statistical zero-knowledge proof for the language L assuming the existence of a bit commitment of Type B. In addition, Goldreich, Micali, and Wigderson [9] used a bit commitment of Type C to show that any language $L \in \mathcal{NP}$ has a computational zero-knowledge proof. Now we look at the properties required to bit commitments for each possible type above.

Assume that the sender S is computationally unbounded. If there exist $r, s \in \{0, 1\}^k$ such that f(0, r) = f(1, s), then a cheating sender S^* chooses $r \in \{0, 1\}^k$ to compute C = f(0, r) and reveals 1 and $s \in \{0, 1\}^k$ to change his mind. Thus any $r, s \in \{0, 1\}^k$ must satisfy that $f(0, r) \neq f(1, s)$. Here we refer to such a bit commitment f as *transparent*. Assume that the receiver R is computationally unbounded. If the distribution of f(0, r) is apart from that of f(1, r), then a cheating receiver R^* might learn something about the value of the bit $b \in \{0, 1\}$ only looking at C = f(b, r). Thus the distributions of f(0, r) and f(1, s) must be almost identical. Here we refer to such a bit commitment f as *opaque*.

If both the sender S and the receiver R are computationally unbounded, then any bit commitment f must be transparent and opaque, however it is impossible to algorithmically implement such a bit commitment. This implies that there exists inherently no way of designing bit commitments of Type D. Thus only possible way of doing this is to physically implement such a bit commitment. This is referred to as an *envelope*. Assuming the existence of the envelope, Goldreich, Micali, and Wigderson [9] showed that any language $L \in \mathcal{NP}$ has a perfect zeroknowledge proof and then Ben-Or et al [2] showed that any language $L \in \mathcal{IP}$ has a perfect zero-knowledge proof. The goal of this paper is to algorithmically construct a bit commitment of Type D in a somewhat different setting.

In this paper, we consider the following framework: Our bit commitment f is allowed to have an additional input $x \in \{0, 1\}^*$ and its property heavily depends on the additional input $x \in \{0, 1\}^*$. In this setting, we define two classes of languages, one induces opaque/transparent bit commitments and the other induces transparent/opaque bit commitments. Informally, a language L induces an opaque/transparent bit commitment f_L if (1) for every $x \in L$, the distribution of $f_L(x, 0, r)$ is *identical* to that of $f_L(x, 1, r)$; and (2) for every $x \notin L$, the distribution of $f_L(x, 0, r)$ is *completely different* from that of $f_L(x, 1, r)$, and L induces a transparent/opaque bit commitment f_L if \overline{L} induces an opaque/transparent bit commitment $f_{\overline{L}}$. Then we can show the following theorems:

Theorem 18: If a language L induces an opaque/transparent bit commitment, then there exists a prover-practical perfect zero-knowledge proof for L.

Theorem 21: If a language L induces a transparent/opaque bit commitment, then there exists a bounded round perfect zero-knowledge proof for L.

2 Preliminaries

Here we present several definitions necessary to the subsequent discussions.

Definition 1 [8]. Let $L \subseteq \{0, 1\}^*$. A probability ensemble $\{U(x)\}_{x \in L}$ is said to be identical to a probability ensemble $\{V(x)\}_{x \in L}$ on L if for every $x \in L$,

$$\sum_{\alpha \in \{0,1\}^*} |\operatorname{Prob} \{ U(x) = \alpha \} - \operatorname{Prob} \{ V(x) = \alpha \}| = 0$$

Let k be a security parameter. Let g(b,r) be a polynomial (in k) time computable function. A function g is a noninteractive bit commitment if after the sender S sends C = g(b,r) to the receiver R, (1) any cheating sender S^* cannot change his mind, i.e., S^* cannot reveal $r, s \in \{0,1\}^k$ such that C = g(0,r) = g(1,s); and (2) any cheating receiver R^* learns nothing about the bit $b \in \{0,1\}$ only looking at C = g(b,r). As a modification, let us consider bit commitments in the following setting: Let L be a language and let k be a polynomial. Assume that $f_L(x, b, r)$ is a polynomial (in |x|) time computable function for any $b \in \{0, 1\}$ and any $r \in \{0, 1\}^{k(|x|)}$.

Definition 2. A language L is said to induce an opaque/transparent (O/T for short) bit commitment f_L if

- opaque: for every $x \in L$, the distribution of $f_L(x, 0, r)$ is identical to that of $f_L(x, 1, r)$;
- transparent: for every $x \notin L$, there do not exist $r \in \{0,1\}^{k(|x|)}$ and $s \in \{0,1\}^{k(|x|)}$ such that $f_L(x,0,r) = f_L(x,1,s)$,

where k is a polynomial that guarantees the security of f_L .

The opaque/transparent property guarantees that for every $x \in L$, any all powerful cheating receiver R^* cannot guess better at random the value of the bit $b \in \{0,1\}$ after receiving $f_L(x,b,r)$ from the sender S and for every $x \notin L$, any all powerful cheating sender S^* cannot change his mind after sending $f_L(x,b,r)$ to the receiver R. Let \mathcal{OT} be the class of languages that induce O/T bit commitments. From Definition 2, it is clear that $\mathcal{OT} \subseteq \mathcal{NP}$.

Definition 3. A language L is said to induce a transparent/opaque (T/O for short) bit commitment f_L if \overline{L} induces an O/T bit commitment $f_{\overline{L}}$.

Contrary to the opaque/transparent property, the transparent/opaque property guarantees that for every $x \in L$, any all powerful cheating sender S^* cannot change his mind after sending $f_L(x, b, r)$ to the receiver R and for every $x \notin L$, any all powerful cheating receiver R^* cannot guess better at random the value of the bit $b \in \{0, 1\}$ after receiving $f_L(x, b, r)$ from the sender S. Let TO be the class of languages that induce T/O bit commitments. From Definitions 2 and 3, it is obvious that co- $TO = OT \subseteq NP$.

Definition 4 [8]. An interactive protocol $\langle P, V \rangle$ is an interactive proof system for a language L if there exists an honest verifier V that satisfies the following:

- completeness: there exists an honest prover P such that for every k > 0 and for sufficiently large $x \in L$, $\langle P, V \rangle$ halts and accepts $x \in L$ with probability at least $1 - |x|^{-k}$, where the probabilities are taken over the coin tosses of P and V.

- soundness: for every k > 0, for sufficiently large $x \notin L$, and for any cheating prover P^* , $\langle P^*, V \rangle$ halts and accepts $x \notin L$ with probability at most $|x|^{-k}$, where the probabilities are taken over the coin tosses of P^* and V.

It should be noted that the resource of P is computationally unbounded while the resource of V is bounded by probabilistic polynomial (in |x|) time.

In the remainder of this paper, we assume that a term "zero-knowledge" implies "blackbox simulation" zero-knowledge.

