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Abstract. In this paper, we define two classes of languages, one induces
opaque/ftransparent bit commitments and the other induces transpar-
ent/opaque bit commitments. As an application of opaque/transparent
and transparent/opaque properties, we first show that if a language L in-
duces an opaque/transparent bit commitment, then there exists a prover-
practical perfect zero-knowledge proof for L, and we then show that if
a language L induces a transparent/opaque bit commitment, then there
exists a bounded round perfect zero-knowledge proof for L.

1 Introduction

A bit commitment is a two party (interactive) protocol between a sender S and
a receiver R in which after the sender S commits to a bit b € {0, 1} at hand,
(1) the sender S cannot change his mind in a computational or an information-
theoretic sense; and (2) the receiver R learns nothing about the bit b € {0,1} in a
computational or an information-theoretic sense. Bit commitments have diverse
applications to cryptographic protocols, especially to zero-knowledge proofs (see,
e.g., [6], [1], [11], [9], [4], etc). For simplicity, we assume that a bit commitment f
is noninteractive, i.e., the sender S sends to the receiver R only a single message
C. According to computational power of senders and receivers, bit commitments
can be classified into the following four possible types (see, e.g., [12]).

Power of Sender S | Power of Receiver R

Type A | poly-time bounded | poly-time bounded

Type B | poly-time bounded unbounded
Type C unbounded poly-time bounded
Type D unbounded unbounded

Feige and Shamir [6] used a bit commitment of Type A to show that any
language L € NP has a two round perfect zero-knowledge proof of knowledge.
Brassard, Chaum, and Crépean [1] and Naor et al [11] showed that any language
L € NP has a perfect zero-knowledge argument assuming the existence of a
bit commitment of Type B and Bellare, Micali, and Ostrovsky [4] showed that
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any honest verifier statistical zero-knowledge proof for a language L can be
transformed to a statistical zero-knowledge proof for the language L assuming
the existence of a bit commitment of Type B. In addition, Goldreich, Micali, and
Wigderson [9] used a bit commitment of Type C to show that any language L €
NP has a computational zero-knowledge proof. Now we look at the properties
required to bit commitments for each possible type above.

Assume that the sender S is computationally unbounded. If there exist r, s €
{0,1}* such that f(0,7) = f(1,s), then a cheating sender S* chooses r € {0, 1}*
to compute C' = f(0,r) and reveals 1 and s € {0,1}* to change his mind. Thus
any r, s € {0,1}* must satisfy that f(0,r) # f(1,s). Here we refer to such a bit
commitment f as transparent. Assume that the receiver R is computationally
unbounded. If the distribution of f(0,7) is apart from that of f(1,7), then a
cheating receiver R* might learn something about the value of the bit b € {0, 1}
only looking at C = f(b,7). Thus the distribuiions of f(0,7) and f(1,s) must
be almost identical. Here we refer to such a bit commitment f as opague.

If both the sender S and the receiver R are computationally unbounded, then
any bit commitment f must be transparent and opaque, however it is impossible
to algorithmically implement such a bit commitment. This implies that there
exists inherently no way of designing bit commitments of Type D. Thus only
possible way of doing this is to physically implement such a bit commitment. This
is referred to as an envelope. Assuming the existence of the envelope, Goldreich,
Micali, and Wigderson [9] showed that any language L. € A'P has a perfect zero-
knowledge proof and then Ben-Or et al [2] showed that any language L € IP
has a perfect zero-knowledge proof. The goal of this paper is to algorithmically
construct a bit commitment of Type D in a somewhat different setting.

In this paper, we consider the following framework: Our bit commitment f is
allowed to have an additional input z € {0,1}* and its property heavily depends
on the additional input = € {0,1}*. In this setting, we define two classes of
languages, one induces opaque/transparent bit commitments and the other in-
duces transparent /opaque bit commitments. Informally, a language I induces an
opaque/transparent bit commitment fy, if (1) for every z € L, the distribution of
fi(z,0,7) is identical to that of fL(z,1,7); and (2) for every z ¢ L, the distribu-
tion of f(x,0,7) is completely different from that of f1(z,1,r), and L induces a
transparent/opaque bit commitment f;, if L induces an opaque/transparent bit
commitment f7. Then we can show the following theorems:

Theorem 18: If a language L induces an opaque/transparent bit commit-
ment, then there exists a prover-practical perfect zero-knowledge proof for L.

