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Abstract. In this paper, we define two classes of languages, one induces 
opaque/transparent bit commitments and the other induces transpar- 
ent/opaque bit commitments. As an application of opaque/transparent 
and transparent/opaque properties, we first show that if a language L in- 
duces an opaque/transparent bit commitment, then there exists a prover- 
practical perfect zero-knowledge proof for L, and we then show that if 
a language L induces a transparent/opaque bit commitment, then there 
exists a bounded round perfect zero-knowledge proof for L. 

Type  D I unbounded 

1 Introduction 

unbounded 

A bit commitment is a two par ty  (interactive) protocol between a sender S and 
a receiver R in which after t he  sender S commits to a bit b E (0 , l )  at hand, 
(1) the sender S cannot change his mind in a computational or an information- 
theoretic sense; and (2) t h e  receiver R learns nothing about  the  bit b € (0 , l )  in a 
computational or an information-theoretic sense. Bit commitments have diverse 
applications to cryptographic protocols, especially t o  zerGknowledge proofs (see, 
e.g., [6], [l], [ll], [9], [4], elc). For simplicity, we assume that a bit commitment f 
is noninteractive, i.e., the sender S sends to the receiver R only a single message 
C. According to  computational power of senders and receivers, bit commitments 
can be  classified into the  following four possible types (see, e.g., [12]). 

Type B 1 poly-time bounded 1 unbounded 
TvPe C I unbounded 1 Dolv-time bounded 
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any honest verifier statistical zero-knowledge proof for a language L can be 
transformed to a statistical zero-knowledge proof for the language L assuming 
the existence of a bit commitment of Type B. In addition, Goldreich, Micali, and 
Wigderson 191 used a bit commitment of Type C to show that any language L E 
AfP has a computational zero-knowledge proof. Now we look at  the properties 
required to bit commitments for each possible type above. 

Assume that the sender S is computationally unbounded. If there exist r ,  s E 
{0, l}' such that f ( 0 ,  r )  = j (1,  s), then a cheating sender S* chooses I E {0,1)' 
to compute C = f(0, r )  and reveals 1 and s E (0, I}' to change his mind. Thus 
any I, s E {0,1}' must satisfy that f(0, r )  # f(1, s). Here we refer to such a bit 
commitment f as transparent. Assume that the receiver R is computationally 
unbounded. If the distribution of f ( 0 , r )  is apart from that of f ( l , ~ ) ,  then a 
cheating receiver R* might learn something about the value of the bit b E {0,1} 
only looking at C = f ( b ,  7). Thus the distributions of f(0, r )  and f (1 ,  s) must 
be almost identical. Here we refer to such a bit commitment f as opoque. 

If both the sender S and the receiver R are computationally unbounded, then 
any bit commitment f must be transparent and opaque, however it is impossible 
to algorithmically implement such a bit commitment. This implies that there 
exists inherently no way of designing bit commitments of Type D. Thus only 
possible way of doing this is to physically implement such a bit commitment. This 
is referred to as an envelope. Assuming the existence of the envelope, Goldreich, 
Micali, and Wigderson [9] showed that any language L E AfP has a perfect zero- 
knowledge proof and then Ben-Or et al [2] showed that any language L € P 
has a perfect zero-knowledge proof. The goal of this paper is to algorithmically 
construct a bit commitment of Type D in a somewhat different setting. 

In this paper, we consider the following framework Our bit commitment f is 
allowed to have an additional input I E {0,1}* and its property heavily depends 
on the additional input x E {0, I}*. In this setting, we define two classes of 
languages, one induces opaque/transparent bit commitments and the other in- 
duces transparent/opaque bit commitments. Informally, a language L induces an 
opaque/transparent bit commitment f~ if (1) for every z E L, the distribution of 
f~(z, 0, 7) is identical to that of f ~ ( z , 1 ,  r ) ;  and (2) for every z 4 L, the distribu- 
tion of f ~ ( z ,  0 , ~ )  is completely diflerent from that of f ~ ( z ,  1, I), and L induces a 
transparent/opaque bit commitment f~ if induces an opaque/transparent bit 
commitment fr Then we can show the following theorems: 

Theorem 18: 
ment, then there exists a prover-practical perfect zero-knowledge proof for L. 

Theorem 21: 
then there exists a bounded round perfect zero-knowledge proof for L. 

If a language L induces an opaque/transparent bit commit- 

If a language L induces a transparent/opaque bit commitment, 

2 Preliminaries 

Here we present several definitions necessary to the subsequent discussions. 
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Definition 1 [8]. Let L 5 (0, I}'. A probability ensemble {U(Z)}~EL is said to 
be identical to a probability ensemble { V ( S ) ) , E L  on L if for every x E L, 

IProb { U ( z )  = a} - Prob { V ( x )  = .}I = 0. 
a € { o , 1 ] *  

Let k be a security parameter. Let g ( b , r )  be a polynomial (in k) time 
computable function. A function g is a noninteractive bit commitment if af- 
ter the sender S sends C = g ( b , T )  to the receiver R, (1) any cheating sender 
S' cannot change his mind, i.e., S* cannot reveal T , S  E { C I , ~ } ~  such that 
C = g(0,r) = g(1,s); and (2) any cheating receiver R' learns nothing about 
the bit b E {0,1} only looking at C = g ( b ,  T ) .  As a modification, let us consider 
bit commitments in the following setting: Let L be a language and let k be a 
polynomial. Assume that fL(x, b, T )  is a polynomial (in 1x1) time computable 
function for any b E (0 ,  1) and any T E (0, l}k(l*l). 