Definition 5 [10]. An interactive proof system $\langle P, V \rangle$ for a language L is said to be (blackbox simulation) perfect zero-knowledge if there exists a probabilistic polynomial time Turing machine M_U such that for any (cheating) verifier V^* and for sufficiently large $x \in L$, the probability ensemble $\{M_U(x; V^*)\}_{x \in L}$ is identical to the probability ensemble $\{\langle P, V^* \rangle (x)\}_{x \in L}$ on L, where $M(\cdot; A)$ denotes a Turing machine with blackbox access to a Turing machine A.

From a practical purpose, Boyar, Friedl, and Lund [3] defined a notion of *prover-practical* (zero-knowledge) interactive proof systems.

Definition 6 [3]. An interactive proof system $\langle P, V \rangle$ for a language $L \in \mathcal{NP}$ is said to be prover-practical if the honest prover P runs in probabilistic polynomial time and some trapdoor information on input $x \in L$ is initially written on the private auxiliary tape of P.

Let $A, B \in \mathcal{NP}$ and let g be a reduction from A to B, i.e., g is a polynomial time computable function and for any $x \in \{0, 1\}^*$, $x \in A$ iff $g(x) \in B$.

Definition 7 [6]. Let $A, B \in \mathcal{NP}$. A reduction g from A to B is said to be witness-preserving if there exists a polynomial time computable function h that given a witness w for any $x \in A$, h(x, w) is a witness for $g(x) \in B$.

Definition 8 [6]. Let $A, B \in \mathcal{NP}$. A reduction g from A to B is said to be polynomial time invertible if there exists a polynomial time computable function γ that given a witness w' for $g(x) \in B$, $\gamma(g(x), w')$ is a witness for $x \in A$.

3 Examples

It is obvious from the Definitions 2 and 3 that $L \in OT$ iff $\overline{L} \in TO$. Thus we only exemplify several languages that induce O/T bit commitments.

For graphs G and H, we use $G \simeq H$ to imply that G is isomorphic to H and use $G \not\simeq H$ to imply that G is not isomorphic to H.

Definition 9. For an integer h > 0, Universal Graph Isomorphism Tuple UGIT is defined to be UGIT = { $\langle h, \langle G_1^0, G_1^1 \rangle, \langle G_2^0, G_2^1 \rangle, \ldots, \langle G_h^0, G_h^1 \rangle \rangle \mid G_i^0 \simeq G_i^1$ for each $i \ (1 \le i \le h)$ }.

Definition 10. For an integer h > 0, Existential Graph Isomorphism Tuple EGIT is defined to be EGIT = $\{\langle h, \langle G_1^0, G_1^1 \rangle, \langle G_2^0, G_2^1 \rangle, \dots, \langle G_h^0, G_h^1 \rangle \rangle \mid G_i^0 \simeq G_i^1 \text{ for some } i \ (1 \le i \le h)\}.$

Definition 11. Let $N = p_1^{e_1} p_2^{e_2} \cdots p_h^{e_h}$ be the prime factorization of N. Define cMODd to be $N \in cMODd$ if and only if $p_i \equiv c \pmod{d}$ for each $i \ (1 \le i \le h)$.

In the following, we show that the languages UGIT, EGIT, and 1MOD4 induce O/T bit commitments f_{UGIT} , f_{EGIT} , and $f_{1\text{MOD4}}$, respectively.

Lemma 12. The language UGIT induces an O/T bit commitment f_{UGIT} .

Proof: For $x = \langle h, \langle G_1^0, G_1^1 \rangle, \langle G_2^0, G_2^1 \rangle, \ldots, \langle G_h^0, G_h^1 \rangle \rangle$, let V_i $(1 \le i \le h)$ be a set of vertices for G_i^0 and G_i^1 , and let $b \in \{0, 1\}$ be a bit that a sender S wishes to send to a receiver R. Here we define a bit commitment f_{UGIT} for UGIT as follows: For each i $(1 \le i \le h)$, S chooses $\pi_i \in_{\mathbf{R}} \text{Sym}(V_i)$. Then S computes a graph $H_i = \pi_i(G_i^b)$ and sends $\langle H_1, H_2, \ldots, H_h \rangle$ to R.

Assume that $x \in \text{UGIT}$. It follows from Definition 9 that $G_i^0 \simeq G_i^1$ for each $i \ (1 \le i \le h)$. Then the distribution of $\langle H_1, H_2, \ldots, H_h \rangle$ for b = 0 is identical to that of $\langle H_1, H_2, \ldots, H_h \rangle$ for b = 1. Assume that $x \notin \text{UGIT}$. It follows from Definition 9 that there exists at least an $i_0 \ (1 \le i_0 \le h)$ such that $G_{i_0}^0 \not\simeq G_i^1$. This implies that $\pi_{i_0}(G_{i_0}^0) \neq \varphi_{i_0}(G_{i_0}^1)$ for any $\pi_{i_0}, \varphi_{i_0} \in \text{Sym}(V_{i_0})$. Then for any $\pi_i, \varphi_i \in \text{Sym}(V_i) \ (1 \le i \le h)$,

$$f_{\text{UGIT}}(x, 0, \langle \pi_1, \pi_2, \dots, \pi_h \rangle) \neq f_{\text{UGIT}}(x, 1, \langle \varphi_1, \varphi_2, \dots, \varphi_h \rangle).$$

Thus the language UGIT induces an O/T bit commitment f_{UGIT} .

For an integer h > 0, define Universal Quadratic Residuosity Tuple UQRT to be UQRT = { $(h, \langle x_1, N_1 \rangle, \dots, \langle x_h, N_h \rangle)$ | x_i is a square modulo N_i for each i $(1 \le i \le h)$ }. Then in a way similar to Lemma 12, we can show the following:

Lemma 13. The language UQRT induces an O/T bit commitment f_{UQRT} .

Let us proceed to show the other examples.

.

Lemma 14. The language EGIT induces an O/T bit commitment f_{EGIT} .

Proof: Let $x = \langle h, \langle G_1^0, G_1^1 \rangle, \langle G_2^0, G_2^1 \rangle, \ldots, \langle G_h^0, G_h^1 \rangle \rangle$ and let V_i $(1 \le i \le h)$ be a set of vertices for G_i^0 and G_i^1 . Let $b \in \{0, 1\}$ be a bit that a sender S wishes to send to a receiver R. Here we define a bit commitment f_{EGIT} for EGIT as follows: For each i $(1 \le i \le h)$, S first chooses $e_i \in_{\text{R}} \{0, 1\}$ and $\pi_i \in_{\text{R}} \text{Sym}(V_i)$. Then S computes $c \equiv e_1 + e_2 + \cdots + e_h + b \pmod{2}$ and a graph $H_i = \pi_i(G_i^{e_i})$ $(1 \le i \le h)$ and sends $\langle c, H_1, H_2, \ldots, H_h \rangle$ to R.