Theorem 21: If alanguage L induces a transparent/opaque bit commitment,
then there exists a bounded round perfect zero-knowledge proof for L.

2 Preliminaries

Here we present several definitions necessary to the subsequent discussions.
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Definition1 [8]. Let L C {0,1}*. A probability ensemble {U(z)}:¢r is said to
be identical to a probability ensemble {V(z)}z¢r on L if for every z € L,

Z |Prob {U(z) = a} — Prob {V(z) = a}| = 0.
a€{o,1}"

Let k be a security parameter. Let g(b,7) be a polynomial (in k) time
computable function. A function g is a noninteractive bit commitment if af-
ter the sender S sends C = g(b,7) to the receiver R, (1) any cheating sender
S§* cannot change his mind, i.e., §* cannot reveal 7,5 € {0,1}" such that
C = g(0,7) = g(1,s); and (2) any cheating receiver B* learns nothing about
the bit b € {0, 1} only looking at C' = g(b,7). As a modification, let us consider
bit commitments in the following setting: Let L be a language and let £ be a
polynomial. Assume that fr(z,b,7) is a polynomial (in |z|) time computable
function for any b € {0,1} and any r € {0, 1}*(l=D,

Definition 2. A language L is said to induce an opaque/transparent (O/T for
short) bit commitment fr, if

~ opaque: for every z € L, the distribution of f;(z,0,r) is identical to that of
fi(z,1,7);

- transparent: for every z ¢ L, there do not exist r € {0, 1}"“’“ and s €
{0, 1}*¥U=D such that fL(z,0,7) = fr(z, 1, 5),

where k is a polynomial that gnarantees the security of fr.

The opaque/transparent property guarantees that for every € L, any all
powerful cheating receiver R* cannot guess better at random the value of the
bit b € {0,1} after receiving fr(z,b,r) from the sender S and for every z ¢
L, any all powerful cheating sender S* cannot change his mind after sending
fr(x,b,7) to the receiver R. Let OT be the class of languages that induce O/T
bit commitments. From Definition 2, it is clear that O7 C N'P.

Definition 3. A language L is said to induce a transparent/opaque (T/O for
short) bit commitment f;, if L induces an O/T bit commitment f7.

Contrary to the opaque/transparent property, the transparent/opaque prop-
erty guarantees that for every € L, any all powerful cheating sender S* cannot
change his mind after sending fr(z,b,7) to the receiver R and for every z ¢ L,
any all powerful cheating receiver R* cannot guess better at random the value
of the bit b € {0, 1} after receiving fr(z,b,7) from the sender S. Let TO be the
class of languages that induce T /O bit commitments. From Definitions 2 and 3,
it is obvious that co-7Q = 0T C N'P.

Definition 4 {8]. An interactive protocol (P, V) is an interactive proof system
for a language L if there exists an honest verifier V' that satisfies the following:

— completeness: there exists an honest prover P such that for every k£ > 0 and
for sufficiently large z € L, (P, V) halts and accepts z € L with probability
at least 1 — I.’L‘l_k, where the probabilities are taken over the coin tosses of

Pand V.
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— soundness: for every k > 0, for sufficiently large z ¢ L, and for any cheating
prover P*, (P*,V) halts and accepts = ¢ L with probability at most |z,
where the probabilities are taken over the coin tosses of P* and V.

It should be noted that the resource of P is computationally unbounded while
the resource of V is bounded by probabilistic polynomial (in |z|) time.

In the remainder of this paper, we assume that a term “zero-knowledge”
implies “blackbox simulation” zero-knowledge.

Definition 5 [10]. An interactive proof system (P, V) for a language L is said
to be (blackbox simulation) perfect zero-knowledge if there exists a probabilistic
polynomial time Turing machine My such that for any (cheating) verifier V* and
for sufficiently large z € L, the probability ensemble { My (z; V*)}.¢L is identical
to the probability ensemble {{P,V*)(z)};er on L, where M(:; A) denotes a
Turing machine with blackbox access to a Turing machine A.

From a practical purpose, Boyar, Fried], and Lund [3] defined a notion of
prover-practical (zero-knowledge) interactive proof systems.