Definition2. A language L is said to induce an opaque/transparent (O/T for 
short) bit commitment j~ if 

- opaque: for every x E L, the distribution of f ~ ( z ,  0, T )  is identical to that of 

- transparent: for every I 4 L, there do not exist T E (0, l}k(lzl) and s E 
fL(X, 1 7  T I ;  

( 0 ,  1}k(121) such that f~(z ,O,  T )  = f ~ ( z ,  1, s), 

where k is a polynomial that guarantees the security of f ~ .  

The opaque/transparent property guarantees that for every 5 E L, any all 
powerful cheating receiver R' cannot guess better at random the value o€ the 
bit b E {0,1} after receiving f ~ ( x , b , ~ )  from the sender S and for every x 4 
L, any all powerful cheating sender S' cannot change his mind after sending 
f ~ ( x ,  b,  T )  to the receiver R. Let 07 be the class of languages that induce O / T  
bit commitments. From Definition 2, it is clear that 07 C "P. 
Definition3. A language L is said to induce a transparent/opaque (T/O for 
short) bit commitment f~ if 

Contrary to the opaque/transparent property, the transparent/opaque prop- 
erty guarantees that for every x € L, any all powerful cheating sender s' cannot 
change his mind after sending f ~ ( x ,  b, r )  to the receiver R and for every z 4 L, 
any all powerful cheating receiver R' cannot guess better at random the value 
of the bit b E {0,1} after receiving f ~ ( x ,  b, r )  from the sender S. Let 70 be the 
class of languages that induce T/O bit commitments. From Definitions 2 and 3, 
it is obvious that c e 7 - 0  = 07 C_ AfP. 
Definition 4 [8]. An interactive protocol (P, V) is an interactive proof system 
for a language L if there exists an honest verifier V that satisfies the following: 

- completeness: there exists an honest prover P such that for every k > 0 and 
for sufficiently large z E L, (P, V) halts and accepts 2 E L with probability 
at least 1 - Isl-', where the probabilities are taken over the coin tosses of 
P and V .  

induces an O/T bit commitment fr 
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- soundness: for every k > 0, for sufficiently large x L, and for any cheating 
prover P', (P', V )  halts and accepts z 4 L with probability at most ( z I - ~ ,  
where the probabilities are taken over the coin tosses of P' and V .  

It should be noted that the resource of P is computationally unbounded while 
the resource of V is bounded by probabilistic polynomial (in 1x1) time. 

In the remainder of this paper, we assume that a term "zero-knowledge" 
implies "blackbox simulation" zerGknowledge. 

Definition 5 [lo]. An interactive proof system (P, V) for a language L is said 
to  be (blackbox simulation) perfect zereknowledge if there exists a probabilistic 
polynomial time Turing machine Mu such that for any (cheating) verifier V' and 
for sufficiently large 2 E L, the probability ensemble {Mu(s; V * ) } r ~ ~  is identical 
to  the probability ensemble { (P ,  V * ) ( Z ) } ~ ~ Z  on L, where M(.; A) denotes a 
Turing machine with blackbox access to a Turing machine A. 

From a practical purpose, Boyar, Friedl, and Lund [3] defined a notion of 
prover-practical (zero-knowledge) interactive proof systems. 

Definition 6 [3]. An interactive proof system (P, V) for a language L E "P is 
said to be prover-practical if the honest prover P runs in probabilistic polynomial 
time and some trapdoor information on input x E L is initially written on the 
private auxiliary tape of P. 

Let A, B E hf'P and let g be a reduction from A to B, i.e., g is a polynomial 
time computable function and for any x E (0, I}*, z E A iff g(z) E B .  

Definition7 [6]. Let A , B  E "P. A reduction g from A to B is said to be 
witness-preserving if there exists a polynomial time computable function h that 
given a witness w for any x E A, h(x, w )  is a witness for g(x) E B. 

Definition8 [6]. Let A , B  E "P. A reduction g from A to B is said to be 
polynomial time invertible if there exists a polynomial time computable function 
7 that given a witness w' for g ( x )  E B ,  y(g(x), 20') is a witness for x E A. 

3 Examples 

It is obvious from the Definitions 2 and 3 that L E 07 iff 'L: E TO. Thus we 
only exemplify several languages that induce O/T bit commitments. 

For graphs G and H, we use G N H to imply that G is isomorphic to  H and 
use G 34 H to imply that G is not isomorphic to H. 

Definition 9. For an integer h > 0, Universal Graph Isomorphism Tuple UGIT is 
defmed t o b e U G I T = { ( h , ( G ~ , G ~ ) , ( G ! & G ~ ) ,  ...;( GE,Gi)) IGPczGf foreach 
i (1 5 i 5 h ) } .  

Definition 10. For an integer h > 0, Existential Graph Isomorphism Tuple EGIT 
is defined to be EGIT = {(h, (G:,G:), (G:,Gi),. . ., (Gi ,Gi ) )  I GP N G: for 
some i (1 5 i 5 h)}. 
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Def in i t i on l l .  Let N = p ; ' p z  . . . py  be the prime factorization of N .  Define 
cMODd to be N E cMODd if and only if pi c (mod d) for each i (1 5 i 5 h). 