Assume that $x \in \text{EGIT}$. It follows from Definition 10 that there exists at least an i_0 $(1 \leq i_0 \leq h)$ such that $G^0_{i_0} \simeq G^1_{i_0}$. Then on that position i_0 $(1 \leq i_0 \leq h)$, the distribution of $\pi_{i_0}(G^0_{i_0})$ is *identical* to that of $\pi_{i_0}(G^1_{i_0})$. This implies that the distribution of $\langle c, H_1, H_2, \ldots, H_h \rangle$ for b = 0 is *identical* to that of $\langle c, H_1, H_2, \ldots, H_h \rangle$ for b = 1. Assume that $x \notin \text{EGIT}$. It follows from Definition 10 that for every i $(1 \leq i \leq h)$, $G^0_i \not\simeq G^1_i$. Then for any $e_i, d_i \in \{0, 1\}$ and $\pi_i, \varphi_i \in \text{Sym}(V_i)$ $(1 \leq i \leq h)$,

$$f_{\mathrm{EGIT}}(x, 0, \langle e_1, \ldots, e_h \rangle, \langle \pi_1, \ldots, \pi_h \rangle) \neq f_{\mathrm{EGIT}}(x, 1, \langle d_1, \ldots, d_h \rangle, \langle \varphi_1, \ldots, \varphi_h \rangle).$$

Thus the language EGIT induces an O/T bit commitment f_{EGIT} .

For an integer h > 0, define Existential Quadratic Residuosity Tuple EQRT to be EQRT = { $\langle h, \langle x_1, N_1 \rangle, \ldots, \langle x_h, N_h \rangle$ } | x_i is a square modulo N_i for some i $(1 \le i \le h)$ }. Then in a way similar to Lemma 14, we can show the following:

Lemma 15. The language EQRT induces an O/T bit commitment f_{EQRT} .

The final example has different flavor from those of the examples above.

Lemma 16. The language 1MOD4 induces an O/T bit commitment f_{1MOD4} .

Proof: Let $x = p_1^{e_1} p_2^{e_2} \cdots p_h^{e_h}$ be the prime factorization of x. Let $b \in \{0, 1\}$ be a bit that a sender S wishes to send to a receiver R. Define a bit commitment $f_{1\text{MOD4}}$ for 1MOD4 as follows: First S chooses $r \in_R Z_x^*$. Then S computes $c \equiv (-1)^b r^2 \pmod{x}$ and sends $c \in Z_x^*$ to R. It should be noted that -1 is a square modulo x if and only if $x \in 1\text{MOD4}$.

Assume that $x \in 1MOD4$. From Definition 11 and the fact that -1 is a square modulo x, it follows that $c \in Z_x^*$ is always a square modulo x regardless of the value of $b \in \{0, 1\}$. This implies that the distribution of $c \in Z_x^*$ for b = 0 is *identical* to that of $c \in Z_x^*$ for b = 1. Assume that $x \notin 1MOD4$. From Definition 11 and the fact that -1 is not a square modulo x, it follows that for any $r \in Z_x^*$, $c \equiv (-1)^b r^2 \pmod{x}$ is a square modulo x if and only if b = 0. Then for any $r, s \in Z_x^*$, $f_{1MOD4}(x, 0, r) \neq f_{1MOD4}(x, 1, s)$. Thus the language 1MOD4 induces an O/T bit commitment f_{1MOD4} .

It is easy to show that (1) $2 \in Z_N^*$ is a square modulo N if and only if $N \in \pm 1$ MOD8; (2) $3 \in Z_N^*$ is a square modulo N if and only if $N \in \pm 1$ MOD12; and (3) $5 \in Z_N^*$ is a square modulo N if and only if $N \in \pm 1$ MOD5. Then in a way similar to Lemma 16, we can show the following:

Lemma 17. The languages ± 1 MOD8, ± 1 MOD12, and ± 1 MOD5 induce O/T bit commitments $f_{\pm 1$ MOD8, $f_{\pm 1$ MOD12, and $f_{\pm 1$ MOD5, respectively.

4 Opaque/Transparent Bit Commitments

Assume that a language L induces an O/T bit commitment f_L . Now let us consider the interactive protocol $\langle A, B \rangle$ on input $x \in \{0, 1\}^*$: (A1) A chooses $b \in_{\mathbb{R}} \{0, 1\}$ and $r \in_{\mathbb{R}} \{0, 1\}^{k(|x|)}$ and sends $a = f_L(x, b, r)$ to B; (B1) B chooses $e \in_{\mathbb{R}} \{0, 1\}$ and sends $e \in \{0, 1\}$ to A; (A2) A sends to $B \sigma \in \{0, 1\}^{k(|x|)}$ such that $a = f_L(x, e, \sigma)$; and (B2) B checks that $a = f_L(x, e, \sigma)$. After n = |x| independent invocations from step A1 to step B2, V accepts $x \in \{0, 1\}^*$ if and only if every check in step B2 is successful.

By the opaque/transparent property of f_L , we can show in almost the same way as the case of random self-reducible languages [13] that L has a perfect zero-knowledge proof. In the protocol $\langle A, B \rangle$, however, A needs to evaluate $\sigma \in$ $\{0,1\}^{k(|x|)}$ such that $a = f_L(x, e, \sigma)$ for each iteration. Thus in general, $\langle A, B \rangle$ could not be prover-practical. In this section, we show a stronger result, i.e., Lhas a prover-practical perfect zero-knowledge proof. **Theorem 18.** If a language L induces an O/T bit commitment, then there exists a prover-practical perfect zero-knowledge proof for the language L.

Proof: Let f_L be an O/T bit commitment induced by a language L. From Definition 2, we have an \mathcal{NP} -statement below:

$$x \in L \iff \exists r, s \in \{0, 1\}^{k(|x|)} \text{ s.t. } f_L(x, 0, r) = f_L(x, 1, s).$$

$$\tag{1}$$

Let us consider the following interactive protocol $\langle P, V \rangle$ for L.

Interactive Protocol $\langle P, V \rangle$ for L

common input: $x \in \{0, 1\}^*$.