Definition 6 [3]. An interactive proof system (P, V) for a language L € NP is
said to be prover-practical if the honest prover P runs in probabilistic polynomial
time and some trapdoor information on input z € L is initially written on the
private auxiliary tape of P.

Let A, B € NP and let g be a reduction from A to B, i.e., g is a polynomial
time computable function and for any z € {0, 1}*, z € A iff g(x) € B.

Definition 7 [6]. Let A,B € ANP. A reduction g from A to B is said to be
witness-preserving if there exists a polynomial time computable function A that
given a witness w for any z € A, h(z,w) is a witness for g(z) € B.

Definition 8 [6]. Let A,B € NP. A reduction g from A to B is said to be
polynomial time invertible if there exists a polynomial time computable function
~ that given a witness w’ for g(z) € B, v(g(z),w') is a witness for v € A.

3 Examples

It is obvious from the Definitions 2 and 3 that L € O7 iff L € TO. Thus we
only exemplify several languages that induce Q/T bit commitments.

For graphs G and H, we use G =~ H to imply that G is isomorphic to H and
use G 2 H to imply that G is not isomorphic to H.

Definition 9. For an integer h > 0, Universal Graph Isomorphism Tuple UGIT is
defined to be UGIT = {(h, (GS, G}),(G3, G}),...,(G9,GLY) | G? ~ G} for each
i (1<i<h)}

Definition 10. For an integer h > 0, Existential Graph Isomorphism Tuple EGIT
is defined to be EGIT = {{h, (G3,G1), (G2, GL),..., (G GLY) | G? ~ G} for
some i (1 <1< h)}. ,
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Definition 11. Let N = p{'p3? ---p;* be the prime factorization of N. Define
¢cMODd to be N € cMODJ if and only if p; = ¢ (mod d) for each i (1 < i < k).

In the following, we show that the languages UGIT, EGIT, and 1MOD4
induce O/T bit commitments fucrr, fearT, and fimoDs, respectively.

Lemmal12. The language UGIT induces an O/T bit commitment fugrr.

Proof: For z = {h, (G3, G1),(G3,GY),..., (GS,GL)), let V; (1 < i < h) be a set
of vertices for G? and G}, and let & € {0,1} be a bit that a sender S wishes
to send to a receiver R. Here we define a bit commitment fygrr for UGIT as
follows: For each 1 (1 < i < h), S chooses 7; €g Sym(V;). Then S computes a
graph H; = 7;(G?) and sends (H;, H,, ..., Hy) to R.

Assume that z € UGIT. It follows from Definition 9 that G? ~ G} for each
i (1 <1 < h). Then the distribution of (Hy, Ha,..., Hy) for b = 0 is identical
to that of (Hy, Hs,...,Hy) for b = 1. Assume that z ¢ UGIT. It follows from
Definition 9 that there exists at least an iy (1 < 49 < &) such that G’?O * G}o.
This implies that Tiu(G?,,) # <pgn(G}o) for any #;,, i, € Sym(V;,). Then for any
7ir i € Sym(Vi) (1< < h),

Juarr(e, 0, (71, 72, ..., Th)) # fuarr(z, 1, (@1, 92, . .-, @a))-
Thus the language UGIT induces an O/T bit commitment fyugrr. |

For an integer A > 0, define Universal Quadratic Residuosity Tuple UQRT to
be UQRT = {{h, (z1, N1),...,{zn, Np}} | z: is a square modulo N; for each 1
(1 <1 < h)}. Then in a way similar to Lemma 12, we can show the following:

Lemma13. The language UQRT induces an O/T bit commitment fuqQrr-
Let us proceed to show the other examples.
Lemma 14. The language EGIT induces an O/T bit commitment fgarT-

Proof: Let z = (h, (G%, G1), (G3,G1),...,(GS,G1)) and let V; (1 < i < h) be
a set of vertices for G¥ and Gl. Let b € {0,1} be a bit that a sender S wishes
to send to a receiver RB. Here we define a bit commitment fggrr for EGIT as
follows: For each ¢ (1 < i < h), S first chooses e; €r {0,1} and x; €g Sym(V;).
Then S computes c = e; +e3+--- +ep + b (mod 2) and a graph H; = x;(G;')
(1 €4 < k) and sends {c, Hy, H, ..., H) to R.