In the following, we show that the languages UGIT, EGIT, and 1MOD4 
induce O/T bit commitments f u ~ ~ ,  ~ E G W ,  and f l ~ 0 ~ 4 ,  respectively. 

Lemma12.  The language UGIT induces an O/T bit commitment f u o p .  

Proof: For 2 = (h ,  (G!,Gi), (GO,, Gi}, . . . , (GO,, G i ) ) ,  let V,  (1 5 i 5 h) be a set 
of vertices for GP and Gf, and let b E (0 , l )  be a bit that a sender S wishes 
to send to a receiver R. Here we define a bit commitment ~ ~ G I T  for UGIT as 
follows: For each i (1 5 i 5 h), S chooses a; ER Sym(Vi). Then S computes a 
graph Hi = a,(GZ) and sends ( H I ,  H2, . . . , Hh) to R. 

Assume that 2 E UGIT. It follows from Definition 9 that GP N G; for each 
i (1 5 d 5 h). Then the distribution of (HI ,  H 2 , .  . . , Hh) for b = 0 is identical 
to that of ( H I ,  H 2 , .  . . , H h )  for 6 = 1. Assume that 5 4 UGIT. It follows from 
Definition 9 that there exists a t  least an io (1 <_ i o  5 h) such that GPO $ G t .  
This implies that a,,(GPo) # ( P ; , ( G ~ ~ )  for any a ; o , ~ , o  E Sym(V,,). Then for any 
x i ,  pi E S ~ m ( v i )  (1 I s' 5 h), 

~ U G I T ( ~ ,  0, (xi ,  ~ 2 ,  , " h ) )  # ~ U G I T ( ~ ,  1, ( p i ,  ~ 2 , .  . . , ' ~ h ) ) .  

Thus thc language UGIT induces an O/T bit commitment f u ~ p .  

For an integer h > 0, define Universal Quadratic Residuosity Tuple UQRT to 
be UQRT = {(h, ( 2 1 ,  N l ) ,  . , . , (zh, Nh))  I 2, is a square modulo N; for each i 
(1 5 i 5 h)}. Then in a way similar to Lemma 12, we can show the following: 

Lemma 13. The language UQRT induces an O / T  bit commitment ~IJQRT. 

Let us proceed to show the other examples. 

Lemma14.  The language EGIT induces an  O / T  bit commitment f ~ ~ m .  

Proof: Let z = (h , (Gy,  Gi), (Gi ,Gi) ,  . .., (GK,Gi)} and let (1 5 i 5 h) be 
a set of vertices for GP and G!. Let b E {0,1) be a bit that a sender S wishes 
to send to a receiver R. Here we define a bit commitment f E ~ m  for EGIT as 
follows: For each i (1 5 i 5 h), S first chooses ei ER (0 , l )  and a, ER Sym(K). 
Then S computes c G e l  + e2 + ..- + eh + b (mod 2) and a graph H, = ai(GS') 
(1 5 d 5 h) and sends ( c ,Hl ,  Hz, .  . . , H h )  to R. 

Assume that z E EGIT. It follows from Definition 10 that there exists a t  
least an io (1 5 io 5 h) such that GYo N G:o. Then on that position do (1 5 
do 5 h), the distribution of T ; ~ ( G ! ~ )  is identical to that of xio(Gto) .  This implies 
that the distribution of ( c ,  HI, H2,. . . , Hh) for b = 0 is identical to that of 
( c ,  H I ,  Hz,  . . . , H h )  for b = 1. Assume that z EGIT. It follows from Definition 
10 that for every s' (1 5 i 5 h) ,  GP $ G:. Then for any e;,d; E (0,l) and 
ai,pi E S ~ m ( v i )  (1 5 i 5 h),  

~ E G I T ( ~ ,  0, ( e l , .  . . , e h ) ,  ( a i r . .  . , r h ) )  # ~ E G I T ( Z ,  1, (d i , .  . . , &), ( ( P I , .  . , ' ~ h ) ) .  



193 

Thus the language EGIT induces an O/T  bit commitment f ~ G m .  a 
For an integer h > 0, define Existential Quadratic Residuosity Tuple EQRT to 

be EQRT = {(h, (11, N l ) ,  , , . , ( z h ,  Nh))  I I; is a square modulo N, for some i 
(1  5 d 5 h)}. Then in a way similar to Lemma 14, we can show the following: 

Lemma 15. The language EQRT induces an O / T  b i t  commitment ~ E Q R T .  

The final example has different flavor from those of the examples above. 

Lemma 16. The language M O D 4  induces an O / T  bit commitment f1MOD4. 

Proof: Let I = pi’pz’ . . - p z  be the prime factorization of x. Let b E {0,1} be 
a bit that a sender S wishes to send to a receiver R. Define a bit commitment 
f l M o D 4  for 1MOD4 as follows: First S chooses T ER 2;. Then s computes 
c (-l)*r2 (mod x) and sends c E 2; to R. It should be noted that -1 is a 
square modulo x if and only if I 6 1MOD4. 