- P0-1: P reduces an \mathcal{NP} -statement of Eq.(1) to a directed Hamiltonian graph G = (V, E), where $|V| = n = |x|^c$ for some constant c > 0.
- P0-2: P defines an adjacency matrix $A_G = (a_{ij})$ of G = (V, E).
- V0-1: V reduces an \mathcal{NP} -statement of Eq.(1) to a directed Hamiltonian graph G = (V, E), where $|V| = n = |x|^c$ for some constant c > 0.
- V0-2: V defines an adjacency matrix $A_G = (a_{ij})$ of G = (V, E).
- P1-1: P chooses $\pi \in_{\mathbf{R}} \operatorname{Sym}(V)$ and $s_{ij} \in_{\mathbf{R}} \{0,1\}^{k(|x|)} \ (1 \leq i, j \leq n)$.
- P1-2: P computes $c_{ij} = f_L(x, a_{\pi(i)\pi(j)}, s_{ij})$.
- $P \rightarrow V: \ C = (c_{ij}) \ (1 \le i, j \le n).$ V1: V chooses $e \in_{\mathbb{R}} \{0, 1\}.$
- $V \to P: e \in \{0, 1\}.$
 - P2-1: For e = 0, P assigns $\langle \pi, s_{11}, \ldots, s_{nn} \rangle$ to w.
 - P2-2: For e = 1, P assigns $\langle \langle i_1, j_1 \rangle, \dots, \langle i_n, j_n \rangle, s_{i_1 j_1}, \dots, s_{i_n j_n} \rangle$ to w such that $\langle i_1, j_1 \rangle, \dots, \langle i_n, j_n \rangle$ is a single cycle.
- $P \rightarrow V$: w.
 - V2-1: For e = 0, V checks that $c_{ij} = f_L(x, a_{\pi(i)\pi(j)}, s_{ij})$ for each $i, j \ (1 \le i, j \le n)$.
 - V2-2: For e = 1, V checks that $\langle i_1, j_1 \rangle, \ldots, \langle i_n, j_n \rangle$ is indeed a single cycle and that $c_{i_m j_m} = f_L(x, 1, s_{i_m j_m})$ for each m $(1 \le m \le n)$.

After n = |V| independent invocations from step P1-1 to step V2-2, V accepts $x \in \{0, 1\}^*$ if and only if every check in step V2-1 and step V2-2 is successful.

We show that the protocol $\langle P, V \rangle$ is a prover-practical perfect zero-knowledge proof for the language L if L induces an O/T bit commitment f_L .

Completeness: If L induces an O/T bit commitment f_L , then $L \in \mathcal{NP}$, i.e.,

$$x \in L \iff \exists r, s \in \{0, 1\}^{k(|x|)}$$
 s.t. $f_L(x, 0, r) = f_L(x, 1, s)$.

Assume that for the common input $x \in L$ to $\langle P, V \rangle$, the honest prover P has $r, s \in \{0, 1\}^{k(|x|)}$ such that $f_L(x, 0, r) = f_L(x, 1, s)$. Since the reduction from any $L \in \mathcal{NP}$ to a directed Hamiltonian graph (DHAM) is known to be witnesspreserving, P can compute in polynomial (in |x|) time a Hamiltonian cycle H of G = (V, E) in step P0-1. Then P can execute in polynomial (in |x|) time every process of $\langle P, V \rangle$. It is obvious that P always causes V to accept $x \in L$.

Soundness: From Eq.(1), it follows that for any $x \notin L$, there does not exist $r, s \in \{0, 1\}^{k(|x|)}$ such that $f_L(x, 0, r) = f_L(x, 1, s)$. This implies that G = (V, E)generated in step VO-1 is not a Hamiltonian graph. We show the soundness condition of (P, V) by contradiction. Assume that for some $k_0 > 0$ and infinitely many $x \notin L$, there exists a cheating prover P^* that causes V to accept $x \notin L$ with probability at least $|x|^{-k_0}$. Let $L' \subset \overline{L}$ be an infinite set of such $x \notin L$. Then from a standard analysis (see, e.g., [5]), it follows that there must exist $C = (c_{ij})$ that passes both tests in steps V2-1 and V2-2. We note that for any $x \in L'$, there do not exist $r, s \in \{0, 1\}^{k(|\hat{x}|)}$ such that $f_L(x, 0, r) = f_L(x, 1, s)$. This implies that P^* cannot change his mind after step P1-2 even if P^* is infinitely powerful. To pass the test in step V2-1, $C = (c_{ij})$ must be an encoding of a non-Hamiltonian graph G = (V, E) generated in step V0-1, while to pass the test in step V2-2, $C = (c_{ij})$ must be an encoding of a Hamiltonian graph $\tilde{G} = (\tilde{V}, \tilde{E})$. This contradicts the assumption that G = (V, E) generated in step V0-1 is not a Hamiltonian graph. Then for each k > 0 and sufficiently large $x \notin L$, any cheating prover P^* causes V to accept $x \notin L$ with probability at most $|x|^{-k}$.

Perfect Zero-Knowledgeness: This can be shown in a way similar to the case of random self-reducible languages [13]. The construction of M_U for any cheating verifier V^* is as follows:

Construction of M_U

common input: $x \in L$.

- M0-1: count := 0; and conv := ε , where ε is a null string.
- M0-2: M_U provides V^* with τ_{V^*} as random coin tosses for V^* .
- M0-3: M_U simulates steps P0-1 and P0-2.
- M1-1: M_U chooses $\alpha \in_{\mathbb{R}} \{0, 1\}$.
- M1-2: M_U chooses an *n* vertex random cycle of which adjacency matrix is $H = (h_{ij})$.
- M2-1: If $\alpha = 0$, then M_U simulates steps P1-1 and P1-2.
- M2-2: If $\alpha = 1$, then M_U chooses $s_{ij} \in_{\mathbb{R}} \{0,1\}^{k(|x|)}$ and computes $c_{ij} = f(x, h_{ij}, s_{ij})$.
- M3: M_U runs V^* on input $(x, r_{V^*}, \operatorname{conv}, C)$ to generate e.
- M4-1: If $e \notin \{0,1\}$, then M_U halts and outputs $\langle x, r_V, \operatorname{conv} || \langle C, e \rangle \rangle$, where x || y denotes the concatenation of strings $x, y \in \{0,1\}^*$.
- M4-2: If $e \neq \alpha$, then go to step M1-1.
- M4-3: If $e = \alpha$, then M_U simulates steps P2-1 and P2-2 depending on $\alpha \in \{0, 1\}$.
- M5-1: M_U sets conv := conv $||\langle C, e, w \rangle$ and count := count + 1.
- M5-2: If count < n, then go to step M1-1; otherwise M_U halts and outputs $\langle x, r_V, \operatorname{conv} \rangle$.

Note that for any $x \in L$, the distribution of $f_L(x, 0, r)$ is identical to that of $f_L(x, 1, r)$. This implies that the distribution of $f_L(x, a_{\pi(i)\pi(j)}, s_{ij})$ is identical to that of $f_L(x, h_{ij}, s_{ij})$ for every $x \in L$. Then the probability that $e = \alpha$ in step M4-3 is exactly 1/2. Since M_U iterates $n = |x|^c$ times the procedure from

step M1-1 to step M5-2, M_U runs in expected polynomial (in |x|) time. Note again that for every $x \in L$, the distribution of $f_L(x,0,r)$ is identical to that of $f_L(x,1,r)$. Then the probability ensemble $\{\langle P, V^* \rangle \langle x \rangle\}_{x \in L}$ is identical to the probability ensemble $\{M_U(x; V^*)\}_{x \in L}$ on L.