Assume that x € EGIT. It follows from Definition 10 that there exists at
least an ip (1 < ip < h) such that G? =~ G} . Then on that position ip (1 <
io < h), the distribution of 7;, (G2 ) is identical to that of x;,(G}, ). This implies
that the distribution of (¢, Hy,Ha,..., Hs) for b = 0 is identical to that of
(c, H1,Ha,...,Hy) for b = 1. Assume that & ¢ EGIT. It follows from Definition
10 that for every i (1 < i < A), G? # G}. Then for any ¢;,d; € {0,1} and
7,05 € Sym(Vi) (1< i < h),

fearr(#,0, (e, ... en ), (71,. .., ) # feGrr(z, L{d1, ... do )i (@1, -1 08)):
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Thus the language EGIT induces an O/T bit commitment fegrr. .

For an integer A > 0, define Existential Quadratic Residuosity Tuple EQRT to
be EQRT = {(h,{z1, N1},...,{(zr, 1)) | z; is a square modulo N; for some i

(1 €% < h)}. Then in a way similar to Lemma 14, we can show the following;

Lemmal5. The language EQRT induces an O/T bit commitment fugnr.
The final example has different flavor from those of the examples above.

Lemma16. The language IMOD4 induces an OfT bit commitment fimopa.

Proof: Let z = pj'p3* - - p;* be the prime factorization of z. Let b € {0,1} be
a bit that a sender S wishes to send to a receiver R. Define a bit commitment
fimopa for 1IMOD4 as follows: First S chooses r €gr Z. Then S computes
¢ = (—1)*7% (mod z) and sends ¢ € Z* to R. It should be noted that —1is a
square modulo z if and only if z € IMODA4.

Assume that £ € 1IMOD4. From Definition 11 and the fact that —1 is a
square modulo z, it follows that ¢ € Z; is always a square modulo z regardless
of the value of b € {0, 1}. This implies that the distribution of c € Z* forb = 0 is
tdentical to that of c € Z} for b = 1. Assume that z ¢ IMODA4. From Definition
11 and the fact that —1 is not a square modulo z, it follows that for any » € Z},
¢ = (—=1)!r? (mod z) is a square modulo z if and only if b = 0. Then for any
1,8 € 27, fimona(,0,7) £ fimopa(z, 1, s). Thus the language IMOD4 induces
an O/T bit commitment f;pmopa- u

It is easy to show that (1) 2 € Z} is a square modulo N if and only if
N € £1MODS; (2) 3 € Z}; is a square modulo NV if and only if ¥ € 1MOD12;
and (3) 5 € Z; is a square modulo N if and only if N € +1MODS5. Then in a
way similar to Lemma 16, we can show the following:

Lemmal7. The languages £1IMODS8, £1MODI12, and £1MODS5 induce O/T
bit commitments fiimoDs, f+1MoD12, and fxiMoDs, respectively.

4 Opaque/Transparent Bit Commitments

Assume that a language L induces an O/T bit commitment f;. Now let us
consider the interactive protocol (A, B} on input z € {0,1}*: (A1) A chooses
b €r {0,1} and r € {0, 1}*U=D and sends « = fr(z,b,7) to B; (B1) B chooses
e €g {0,1} and sends e € {0,1} to A; (A2) A sends to B o € {0,1}*(=D such
that o = fr(z,e,0); and (B2) B checks that a = fi(=z,e,0). After n = |«|
independent invocations from step Al to step B2, V accepts = € {0,1}* if and
only if every check in step B2 is successful.

By the opaque/transparent property of fr, we can show in almost the same
way as the case of random self-reducible languages [13] that L has a perfect
zero-knowledge proof. In the protocol {4, B}, however, A needs to evaluate ¢ €
{0,1}*U=D such that @ = fr(z,e,0) for each iteration. Thus in general, (A, B)
could not be prover-practical. In this section, we show a stronger result, i.e., L
has a prover-practical perfect zero-knowledge proof.
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Theorem 18. If a language L induces an O/T bit commitment, then there exists
a prover-practical perfect zero-knowledge proof for the language L.