Assume that 2 E 1MOD4. From Definition 11 and the fact that -1 is a 
square modulo x, it follows that c E 2: is always a square modulo x regardless 
of the value of b E {0,1}. This implies that the distribution of c E 2; for b = 0 is 
identical to that of c E Z: for b = 1. Assume that z 4 1MOD4. From Definition 
11 and the fact that -1 is not a square modulo z, it follows that for any r E Z:, 
c G ( - l )br2 (mod z) is a square modulo I if and only if b = 0. Then for any 
T ,  s E z,*, ~ I M O D ~ ( I ,  0, r )  # f1~0~4(1 ,1 ,  s). Thus the language 1MOD4 induces 

I 

It is easy to show that (1) 2 E 2: is a square modulo N if and only if 
N E f l M O D 8 ;  (2) 3 E Zl; is a square modulo N if and only if N E f lMOD12;  
and (3) 5 E ZG is a square modulo N if and only if N E f l M O D 5 .  Then in a 
way similar to Lemma 16, we can show the following: 

Lemma17.  The languages f l M O D 8 ,  fIMOD12, and f l M O D 5  induce O / T  
bit commitments ff1MOD8, f f l ~ 0 ~ 1 2 ,  and fflMODS, respectively. 

an O/T bit Commitment J ~ M o D ~ .  

4 Opaque/Transparent Bit Commitments 

Assume that a language L induces an O/T bit commitment f ~ .  Now let us 
consider the interactive protocol (A, B) on input I E (0, l}*: (Al )  A chooses 
b ER (0,1} and r ER (0, 1}k(121) and sends a = f ~ ( z , b , ~ )  to B; (R1) R chooses 
e ER (0,1} and sends e E (0, 1) to A; (A2) A sends to B n E (0, l}’(lzl) such 
that a = f ~ ( x , e , a ) ;  and (B2) B checks that a = f~(~,e,u). After n = 1x1 
independent invocations from step A1 to step B2, V accepts I E (0, I}* if and 
only if every check in step B2 is successful. 

By the opaquejtransparent property of f ~ ,  we can show in almost the same 
way as the case of random self-reducible languages (131 that L has a perfect 
zero-knowledge proof. In the protocol (A, B), however, A needs to evaluate a E 
(0, 1}’(Izl) such that a = f ~ ( z ,  e, 0 )  for each iteration. Thus in general, (A, B) 
could not be prover-practical. In this section, we show a stronger result, i.e., L 
has a prover-practical perfect zero-knowledge proof. 
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Theorem 18. If a language L induces an O/T  bit commitment, then there exists 
a prover-practical perfect zero-knowledge proof f o r  the language L .  

Proof: Let f L  be an O/T bit commitment induced by a language L. From 
Definition 2, we have an "P-statement below: 

2 E L e 37,  s E (o,1}k('=l) s.t. f L ( 2 , 0 , 7 )  = f L ( Z ,  I, s ) .  (1) 

Let us consider the following interactive protocol (P, V} for L. 

Interactive Protocol (P, V) for L 
common input: z E (0, I}*, 

PO-1: P reduces an NP-statement of Eq.(l) to a directed Hamiltonian 

PO-2: P defines an adjacency matrix A c  = (a;,) of G = (V, E). 
VO-1: V reduces an NP-statement of Eq.(l) to a directed Hamiltonian 

VO-2: V defines an adjacency matrix AG = (a i j )  of G = (V, E). 
Pl-1: P chooses T ER Sym(V) and S i j  ER (0, 1}k(I.21) (1 5 i , j  5 n) .  
PI-2: P computes c,j  = f L ( z ,  a,(,),(j), sjj) .  

graph G = (V, E), where IVl = n = 1x1' for some constant c > 0. 

graph G = (V, E), where IVl = n = 1x1' for some constant c > 0. 

P + v: c = (CSj)  (1 5 i , j  5 n). 
V1: V chooses e ER (0,l). 

V + P:  e E (0, I}. 
P2-1: For e = 0, P assigns ( ~ ~ ~ 1 1 , .  . .,s,,) to w. 
P2-2: For e = 1, P assigns ( ( i l , j l ) ,  . .. , (im,jn),siljl,. .. , s,~,.) to w such 

that ( i l , j l ) ,  . . . , (in, jn) is a single cycle. 
P + v: 20. 

V2-1: For e = 0, V checks that c;j  = . # ~ ( x , u , ( i ) , ( j ) ,  s;,) for each a,j  (1 5 

V2-2: For e = 1, V checks that ( i l , j l ) ,  . . . , (in,jn) is indeed a single cycle 

. .  
1 7 3  I n). 

and that cimjm = f L ( z ,  1, s;,jm) for each m (1 5 m 5 n). 

After n = IVI independent invocations from step P1-1 to step V2-2, V accepts 
2 E {0,1}* if and only if every check in step V2-1 and step V2-2 is successful. 

proof for the language L if L induces an O/T bit commitment f ~ .  
We show that the protocol (P, V) is a prover-practical perfect zereknowledge 

Completeness: If L induces an O/T bit commitment f ~ ,  then L E N?', i.e., 

z E L 9 3 T , S  E (0, l}k('=') s.t. f L ( Z , O , T )  = f L ( " ,  1, s) .  