Thus the protocol $\langle P, V \rangle$ is a prover-practical perfect zero-knowledge proof for L if L induces an O/T bit commitment f_L .

For a language $L \in \mathcal{NP}$, define a polynomial time computable relation R_L to be $\langle x, y \rangle \in R_L$ if and only if $\rho(x, y) = \text{true}$, where ρ is a polynomial (in |x|) time computable predicate that witnesses the language $L \in \mathcal{NP}$. As immediate corollaries to Theorem 18, we can show the following:

Corollary 19 (to Theorem 18). Let L be NP-complete. If the language L induces an O/T bit commitment, then the polynomial time hierarchy collapses.

Corollary 20 (to Theorem 18). If a language L induces an O/T bit commitment, then there exists a perfect zero-knowledge proof of knowledge for R_L .

5 Transparent/Opaque Bit Commitments

Here we consider the case that L induces a T/O bit commitment (see Definition 3), and show that if a language L induces a T/O bit commitment, then there exists a bounded round perfect zero-knowledge proof for L.

Theorem 21. If a language L induces a T/O bit commitment, then there exists a two round prefect zero-knowledge proof for the language L.

Proof: Let L be a language that induces a T/O bit commitment f_L . Here we overview the outline of the protocol $\langle P, V \rangle$ for L. Let $x \in \{0, 1\}^*$ be a common input to $\langle P, V \rangle$. For each $i \ (1 \le i \le |x|)$, V chooses $e_i \in_{\mathbf{R}} \{0, 1\}$, $r_i \in_{\mathbf{R}} \{0, 1\}^{k(|x|)}$ and computes $\alpha_i = f_L(x, e_i, r_i)$. Then V reduces the following \mathcal{NP} -statement,

$$\exists e_1, e_2, \dots, e_{|x|} \exists r_1, r_2, \dots, r_{|x|} \text{ s.t. } \bigwedge_{i=1}^{|x|} \alpha_i = f_L(x, e_i, r_i),$$
(2)

to a directed Hamiltonian graph G = (V, E), where $|V| = |x|^d$ for some constant d > 0. Let H be a Hamiltonian cycle of G. From the witness-preserving property of the reduction from any $L \in \mathcal{NP}$ to DHAM, there exist polynomial time computable functions g and h that satisfy

$$G = g(\alpha_1, \alpha_2, \dots, \alpha_{|x|});$$

$$H = h(\langle \alpha_1, \alpha_2, \dots, \alpha_{|x|} \rangle, \langle e_1, e_2, \dots, e_{|x|}; r_1, r_2, \dots, r_{|x|} \rangle).$$

Here V generates many random copies of G and commits to them with the T/O bit commitment f_L . After these preliminary steps, V shows to P that V knows the Hamiltonian cycle H of G. If V succeeds to convince P, then P shows to V that P knows $e_1, e_2, \ldots, e_{|x|}$.

Interactive Protocol $\langle P, V \rangle$ for L

common input: $x \in \{0, 1\}^*$.

- V1-1: V chooses $e_i \in_{\mathbf{R}} \{0, 1\}$ and $r_i \in_{\mathbf{R}} \{0, 1\}^{k(|x|)}$ for each $i (1 \le i \le |x|)$.
- V1-2: V computes $\alpha_i = f_L(x, e_i, r_i)$.
- V1-3: V computes $G = g(\alpha_1, \ldots, \alpha_{|x|})$, i.e., V reduces the \mathcal{NP} -statement of Eq.(2) to a directed Hamiltonian graph G = (V, E), where $|V| = n = |x|^d$ for some d > 0.
- V1-4: V defines an adjacency matrix $A_G = (a_{ij})$ of G = (V, E).
- V1-5: V computes $H = h(\langle \alpha_1, \ldots, \alpha_{|x|} \rangle, \langle e_1, \ldots, e_{|x|}; r_1, \ldots, r_{|x|} \rangle)$, where H is one of Hamiltonian cycles of G = (V, E).
- V1-6: V chooses $\pi_{\ell} \in_{\mathcal{R}} \text{Sym}(V)$ $(1 \leq \ell \leq n^2)$ and $s_{ij}^{\ell} \in_{\mathcal{R}} \{0, 1\}^{k(|x|)}$ $(1 \leq i, j \leq n)$.

V1-7: V computes
$$c_{ij}^{\ell} = f_L(x, a_{\pi_I(i)\pi_I(j)}, s_{ij}^{\ell})$$
.

$$V \to P: \langle \alpha_1, \alpha_2, \ldots, \alpha_{|x|} \rangle, \langle (c_{ij}^1), (c_{ij}^2), \ldots (c_{ij}^{n'}) \rangle \ (1 \le i, j \le n).$$

P1: P chooses $b_{\ell} \in_{\mathbf{R}} \{0, 1\}$ for each $\ell (1 \leq \ell \leq n^2)$.

 $P \to V: \ \langle b_1, b_2, \dots, b_{n^2} \rangle \in \{0, 1\}^{n^2}.$ V2-1: If $b_\ell = 0 \ (1 \le \ell \le n^2), V$ assigns $\langle \pi_\ell, s_{11}^\ell, s_{12}^\ell, \dots, s_{nn}^\ell \rangle$ to w_ℓ .

V2-2: If
$$b_{\ell} = 1$$
 $(1 \le \ell \le n^2)$, V assigns

$$\langle\langle i_1^\ell, j_1^\ell\rangle, \langle i_2^\ell, j_2^\ell\rangle, \dots, \langle i_n^\ell, j_n^\ell\rangle, s_{i_1^\ell j_1^\ell}^\ell, s_{i_2^\ell j_2^\ell}^\ell, \dots, s_{i_n^\ell j_n^\ell}^\ell\rangle$$

to w_{ℓ} such that $\langle i_1^{\ell}, j_1^{\ell} \rangle, \langle i_2^{\ell}, j_2^{\ell} \rangle, \dots, \langle i_n^{\ell}, j_n^{\ell} \rangle$ is a single cycle.