Proof: Let fr be an O/T bit commitment induced by a language L. From
Definition 2, we have an A"P-statement below:

z el <= Irse {01140 st. f1(2,0,7) = fr(z,1,5). (1)
Let us consider the following interactive protocol (P, V) for L.

Interactive Protocol (P, V) for L

common input: z € {0, 1}*.

P0O-1: P reduces an A'P-statement of Eq.(1) to a directed Hamiltonian
graph G = (V, E), where |V| = n = |z|° for some constant ¢ > 0.
P0-2: P defines an adjacency matrix Ag = (aij) of G = (V, E).
VO-1: V reduces an NP-statement of Eq.(1) to a directed Hamiltonian
graph G = (V, E), where |V| = n = |z|° for some constant c > 0.
V0-2: V defines an adjacency matrix Ag = (ai;) of G = (V, E).
P1-1: P chooses 7 €r Sym(V) and si; €r {0,1}*0=D (1 < 4,5 <n).
P1-2: P computes Cij = fL(.'L', D (iYx ()1 s,-j).
P-oV:C=(c;)(1<4,5<n).
V1: V chooses e €g {0,1}.
V — P: e€ {0,1}.
P2-1: For e = 0, P assigns (7, 811,...,3n5) to w.
P2-2: For e = 1, P assigns ({11,71),- - {fn+Jn )y Sigjur- -+ Sinja) to w such
that {11, 71),...,{tn,Jn) is a single cycle.
P-V: w
V2-1: For e = 0, V checks that ¢;; = fL(Z, Gx(i)x(;), 8i;) for each 1,7 (1 <
5,j <n)
V2-2: For e = 1, V checks that {i1,71),...,{fn,Jn) is indeed a single cycle
and that ¢; ;= fr(z,1,s,,;, ) for each m (1 < m < n).

After n = |V| independent invocations from step P1-1 to step V2-2, V accepts
z € {0,1}* if and only if every check in step V2-1 and step V2-2 is successful.

We show that the protocol (P, V) is a prover-practical perfect zero-knowledge
proof for the language L if L induces an O/T bit commitment fg.
Completeness: If L induces an O/T bit commitment f, then L € NP, i.e.,

z € L <= 3r,5 € {0, 1}"“‘“ s.t. fr(2,0,7) = fr(z,1, s).

Assume that for the common input z € L to (P,V}, the honest prover P has
r,s € {0,1}*42D guch that f(«,0,7) = fr(z,1,s). Since the reduction from
any L € NP to a directed Hamiltonian graph (DHAM) is known to be witness-
preserving, P can compute in polynomial (in |z|) time a Hamiltonian cycle H of
G = (V,E) in step PO-1. Then P can execute in polynomial (in |z|) time every
process of (P, V). It is obvious that P always causes V to accept z € L.
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Soundness: From Eq.(1), it follows that for any ¢ ¢ L, there does not exist
7,5 € {0, 1} such that f1(x,0,7) = fr(z, 1, s). This implies that G = (V, E)
generated in step V0-1 is not a Hamiltonian graph. We show the soundness
condition of {P, V') by contradiction. Assume that for some ko > 0 and infinitely
many r ¢ L, there exists a cheating prover P* that causes V to accept z ¢ L with
probability at least |z| 7%, Let L’ C T be an infinite set of such = ¢ L. Then from
a standard analysis (see, e.g., [5]), it follows that there must exist C' = (c;;) that
passes both tests in steps V2-1 and V2-2. We note that for any z € L', there do
not exist 7, s € {0, 1}*U2D such that f1,(x,0,7) = f(z, 1, s). This implies that P*
cannot change his mind after step P1-2 even if P* is infinitely powerful. To pass
the test in step V2-1, C = (ci;) must be an encoding of a non-Hamiltonian graph
G = (V, E) generated in step V0-1, while to pass the test in step V2-2, C = (ci)
must be an encoding of a Hamiltonian graph G = (V, E). This contradicts the
assumption that G = (V, E) generated in step V0-1 is not a Hamiltonian graph.
Then for each k& > 0 and sufficiently large = ¢ L, any cheating prover P* causes
V to accept z ¢ L with probability at most |z|~*.

Perfect Zero-Knowledgeness: This can be shown in a way similar to the case of

random self-reducible languages [13]. The construction of My for any cheating
verifier V* is as follows:

Construction of My

common input: z € L.