Assume that for the common input z E L to ( P , V ) ,  the honest prover P has 
7 ,  s E (0, l}k(lzl) such that f L ( z , O ,  7 )  = f L ( z ,  1, s ) .  Since the reduction from 
any L E N'P to a directed Hamiltonian graph (DHAM) is known to be witness- 
preserving, P can compute in polynomial (in 1x1) time a Hamiltonian cycle H of 
G = (V, E) in step PO-1. Then P can execute in polynomial (in 1.1) time every 
process of (P, V). It is obvious that P always causes V to accept z E L. 
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Soundness: From Eq.(1), it follows that for any x 4 L, there does not exist 
T ,  s E (0, l}'(lzl) such that f ~ ( x ,  0, r) = f~(x, 1, s). This implies that G = (V, E) 
generated in step VO-1 is not a Hamiltonian graph. We show the soundness 
condition of (P, V )  by contradiction. Assume that for some ko > 0 and infinitely 
many x $ L, there exists a cheating prover P* that causes V to accept x $! L with 
probability a t  least Ixl-'" Let L' be an infinite set of such x @ L. Then from 
a standard analysis (see, e.g., IS]), it follows that there must exist C = ( c i j )  that 
passes both tests in steps V2-1 and V2-2. We note that for any x E L', there do 
not exist T ,  s E (0, l}'(lrl) such that f~(x, 0, r) = f ~ ( x ,  1, s). This implies that P* 
cannot change his mind after step P1-2 even if P* is infinitely powerful. To pass 
the test in step V2-1, C = ( c i j )  must be an encoding of a non-Hamiltonian graph 
G = (V, E) generated in step VO-1, while to pass the test in step V2-2, C = ( c i , )  

must be an encoding of a Hamiltonian graph G = (v, 8). This contradicts the 
assumption that G = (V, E) generated in step VO-1 is not a Hamiltonian graph. 
Then for each k > 0 and sufficiently large x # L, any cheating prover P* causes 
V to accept x @ L with probability at most IzI-'. 

Perfect Zero-Knowledgeness: This can be shown in a way similar to the case of 
random self-reducible languages [13]. The construction of Mu for any cheating 
verifier V' is as follows: 

Construction of Mu 

common input: x E L. 

MO-1: count := 0; and conv := E ,  where E is a null string. 
MO-2: Mu provides V* with r y .  as random coin tosses for V'. 
MO-3 Mu simulates steps PO-1 and PO-2. 
MI-1: Mu chooses a ER (0 , l ) .  
M1-2: Mu chooses an n vertex random cycle of which adjacency matrix is 

M2-1: If (Y = 0, then Mu simulates steps P1-1 and P1-2. 
M2-2: If (Y = 1, then Mu chooses s i j  ER (0, 1}"121) and computes Cij = 

H = ( h i j ) .  

f ( 5 ,  h i j ,  S i j ) .  
M3 Mu runs V' on input (x, rv., conv, C) to generate e. 

M4-1: If e # (0 ,  I}, then MU halts and outputs ( x , r p ,  convll(C, e)),  where 

M4-2: If e # a,  then go to step M1-1. 
M4-3 If e = a, then MU simulates steps P2-1 and P2-2 depending on cr E 

M5-1: Mu sets cony := convll(C, e, w )  and count := count + 1. 
M5-2: If count < n, then go to step Ml-1; otherwise Mu halts and outputs 

xlly denotes the concatenation of strings x, y E (0, l}*. 

{0,1). 

(2, ry-, conv). 

Note that for any x E L, the distribution of f~(5, 0, r) is identical to that of 
f ~ ( x , l , r ) .  This implies that the distribution of f~(x,a,(;),b), s i j )  is identical 
to that of f ~ ( z ,  h i j ,  s i j )  for every x E L. Then the probability that e = (Y in 
step M4-3 is ezactly 1/2. Since Mu iterates n = 1x1' times the procedure from 
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step M1-1 to step M5-2, Mu runs in expected polynomial (in 1.1) time. Note 
again that for every z E L, the distribution of ~ L ( I L ' , O , T )  is identical to that 
of f ~ ( z , l ,  T ) .  Then the probability ensemble { (P,  V * ) ( ~ ) } , E L  is identical to the 
probability ensemble ( M v ( x ;  V*)}%C:L on L. 

Thus the protocol (P, V) is a prover-practical perfect zero-knowledge proof 

For a language L E "P, define a polynomial time computable relation RL 
to be (5, y)  E RL if and only if p ( z ,  y) = true, where p is a polynomial (in 1.1) 
time computable predicate that witnesses the language L E n/P. As immediate 
corollaries to Theorem 18, we can show the following: 

Corollary 19 (to Theorem 18). Let L Be "P-comple te .  If the language L in- 
duces an O/T Bit commitment, then the polynomial time hierarchy collapses. 

Corollary20 (to Theorem 18). If a language L induces an O/T Qit commit- 
ment, then there exists a perfect zero-knowledge proof of knowledge f o r  R L .  

for L if L induces an O/T  bit commitment f L .  

5 Transparent/Opaque Bit Commitments 

Here we consider the case that L induces a T /O bit commitment (see Definition 
3), and show that if a language L induces a T/O bit commitment, then there 
exists a bounded round perfect zero-knowledge proof for L. 

Theorem21. If a language L induces a T/O bit commitment, then there exists 
a two round prefect zero-knowledge proof for the  language L .  