- $V \to P: \langle w_1, w_2, \ldots, w_{n^2} \rangle.$
 - P2-1: P computes $G = g(\alpha_1, \alpha_2, \dots, \alpha_{|x|})$ and an adjacency matrix $A_G = (a_{ij})$ of G.
 - P2-2: For each $b_{\ell} = 0$ $(1 \le \ell \le n^2)$, if $c_{ij}^{\ell} = f_L(x, a_{\pi_\ell(i)\pi_\ell(j)}, s_{ij}^{\ell})$ for each i, j $(1 \le i, j \le n)$, then P continues; otherwise P halts and rejects $x \in \{0, 1\}^*$.
 - P2-3: For each $b_{\ell} = 1$ $(1 \leq \ell \leq n^2)$, if $\langle i_1^{\ell}, j_1^{\ell} \rangle, \langle i_2^{\ell}, j_2^{\ell} \rangle, \dots, \langle i_n^{\ell}, j_n^{\ell} \rangle$ is indeed a single cycle and $c_{i_m^{\ell} j_m^{\ell}}^{\ell} = f_L(x, 1, s_{i_m^{\ell} j_m^{\ell}}^{\ell})$ for each m $(1 \leq m \leq n)$, then P continues; otherwise P halts and rejects $x \in \{0, 1\}^*$.
 - P2-4: If there exist $\beta_i \in \{0, 1\}, t_i \in \{0, 1\}^{k(|x|)}$ such that $\alpha_i = f_L(x, \beta_i, t_i)$ for every $i \ (1 \le i \le |x|)$, then P continues; otherwise P halts and rejects $x \in \{0, 1\}^*$.
- $P \to V: \ \langle \beta_1, \beta_2, \dots, \beta_{|x|} \rangle.$ V3: If $\beta_i = e_i$ for every $i \ (1 \le i \le |x|)$, then V halts and accepts $x \in \{0, 1\}^*$; otherwise V halts and rejects $x \in \{0, 1\}^*$.

Now we turn to show that if L induces a T/O bit commitment f_L , then the protocol $\langle P, V \rangle$ for L is a two round perfect zero-knowledge proof for L.

Completeness: Assume here that $x \in L$. If V follows the protocol above, then G = (V, E) is always a Hamiltonian graph. From the T/O property of f_L , it follows that for every $x \in L$, there does not exist $r, s \in \{0, 1\}^{k \langle |x| \rangle}$ such that $f_L(x, 0, r) = f_L(x, 1, s)$. Thus for each $i (1 \le i \le |x|)$, P can find in step P2-4 a

unique $\beta_i \in \{0, 1\}$ such that $\alpha_i = f_L(x, e_i, t_i)$ for some $t_i \in \{0, 1\}^{k(|x|)}$. Then V always halts and accepts $x \in L$ in step V3.

Soundness: Assume that $x \notin L$. Define an interactive protocol $\langle A, B \rangle$ for $\overline{L} \in \mathcal{OT}$ to be on input $x \in \{0, 1\}^*$ (1) A (resp. B) plays the role of V (resp. P); and (2) $\langle A, B \rangle$ simulate $\langle P, V \rangle$ except that the process from step V1-6 to step P2-3 in $\langle P, V \rangle$ is executed in serial.

From the T/O property of f_L , it follows that for every $x \notin L$, the distribution of $f_L(x, 0, r)$ is identical to that of $f_L(x, 1, s)$. Then the protocol $\langle A, B \rangle$ can be simulated in a perfect zero-knowledge manner for every $x \notin L$ by using the resettable simulation technique [9]. It turns out that the subprotocol of $\langle P, V \rangle$, from step V1-6 to step P2-3, is *perfectly witness indistinguishable* [6], because it can be regarded as the parallel composition of the protocol $\langle A, B \rangle$ by exchanging the roles of A and B. Then in the protocol $\langle P, V \rangle$, any cheating P^* cannot guess better at random the value of $e_i \in \{0, 1\}$ for each $i (1 \le i \le |x|)$. Thus for each k > 0 and sufficiently large $x \notin L$, any cheating prover P^* causes V to accept $x \notin L$ with probability at most $|x|^{-k}$.

Perfect Zero-Knowledgeness: This can be shown in almost the same way as the case of graph nonisomorphism [9]. From the polynomial time invertible property of the reduction from any $L \in \mathcal{NP}$ to DHAM, there exist polynomial time computable functions g and γ that satisfy

$$g(\alpha_1,\ldots,\alpha_{|\mathbf{x}|})=G;\quad \gamma(G,H)=\langle\beta_1,\ldots,\beta_{|\mathbf{x}|};t_1,\ldots,t_{|\mathbf{x}|}\rangle,$$

where H is one of Hamiltonian cycles of G and $\alpha_i = f_L(x, \beta_i, t_i)$ for each i $(1 \le i \le |x|)$. Here we use H_i to denote the t-th (n-vertex) single cycle for each t $(1 \le t \le n!)$ in the lexicographic order. Then the construction of M_U for any cheating verifier V^* is as follows:

Construction of M_U

common input: $x \in L$.

- M0-1: count := 1; and conv := ε , where ε is a null string.
- M0-2: M_U provides V^* with $r_V \cdot$ as random coin tosses for V^* .
- M1-1: M_U runs V^* on input x, r_V . to generate $\langle \alpha_1, \ldots, \alpha_{|x|} \rangle, \langle (c_{ij}^1), \ldots, (c_{ij}^{n^2}) \rangle$.

M1-2: conv := conv
$$\|\langle \langle \alpha_1, \ldots, \alpha_{|x|} \rangle, \langle (c_{ij}^1), \ldots, (c_{ij}^{n^2}) \rangle \rangle$$
.

- M2: M_U chooses $b_\ell \in_{\mathbb{R}} \{0,1\}$ for each ℓ $(1 \leq \ell \leq n^2)$.
- M3-1: M_U runs V^* on input $x, r_{V^*}, \langle b_1, b_2, \ldots, b_{n^2} \rangle$ to generate $\langle w_1, \ldots, w_{n^2} \rangle$.
- M3-2: conv := conv $||\langle \langle b_1, \ldots, b_{n^2} \rangle, \langle w_1, \ldots, w_{n^2} \rangle \rangle$.
- M4-1: M_U computes $G = g(\alpha_1, \ldots, \alpha_{|x|})$ and an adjacency matrix $A_G = (a_{ij})$ of G.
- M4-2: For each $b_{\ell} = 0$ $(1 \le \ell \le n^2)$, if $c_{ij}^{\ell} = f_L(x, a_{\pi_\ell(i)\pi_\ell(j)}, s_{ij}^{\ell})$ for each i, j $(1 \le i, j \le n)$, then M_U continues; otherwise M_U halts and outputs $\langle x, r_{V^*}, \text{conv} \rangle$.
- M4-3: For each $b_{\ell} = 1$ $(1 \le \ell \le n^2)$, if $\langle i_1^{\ell}, j_1^{\ell} \rangle, \langle i_2^{\ell}, j_2^{\ell} \rangle, \dots, \langle i_n^{\ell}, j_n^{\ell} \rangle$ is indeed a single cycle and $c_{i_{\ell_m}j_m^{\ell}}^{\ell} = f_L(x, 1, s_{i_{\ell_m}j_m^{\ell}}^{\ell})$ for each m $(1 \le m \le n)$, then M_U continues; otherwise M_U halts and outputs $\langle x, r_V, \text{conv} \rangle$.