MO-1: count := 0; and conv := ¢, where ¢ is a null string,.

MO0-2: My provides V* with ry« as random coin tosses for V*.

MO0-3: My simulates steps P0O-1 and P0-2.

M1-1: My chooses a €r {0, 1}.

M1-2: My chooses an n vertex random cycle of which adjacency matrix is
H = (h,’)

M2-1: If @ = 0, then My simulates steps P1-1 and P1-2.

M2-2: If @ = 1, then My chooses s5;; €gr {0,1}"“‘” and computes c;; =
F (2, hij, 3i5)-

M3: My runs V* on input (z,rv., conv,C) to generate e.

M4-1: If e ¢ {0,1}, then My halts and outputs (z,rv., conv||(C,e)), where
z||y denotes the concatenation of strings z,y € {0, 1}*.

M4-2: If e # a, then go to step M1-1.

M4-3: If ¢ = o, then My simulates steps P2-1 and P2.2 depending on « €
{0, 1}.

Ms5-1: My sets conv := conv||{(C, e, w} and count := count + 1.

M5-2: If count < n, then go to step M1-1; otherwise My; halts and outputs
(z, rv=, conv).

Note that for any = € L, the distribution of f1(z,0,7) is identical to that of
fr(z,1,7). This implies that the distribution of fr(z,ar()x(j),sij) is identical
to that of fr(z, hij, sij) for every £ € L. Then the probability that ¢ = o in
step M4-3 is ezactly 1/2. Since My iterates n = |z| times the procedure from
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step M1-1 to step M5-2, My runs in expected polynomial (in |z|) time. Note
again that for every z € L, the distribution of f7(x,0,7) is identical to that
of fr(z,1,r). Then the probability ensemble {{P, V*)(z)},¢L is identical to the
probability ensemble {My(z; V*}}.eL on L.

Thus the protocol (P, V) is a prover-practical perfect zero-knowledge proof
for L if L induces an O/T bit commitment fr. |

For a language L € NP, define a polynomial time computable relation Ry,
to be (z,y) € Ry if and only if p(z,y) = true, where p is a polynomial (in |z|)
time computable predicate that witnesses the language L € A"P. As immediate
corollaries to Theorem 18, we can show the following:

Corollary 19 (to Theorem 18). Let L be N'P-complete. If the language L in-
duces an OfT bit commitment, then the polynomial time hierarchy collapses.

Corollary 20 (to Theorem 18). If a language L induces an O/T bit commit-
ment, then there exists a perfect zero-knowledge proof of knowledge for Ry, .

5 Transparent/Opaque Bit Commitments

Here we consider the case that L induces a T /O bit commitment (see Definition
3), and show that if a language L induces a T/O bit commitment, then there
exists a bounded round perfect zero-knowledge proof for L.

Theorem 21. If a language L tnduces a T/O bit commitment, then there exists
a two round prefect zero-knowledge proof for the language L.

Proof: Let L be a language that induces a T/O bit commitment fr. Here we
overview the outline of the protocol (P, V) for L. Let z € {0,1}* be a common
input to {P, V). For each i (1 < i < |z|), V chooses e; €r {0,1},7; €g {0, 1}*U=D
and computes o; = fr(z,€;,7;). Then V reduces the following A 'P-statement,

[}
dey, eq,..., e|,|3r1, T2ye0y Tz} S /\ o; = fL(.'L', €, T,‘), (2)

i=1

to a directed Hamiltonian graph G = (V, E), where |V| = |z|* for some constant
d > 0. Let H be a Hamiltonian cycle of G. From the witness-preserving property
of the reduction from any L € AP to DHAM, there exist polynomial time
computable functions g and % that satisfy

G= 9(011, xa,.. 'va|1|);

H = h({a1, 02, ., 0g))s (€1, €2, - o5 €271, T2, - -+ Tp)))-

Here V generates many random copies of G and commits to them with the T/O
bit commitment fr. After these preliminary steps, V shows to P that V knows
the Hamiltonian cycle H of G. If V succeeds to convince P, then P shows to V
that P knows ey, ez,..., €|y
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Interactive Protocol (P, V) for L

common input: z € {0, 1}*.