Proof Let L be a language that induces a T/O bit commitment f L .  Here we 
overview the outline of the protocol (P, V) for L. Let z E {0,1}* be a common 
input to (P ,  V). For each i (1 5 i 5 IzI), V chooses e; ER (0, l}, T ;  ER (0, 1}'(lsl) 
and computes = f~ ( s ,  e;, ~ i ) .  Then V reduces the following "P-statement, 

I 4  
~ e l , e 2 , . . . ~ e ~ ~ ~ ~ ~ l , ~ 2 , . . ~ , ~ ~ ~ ~  set. A ai = f L ( z , e i l ~ i ) ,  (2) 

i=l 

d to a directed Hamiltonian graph G = (V, E), where [V[  = 1.1 for some constant 
d > 0. Let H be a Hamiltonian cycle of G. From the witness-preserving property 
of the reduction from any L E M'P to  DHAM, there exist polynomial time 
computable functions g and h that satisfy 

G = S(Wr W l .  * * 7 "IzI); 
H = h((a1, a21.  * a ,  q s l ) ,  (ell e 2 ,  * - - 9 ql.1; TI, 721 * f * 7 +I)). 

Here V generates many random copies of G and commits to them with the T/O 
bit commitment f ~ .  After these preliminary steps, V shows to P that V knows 
the Hamiltonian cycle H of G. If V succeeds to convince P, then P shows to V 
that P knows el, e2,. . ., elzl. 
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Interactive Protocol (P, V) for L 

common input: z E { 0 , 1 y .  

Vl-1: V chooses e; ER {0,1} and ri E R  (0, 1}'(1°1) for each i (1 5 a 5 1.1). 
V1-2: V computes (Y, = f L ( z ,  e i ,  7 , ) .  

V1-3: V computes G = g(cq,. . . , ( Y I ~ I ) ,  i.e., V reduces the A&"Pstatement 
of &.(a) to a directed Hamiltonian graph G = ( V , E ) ,  where IVl = 
n = 1.1 for some d > 0. d 

V1-4: V defmes an adjacency matrix AG = (ui , )  of G = (V ,E) .  
V1-5: V computes H = h((cu1,. . . , alSl), (el , .  . . , elsl; T I , .  . , ,qs~}), where H 

V1-6: V chooses xc ER Sym(V) (1 _< C 5 n') and s:j ER (0, 1}k(121) (1 < - 

V1-7: V computes c:, = f ~ ( z ,  ar l ( , ) r l ( j ) ,  s f j ) .  

is one of Hamiltonian cycles of G = (V, E) .  

a, j I. 5a). 

v + P: ((~1, a?,. . . , alrl), ( (c! , ) ,  ( c g ) ,  . . . (cr;)} (1 5 a,i I n). 
P1: P chooses br ER {0,1} for each C (1 5 C 5 n'). 

P + V :  ( b l , b z , .  .. , b n i }  E (0, 
V2-1: If bt = 0 (1 5 C 5 n2), V assigns (a!, s l l ,  L l  s12,. . . , s i n )  to wf. 

V2-2: If bc = 1 (1 5 C 5 n2), V assigns 

to wc such that (ii, jf}, (a ; ,  jf}, . . . , (ii, jf) is a single cycle. 
v + P: (w1, w2, .. . , wn2). 

P2-1: P computes G = g(cr1, ~ 2 , .  . . , c+l) and an adjacency matrix AG = 
(u , j )  of G. 

P2-2: For each bc = 0 (1 C 5 n'), if cf, = f ~ ( z , u ~ ~ ( , ) ~ ~ ~ ) , s f ~ )  for each 
i , j  (1 5 i, j 5 n), then P continues; otherwise P halts and rejects 

P2-3: For each bl = 1 (1 5 C 5 n2),  if (ii,j:), (i;,$), . . . , {iL,j:) is indeed 
a single cycle and cfl .1 = f ~ ( z ,  1, sfl .l ) for each m (1 5 m 5 n) ,  
then P continues; otherwise P halts and rejects z E (0, l}*. 

P2-4: If there exist Pi E (0, l}, ti E {0,  l}k(lsl) such that (Y;  = f~(5, pi, t i )  
for every i (1 5 s' 5 1 ~ 1 ) ~  then P continues; otherwise P halts and 
rejects z E (0, I}*. 

z E {0,1}*. 

m J m  m J m  

p + V :  ( P l ,  P2,  * .  . , Pl01)' 

V3: If Pi = e, for every i (1 5 i 5 \ X I ) ,  then V halts and accepts B E 
(0, I}*; otherwise V halts and rejects x E (0, I}*. 

Now we turn to  show that if L induces a T /O bit commitment f ~ ,  then the 
protocol (P, V }  for L is a two round perfect zereknowledge proof for L. 

Completeness: Assume here that z E L. If V follows the protocol above, then 
G = (V, E) is always a Hamiltonian graph. From the T/O property of f ~ ,  it 
follows that for every 2 E L, there does not exist r,s E { O , l } k ( l z l )  such that 
f ~ ( z : ,  0,~) = f ~ ( z , l ,  s). Thus for each i (1 5 i 5 IzI), P can find in step P2-4 a 
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unique p; E {0 ,  1) such that a, = f ~ ( x ,  e i ,  t i )  for some t; E (0, l}k(lzl). Then V 
always halts and accepts x E L in step V3. 

Soundness: Assume that z 4 L. Define an interactive protocol ( A , B )  for 
L E 07 to be on input z E {0,1}* (1) A (resp. B) plays the role of V (resp. P); 
and (2) (A, B) simulate (P ,  V) except that the process from step V1-6 to step 
P2-3 in (P, V )  is executed in serial. 