- M5-1: M_U resets V^* to the state of step M1-2.
- M5-2: If count > n!, then M_U halts and outputs $\langle x, r_V, conv \rangle$.
- M5-3: If H_{count} is a Hamiltonian cycle of G, then $H := H_{\text{count}}$ and go to step M7-2.
- M5-4: M_U chooses $\tilde{b}_{\ell} \in_{\mathbf{R}} \{0, 1\}$ for each $\ell (1 \leq \ell \leq n^2)$.
- M6-1: M_U runs V^* on input $x, r_{V^*}, \langle \tilde{b}_1, \ldots, \tilde{b}_{n^2} \rangle$ to generate $\langle \tilde{w}_1, \ldots, \tilde{w}_{n^2} \rangle$.
- M6-2: For each $\tilde{b}_{\ell} = 0$ $(1 \leq \ell \leq n^2)$, if $c_{ij}^{\ell} = f_L(x, a_{\tilde{\pi}_{\ell}(i)\tilde{\pi}_{\ell}(j)}, \tilde{s}_{ij}^{\ell})$ for each i, j $(1 \leq i, j \leq n)$, then M_U continues; otherwise count := count + 1 and go to step M5-1.
- M6-3: For each $\tilde{b}_{\ell} = 1$ $(1 \leq \ell \leq n^2)$, if $\langle \tilde{i}'_{\ell}, \tilde{j}'_{1} \rangle, \langle \tilde{i}'_{2}, \tilde{j}'_{2} \rangle, \ldots, \langle \tilde{i}'_{n}, \tilde{j}'_{n} \rangle$ is a single cycle and $c^{\ell}_{i_{1}}_{j_{1}}\tilde{j}^{\ell}_{m} = f_{L}(x, 1, \tilde{s}^{\ell}_{i_{1}}\tilde{j}^{\ell}_{m})$ for each m $(1 \leq m \leq n)$, then M_{U} continues; otherwise count := count + 1 and go to step M5-1.
- M7-1: If $b_{\ell} \neq \tilde{b}_{\ell}$ for some ℓ $(1 \leq \ell \leq n^2)$, then M_U computes a Hamiltonian cycle H of G = (V, E) from w_{ℓ} and \tilde{w}_{ℓ} ; otherwise count := count + 1 and go to step M5-1.
- M7-2: M_U computes $\langle \beta_1, \beta_2, \ldots, \beta_{|x|}; t_1, t_2, \ldots, t_{|x|} \rangle = \gamma(G, H).$
- M7-3: If $\alpha_i = f_L(x, \beta_i, t_i)$ for every $i \ (1 \le i \le |x|)$, then set conv := conv $||\langle \beta_1, \beta_2, \ldots, \beta_{|x|}\rangle$; otherwise M_U halts and outputs $\langle x, r_V, \text{conv}\rangle$.
- M7-4: M_U halts and outputs $\langle x, r_V, conv \rangle$.

We first show that M_U terminates in expected polynomial (in |x|) time for any cheating verifier V^* . Define $K \subseteq \{0,1\}^{n^2}$ to be a subset of $\langle b_1, b_2, \ldots, b_{n^2} \rangle \in$ $\{0,1\}^{n^2}$ for which V^* passes the tests in steps M4-2 and M4-3. Then the following three cases are possible: (C1) $||K|| \ge 2$; (C2) ||K|| = 1; and (C3) ||K|| = 0, where ||A|| denotes the cardinality of a finite set A.

In the case of (C1), the expected number I_{C1} of invocations of V^* satisfies

$$I_{C1} \le 1 + \frac{\|K\|}{2^{n^2}} \cdot \left(\frac{\|K\| - 1}{2^{n^2}}\right)^{-1} = 1 + \frac{\|K\|}{\|K\| - 1} \le 3.$$

In the case of (C2), the probability that V^* passes the tests in steps M4-2 and M4-3 is exactly 2^{-n^2} . Then M_U halts and outputs $\langle x, r_{V^*}, \operatorname{conv} \rangle$ in step M4-2 or M4-3 with probability $1 - 2^{-n^2}$. If V^* passes the tests in steps M4-2 and M4-3, then M_U must exhaustively searches a Hamiltonian cycle H of G at most in n! steps. Thus it turns out that the expected number I_{C2} of invocations is bounded by $I_{C2} = 1 + 2^{-n^2} \cdot n! < 2$. In the case of (C3), M_U always halts and outputs $\langle x, r_{V^*}, \operatorname{conv} \rangle$ with a single invocation of V^* . Thus M_U terminates in expected polynomial (in |x|) time for any cheating verifier V^* .

We then show that for any verifier V^* , M_U on any input $x \in L$ simulates the real interactions between P and V^* in a perfect zero-knowledge manner.

In the case of (C3), M_U always halts in step M4-2 or step M4-3 and outputs $\langle x, r_V, \text{conv} \rangle$ with the distribution identical to one in $\langle P^*, V \rangle$.

In the case of (C1), the following three cases are possible: (C1-1) M_U halts in step M4-2 or step M4-3 and outputs $\langle x, r_{V^*}, \operatorname{conv} \rangle$; (C1-2) M_U halts in step M5-2 or step M7-3 and outputs $\langle x, r_{V^*}, \operatorname{conv} \rangle$; and (C1-3) M_U halts in step M7-4 and outputs $\langle x, r_{V^*}, \operatorname{conv} \rangle$. In the case of (C1-1), it is obvious that the distribution of

 $\langle x, r_{V^*}, \operatorname{conv} \rangle$ is identical to one in $\langle P, V^* \rangle$. Note that P returns $\langle \beta_1, \beta_2, \ldots, \beta_{|x|} \rangle$ iff every α_i $(1 \leq i \leq |x|)$ is properly generated. From the polynomial time invertible property of the reduction from any $L \in \mathcal{NP}$ to DHAM, it follows that every α_i $(1 \leq i \leq |x|)$ is properly generated iff $G = g(\alpha_1, \alpha_2, \ldots, \alpha_{|x|})$ is a Hamiltonian graph. Then in the case of (C1-2), the distribution of $\langle x, r_{V^*}, \operatorname{conv} \rangle$ is identical to one in $\langle P, V^* \rangle$. Let us consider the case that M_U in step M7-1 finds $b_\ell \neq \tilde{b}_\ell$ for some ℓ $(1 \leq \ell \leq n^2)$. We assume without loss of generality that $b_\ell = 0$ and $\tilde{b}_\ell = 1$. Then

$$\begin{split} w_{\ell} &= \langle \pi_{\ell}, s_{11}^{\ell}, s_{12}^{\ell}, \dots, s_{nn}^{\ell} \rangle; \\ \tilde{w}_{\ell} &= \langle \langle \tilde{i}_{1}^{\ell}, \tilde{j}_{1}^{\ell} \rangle, \langle \tilde{i}_{2}^{\ell}, \tilde{j}_{2}^{\ell} \rangle, \dots, \langle \tilde{i}_{n}^{\ell}, \tilde{j}_{n}^{\ell} \rangle, \tilde{s}_{\tilde{i}_{1}\tilde{j}_{1}}^{\ell}, \tilde{s}_{\tilde{i}_{2}\tilde{j}_{2}}^{\ell}, \dots, \tilde{s}_{\tilde{i}_{n}\tilde{j}_{n}}^{\ell} \rangle. \end{split}$$