V chooses e; €p {0,1} and 7; €g {0,1}*07D for each i (1 < i < [z]).
V computes a; = fr(z, e, 7).

V computes G = g(oy,...,|;), ie., V reduces the N'P-statement
of Eq.(2) to a directed Hamiltonian graph G = (V, E), where |V| =
n = |z|* for some d > 0.

V defines an adjacency matrix Ag = (a;j) of G = (V, E).

V computes H = h({ay, ..., ¥z}, (€1, -1 €jz]3 T1yr « + s Tig)) ) Where H
is one of Hamiltonian cycles of G = (V, E).

V chooses 7, € Sym(V) (1 < ¢ < #?) and s¥; €r {0, 1}40eD (1 <
L,J €n).

V computes cfj = fLl®, ax Gyx, ) sfj ).

(o1, 02,y o)y (k) (SB), o (eB))) (1 < 4,5 < m).

P chooses b; €g {0, 1} for each £ (1 < £ < »?).

{b1,b2y ... baa) € {0,1}"".

If b, =0(1 << n?), V assigns (n,sln, sio,..,55,) to wy.

If by =1 (1 <£<n?),V assigns

to wy such that {i¢, 51}, (54, 34), ..., (14, 7¢) is a single cycle.

('wl, Wy ooy w,,z).

P computes G = g(ay,@2,..., ;) and an adjacency matrix Ag =
(a,‘j) of G.

For each by = 0 (1 < ¢ < 2?), if cfj = fr(=, an(,-)"u),sfj) for each
i,7 (1 <i,j < n), then P continues; otherwise P halts and rejects
z € {0,1}*.

For each b, = 1 (1 < € < n?), if (i4, 7¥), (15, 38), ..., (i, jL) is indeed
a single cycle and cff..j‘ = fr(z, l,sf, it ) for each m (1 < m < ),
then P continues; otherwise P halts and rejects z € {0, 1}*.

If there exist 8; € {0,1},% € {0,1}*4sD such that o; = fr(z, B, 1)
for every i (1 < i < |z|), then P continues; otherwise P halts and
rejects z € {0, 1}*.

(,Bl’ ﬂ?v LERR} :B|1:|)

If B; = e; for every i (1 < i < |z|), then V halts and accepts ¢ €
{0, 1}*; otherwise V halts and rejects = € {0, 1}*.

Now we turn to show that if L induces a T/O bit commitment fz, then the
protocol (P, V) for L is a two round perfect zero-knowledge proof for L.

Completeness: Assume here that z € L. If V follows the protocol above, then
G = (V,E) is always a Hamiltonian graph. From the T/O property of fz, it
follows that for every = € L, there does not exist ,s € {0, l}kq") such that

.fL(x1 0’ T)

= fr(z,1,s). Thus for each i (1 < ¢ < |z|), P can find in step P2-4 a
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unique B; € {0,1} such that o; = fr(z, e, 1) for some t; € {0,1}*sV. Then V
always halts and accepts =z € L in step V3.

Soundness: Assume that z ¢ L. Define an interactive protocol {4, B} for
L € OT tobe on input z € {0,1}* (1) A (resp. B) plays the role of V (resp. P);
and (2) (4, B) simulate (P, V} except that the process from step V1-6 to step
P2-3 in (P, V) is executed in serial.

From the T/O property of f1, it follows that for every ¢ L, the distribution
of fr(z,0,7) is identical to that of fr(z,1,s). Then the protocol (A, B} can be
simulated in a perfect zero-knowledge manner for every x ¢ L by using the
resettable simulation technique [9]. It turns out that the subprotocol of (P, V),
from step V1-6 to step P2-3, is perfectly witness indistingutshable [6], because it
can be regarded as the parallel composition of the protocol (4, B) by exchanging
the roles of A and B. Then in the protocol {P, V), any cheating P* cannot guess
better at random the value of e; € {0,1} for each ¢ (1 < i < |z|). Thus for each
k > 0 and sufficiently large = ¢ L, any cheating prover P* causes V to accept
z ¢ L with probability at most |z|—k.