From the T/O property of f ~ ,  it follows that for every x $ L, the distribution 
of ~ L ( B , O , T )  is identical to that of f ~ ( x ,  1, s). Then the protocol ( A , B )  can be 
simulated in a perfect zero-knowledge manner for every x # L by using the 
resettable simulation technique [9]. It turns out that the subprotocol of (P, V), 
from step V1-6 to step P2-3, is perfectly witness indistinguishable [6], because it 
can be regarded as the parallel composition of the protocol (A, B) by exchanging 
the roles of A and B. Then in the protocol (P ,  V), any cheating P' cannot guess 
better at random the value of ei E (0 , l )  for each i (1 5 i 5 1x1). Thus for each 
k > 0 and sufficiently large x $ L, any cheating prover P* causes V to  accept 
z # L with probability at most IzI-'. 

Perfect ZereKnowledgeness: This can be shown in almost the same way as the 
case of graph nonisomorphism [9]. From the polynomial time invertible property 
of the reduction from any L E "P to DHAM, there exist polynomial time 
computable functions g and 7 that satisfy 

- 

g(al,.**,QI,I) = G; r(G,H) = (Pl,.-.,PI51;tl,...,tl,(), 

where H is one of Hamiltonian cycles of G and a; = f~(s,p;,t;) for each i 
(1 5 i 5 1x1). Here we use Hi to  denote the t-th (n-vertex) single cycle for each 
t (1 5 t 5 n!)  in the lexicographic order. Then the construction of Mu for any 
cheating verifier V* is as follows: 

Construction of Mu 

common input: x E L. 

M@l: count := 1; and conv := E ,  where E is a null string. 
MG2: Mu provides V* with rv=  as random coin tosses for V*. 
MI-1: MU runs V* on input z, Tv. to generate (a1,. . . , cYI,l), ( ( c : j ) ,  . . .(c$)). 

M1-2: conv := convll((a1,. . . ,alz1), ((c!~), . . . (c$))).  

M3-1: Mu runs V* on input x, rv., ( b l ,  bz,. . . , b n 3 )  to generate ( q , .  .. ,wma).  
M 9 2 :  conv := convll((b,,. . . , a,,) ,  (q, .. . , wn3)). 
M 4 1 :  Mu computes G = g ( a 1 , .  . . , altl) and an adjacency matrix AG = (u;,) 

of G. 
M 4 2 :  For each bc = 0 (1 5 C 5 n'), if = f~(x,a,,(,),~(j),s:~) for each i , j  

(1 5 i , j  5 n), then Mu continues; otherwise Mu halts and outputs 
(2, PV., conv). 

M43:  For each bc = 1 (1 5 C 5 n'), if (ii,yi), (i:,ji), . . . , (ii,yi) is indeed a 
single cycle and cfl ) for each m (1 5 m 5 n), then 
Mu continues; otherwise Mu halts and outputs (2, rye, conv). 

M2: Mu chooses bc ER {0,1} for each C (1 5 C 5 n'). 

= f ~ ( x ,  l,sfl 
n J m  m J m  
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M5-1: Mu resets V' to the state of step MI-2. 
M5-2: If count > n!, then MU halts and outputs (2, T V - ,  conv). 
M5-3: If Hcount is a Hamiltonian cycle of G, then H := Hcount and go to 

M5-4: Mu chooses & ER {O,1} for each P (1 5 C 5 n2). 
M6-1: Mu runs V' on input z,rv*, ( b ~ ,  . .. , b n a )  to generate (61,. .. , Gn2). 
M6-2: For each 5, = 0 (1 5 P 5 n2),  if cfj = fL(z ,  ast( i )s4( j ) ,  S f j )  for each i , j  

(1 5 d , j  5 n), then Mu continues; otherwise count := count + 1 and 
go to step M5-1. 

M6-3: For each gi = 1 (1 5 P 5 n2) ,  if (i:,;:), (a;, ji), . . . , (; : , j : )  is a single 
cycle and 71 = f ~ ( z ,  1, ifl 71 ) for each m (1 5 rn 5 n), then Mu 
continues; otherwise count := count + 1 and go to step M5-1. 

M7-1: If bt # & for some C (1 5 C 5 n2), then M u  computes a Hamiltonian 
cycle H of G = ( V I E )  from wf and G l ;  otherwise count := count + 1 
and go to step M5-1. 

step M7-2. 

m J m  m l m  

M7-2: Mu computes (P l ,P2 , . . . rP lz l ; t l , t z , . . . ( t l z l )  = r(G,H). 
M7-3: If a; = f~(z,p;,t,) for every i (1 5 a 5 Izl), then set conv := 

convll(P1, P2, . . . ,&I);  otherwise M u  halts and outputs (2, T V = ,  conv}. 
M7-4: Mu halts and outputs (3, T V . ,  conv). 

We first show that Mu terminates in expected polynomial (in 1.1) time for 
any cheating verifier V*. Define IC E (0, l}u' to be a subset of ( b l ,  b2,. . . , b n 2 )  E 
(0, 1Ina for which V* passes the tests in steps M4-2 and M4-3. Then the following 
three cases are possible: (C1) 1111'11 2 2; (C2) llKll = 1; and (C3) llKll = 0, where 
IlAll denotes the cardinality of a finite set A. 