From the assumption that $b_{\ell} = 0$ and $\tilde{b}_{\ell} = 1$, it follows that w_{ℓ} passes the test in step M4-2 and \tilde{w}_{ℓ} passes the test in step M6-3. Thus the Hamiltonian cycle H of G is given by

$$H = \langle \langle \pi_{\ell}^{-1}(\tilde{i}_{1}^{\ell}), \pi_{\ell}^{-1}(\tilde{j}_{1}^{\ell}) \rangle, \langle \pi_{\ell}^{-1}(\tilde{i}_{2}^{\ell}), \pi_{\ell}^{-1}(\tilde{j}_{2}^{\ell}) \rangle, \dots, \langle \pi_{\ell}^{-1}(\tilde{i}_{n}^{\ell}), \pi_{\ell}^{-1}(\tilde{j}_{n}^{\ell}) \rangle \rangle.$$

From the polynomial time invertible property of the reduction from any $L \in \mathcal{NP}$ to DHAM, it follows that $\gamma(G, H) = \langle \beta_1, \beta_2, \ldots, \beta_{|x|}; t_1, t_2, \ldots, t_{|x|} \rangle$ and $\alpha_i = f_L(x, \beta_i, t_i)$ $(1 \leq i \leq |x|)$. The T/O property of f_L guarantees that for every $x \in L$, there does not exist $r, s \in \{0, 1\}^{k \cdot ||x||}$ such that $f_L(x, 0, r) = f_L(x, 1, s)$. Then $\beta_i = e_i$ for each i $(1 \leq i \leq |x|)$ and thus in the case of (C1-3), the distribution of $\langle x, r_V, conv \rangle$ is identical to one in $\langle P, V^* \rangle$.

In the case of (C2), the following three cases are possible: (C2-1) M_U halts in step M4-2 or step M4-3 and outputs $\langle x, r_{V^*}, \operatorname{conv} \rangle$; (C2-2) M_U halts in step M5-2 or step M7-3 and outputs $\langle x, r_{V^*}, \operatorname{conv} \rangle$; and (C2-3) M_U halts in step M7-4 and outputs $\langle x, r_{V^*}, \operatorname{conv} \rangle$. In a way similar to the case of (C1), we can show that in the cases of (C2-1), (C2-2), and (C2-3), the distribution of $\langle x, r_{V^*}, \operatorname{conv} \rangle$ is identical to one in $\langle P, V^* \rangle$. Then for any cheating verifier V^* , M_U on input $x \in L$ simulates $\langle P, V^* \rangle$ in a perfect zero-knowledge manner.

Thus the interactive protocol $\langle P, V \rangle$ is a two round perfect zero-knowledge proof for L if L induces a T/O bit commitment f_L .

6 Concluding Remarks

From Theorem 18, it follows that any language $L \in OT$ has an unbounded round perfect zero-knowledge Arthur-Merlin proof. This however could be improved, because any language $L \in OT$ has an NP-proof [8]. Then

1. If a language L induces an O/T bit commitment, then does there exist a bounded round perfect zero-knowledge proof for the language L?

To affirmatively solve this, a verifier will have to flip private coins, because Goldreich and Krawczyk [7] showed that there exists a bounded round (blackbox simulation) zero-knowledge Arthur-Merlin proof for L, then $L \in \mathcal{BPP}$.

Languages that induce O/T or T/O bit commitments might have diverse applications to many cryptographic protocols. Then

2. What is the other application of languages that induce O/T or T/O bit commitments?

Every known random self-reducible language [13], e.g., graph isomorphism, quadratic residuosity, etc., induces an O/T bit commitment. Then finally

3. For any language L, if L is random self-reducible, then does L induce an O/T bit commitment?

References

- 1. Brassard, G., Chaum, D., and Crépeau, C., "Minimum Disclosure Proofs of Knowledge," J. Comput. System Sci., Vol.37, No.2, pp.156-189 (1988).
- Ben-Or, M., Goldreich, O., Goldwasser, S., Håstad, J., Kilian, J., Micali, S., and Rogaway, P., "Everything Provable is Provable in Zero-Knowledge," *Proceedings* of Crypto'88, Lecture Notes in Computer Science 403, pp.37-56 (1990).
- Boyar, J., Friedl, K., and Lund, C., "Practical Zero-Knowledge Proof: Giving Hints and Using Deficiencies," J. Cryptology, Vol.4, No.3, pp.185-206 (1991).
- Bellare, M., Micali, S., and Ostrovsky, R., "The (True) Complexity of Statistical Zero-Knowledge," Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, pp.494-502 (1990).
- Feige, U., Fiat, A., and Shamir, A., "Zero-Knowledge Proofs of Identity," J. Cryptology, Vol.1, No.2, pp.77-94 (1988).
- 6. Feige, U. and Shamir, A., "Zero-Knowledge Proofs of Knowledge in Two Rounds," *Proceedings of Crypto'89*, Lecture Notes in Computer Science 435, pp.526-544 (1990).
- Goldreich, O. and Krawczyk, H., "On the Composition of Zero-Knowledge Proof Systems," *Proceedings of ICALP'90*, Lecture Notes in Computer Science 443, pp.268-282 (1990).
- 8. Goldwasser, S., Micali, S., and Rackoff, C., "The Knowledge Complexity of Interactive Proof Systems," SIAM J. Comput., Vol.18, No.1, pp.186-208 (1989).
- Goldreich, O., Micali, S., and Wigderson, A., "Proofs That Yield Nothing But Their Validity or All Languages in NP Have Zero-Knowledge Proof Systems," J. Assoc. Comput. Mach., Vol.38, No.1, pp.691-729 (1991).
- Goldreich, O. and Oren, Y., "Definitions and Properties of Zero-Knowledge Proof Systems," J. Cryptology, Vol.7, No.1, pp.1-32 ((1994).
- Naor, M., Ostrovsky, R., Venkatesan, R., and Yung, M., "Perfect Zero-Knowledge Arguments for NP Can Be Based on General Complexity Assumptions," Proceedings of Crypto'92, Lecture Notes in Computer Science 740, pp.196-214 (1993).
- Ostrovsky, R., "Comparison of Bit-Commitment and Oblivious Transfer Protocols when Players have Different Computing Power," DIMACS Technical Report #90-41, pp.27-29 (1990).
- Tompa, M. and Woll, H., "Random Self-Reducibility and Zero-Knowledge Interactive Proofs of Possession of Information," Proceedings of the 28th Annual IEEE Symposium on Foundations of Computer Science, pp.472-482 (1987).