In the case of (Cl) ,  the expected number Icl of invocations of V* satisfies 

In the case of (CZ), the probability that V' passes the tests in steps M 4 2  and 
M4-3 is exactly 2-"'. Then Mu halts and outputs (z, T V = ,  conv) in step M 4 2  or 
M4-3 with probability 1 - P'. If V' passes the tests in steps M4-2 and M4-3, 
then Mu must exhaustively searches a Hamiltonian cycle H of G at most in n! 
steps. Thus it turns out that the expected number 1 ~ 2  of invocations is bounded 
by Icz = 1 + 2-a2 . n! < 2. In the case of (C3), Mu always halts and outputs 
(2, r y . ,  conv) with a single invocation of V'. Thus Mu terminates in expected 
polynomial (in 1.1) time for any cheating verifier V'. 

We then show that for any verifier V', Mu on any input x E L simulates the 
real interactions between P and V* in a perfect zereknowledge manner. 

In the case of (C3), Mu always halts in step M4-2 or step M4-3 and outputs 
(5, T V . ,  conv) with the distribution identical to one in (P* ,  V). 

In the case of (Cl) ,  the following three cases are possible: (C1-1) Mu halts in 
step M4-2 or step M4-3 and outputs (z, TV. ,  conv); (Cl-2) MU halts in step M5-2 
or step M7-3 and outputs (2, T V -  , conv); and (Cl-3) Mu halts in step M7-4 and 
outputs (5, TV.,  cony}. In the case of (Cl-1), it is obvious that the distribution of 



200 

( 2 ,  T V . ,  conv) is identical to one in (P, V*) .  Note that P returns (PI, ,&, . . . , & 1 )  
iff every a, (1 5 d 5 1.1) is properly generated. From the polynomial time 
invertible property of the reduction from any L E "P to DHAM, it follows 
that every a, (1 5 i 5 111) is properly generated iff G = g(a1, az,. . . , crlZ.) is a 
Hamiltonian graph. Then in the case of (Cl-2), the distribution of (z,ry-, conv) 
is identical to one in (P ,V*) .  Let us consider the case that Mu in step M7-1 
finds bf # if for some f (1 5 e 5 n2).  We assume without loss of generality that 
bl = 0 and bl = 1. Then 

I I  
W t  = (a t ,  S l l ,  S12, * * * 7 s i n ) ;  

Wl = ((Z1,Jl), -f 'f ( 4,. ' I  
I.?. 

. . , (al,,jf), i L ,  1.. , is 7 ). 

From the assumption that bi = 0 and 6 1  = 1, it follows that wt passes the test 
in step M4-2 and 61 passes the test in step M6-3. Thus the Hamiltonian cycle 
H of G is given by 

H = ((qyq), q ' ( j : ) ) ,  (q'(:;), TT ' ( j i ) ) ,  . . . , (.;'(2';),a;'(j;))). 
From the polynomial time invertible property of the reduction from any L E n/F' 
to DHAM, it follows that y(G, H) = (PI, P 2 , .  . . ,&I; t l , t 2 , .  . . , t lz l)  and cri = 
f~ ( z , / ? , , t , )  (1 5 i 5 1x1). The T/O property of f~ guarantees that for every 
I E L, there does not exist r ,  s E (0,  1}'(lZl) such that f ~ ( z ,  0, r )  = f~(z, 1, s). 
Then p; = e; for each i (1 5 i 5 Izl) and thus in the case of (C1-3), the 
distribution of (z, rv-, conv) is identical to one in (P, V * ) .  

In the case of (C2), the following three cases are possible: (C2-1) Mu halts 
in step M 4 2  or step M4-3 and outputs (z, r y - ,  conv); (C2-2) Mu halts in step 
M5-2 or step M7-3 and outputs (z, T V = ,  conv); and (C2-3) Mu halts in step M7-4 
and outputs (I, TV. ,  conv). In a way similar to the case of (Cl) ,  we can show 
that in the cases of (C2-l), (C2-2), and (C2-3), the distribution of ( z , T v * ,  conv) 
is identical to one in (P,V*).  Then for any cheating verifier V', Mu on input 
z E L simulates (P, V*)  in a perfect zero-knowledge manner. 

Thus the interactive protocol (P ,  V )  is a two round perfect zero-knowledge 
proof for L if L induces a T/O bit commitment f ~ .  

6 Concluding Remarks 

From Theorem 18, it follows that any language L E 07 has an unbounded round 
perfect zereknowledge Arthur-Merlin proof. This however could be improved, 
because any language L E 07 has an WP-proof [8]. Then 

1. If a language L induces an O/T bit commitment, then does there exist a 
bounded round perfect zero-knowledge proof for the language L? 

To affirmatively solve this, a verifier will have to flip private coins, because 
Goldreich and Krawczyk [7] showed that there exists a bounded round (blackbox 
simulation) zero-knowledge Arthur-Merlin proof for L, then L E BP'P. 

Languages that induce O/T or T/O bit commitments might have diverse 
applications to many cryptographic protocols. Then 
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2. What is t h e  other application of languages that induce O/T or T/O bit 
commitments? 

Every known random self-reducible language [13], e.g., graph isomorphism, 
quadratic residuosity, etc. , induces an 0 /T bit commitment. Then finally 

3. For any language L, if L is random self-reducible, then does L induce an 
0 /T bit commitment? 
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