Perfect Zero-Knowledgeness: This can be shown in almost the same way as the
case of graph nonisomorphism [9]. From the polynomial time invertible property
of the reduction from any L € NP to DHAM, there exist polynomial time
computable functions g and v that satisfy

g(ali e 1a|z|) = G; 'Y(G, H) = <ﬂ1, ---$ﬂ|x|;tlw .- at|z|)1

where H is one of Hamiltonian cycles of G and o; = fr(z,0;,t;) for each 1
(1 <1 < |z|). Here we use H, to denote the t-th (n-vertex) single cycle for each
t (1 < ¢ < n!) in the lexicographic order. Then the construction of My for any
cheating verifier V* is as follows:

Construction of My

common input: z € L.

MO-1: ¢ount := 1; and conv := &, where ¢ is a null string.

MO0-2: My provides V* with ry- as random coin tosses for V*. s

M1-1: My runs V* on input z, rv- to generate {o1,..., o), ((c}j), (el )).

M1-2: conv := conv|{{a1,... o) {(ch)y- - (3 )))-

M2: My chooses b; € {0,1} for each £ (1 < £ < 2?).

M3-1: My runs V* on input &, ry-, (b1, b2,...,bs1) to generate (wy,...,wy2).

M3-2: conv := conv||{{b1,...,ba2), {w1,..., wy2}).

M4-1: My computes G = g(o1,...,x|;) and an adjacency matrix Ag = (a;;)
of G.

M4-2: For each b, = 0 (1 < £ < n?), if cfj = SL(T, @ (iyny(j)r 55) for each 4, j
(1 < 1,7 < n), then My continues; otherwise My halts and outputs
(z,rve,conv).

M4-3: For each b, = 1 (1 < £ < n?),if (&4, 78), (¢4,58), ..., (i1, j%) is indeed a
single cycle and cf‘...i.‘. = fr(=, l’sff..if..) for each m (1 < m < n), then
My continues; otherwise My halts and outputs {(z,ry., conv).
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M5-1: My resets V* to the state of step M1-2.
M5-2: If count > n!, then My halts and outputs (z, rv-, conv).
M5-3: If Hcount is a Hamiltonian cycle of G, then H := H gynt and go to

step M7-2.
M5-4: My chooses by €g {0, 1} for each £ (1 < ¢ < n?).
M6-1: My runs V* on input z,7y-, {b1,...,b,3) to generate (W1, ..., wWas).

M6-2: For each b, = 0 (1<t <na?),if cfj = fr(=, a;‘(,-).;‘(j),.ifj) for each 1,3
(1 €14,7 < n), then My continues; otherwise count := count + 1 and
go to step M5-1.

M6-3: For each b, = 1 (1 € £<a2), i (1,75, (15,78), ..., (4, 7) is a single
cycle and cfl e = fi(z, 1, E'f.l 5 ) for each m (1 < m < n), then My
continues; otherwise count := count + 1 and go to step M5-1.

M7-1: If b, # b; for some £ (1 < { < n?), then My computes a Hamiltonian
cycle H of G = (V, E) from w; and #,; otherwise count := count +1
and go to step M5-1.

M7-2: My computes (81,2, .., Biz|i t1y t2, -+, o)) = ¥(G, H).

M7-3: If o; = fr(=z,06;,t) for every i (1 < 1 < |z]), then set conv :=
conv||(f1, B2, .., B)s)); otherwise My halts and outputs {(z, rv-, conv).

M7-4: My halts and outputs {z,ry., conv).

We first show that My terminates in expected polynomial (in |z|) time for
any cheating verifier V*. Define K C {0,1}*" to be a subset of (b1, by,...,ba1) €
{0, 1}": for which V* passes the tests in steps M4-2 and M4-3. Then the following
three cases are possible: (C1) ||K|| > 2; (C2) |K|| = 1; and (C3) ||K]|| = 0, where
||A|| denotes the cardinality of a finite set A.

In the case of (C1), the expected number Ic; of invocations of V* satisfies

<1+ . =14 +——-<
IC]. -— 2u2 2n2 1 ”K“ 1 -— 3

In the case of (C2), the probability that V* passes the tests in steps M4-2 and
M4-3 is exactly 2= Then My halts and outputs {z, 7y-, conv) in step M4-2 or
M4-3 with probability 1 — 2~ I V* passes the tests in steps M4-2 and M4-3,
then My must exhaustively searches a Hamiltonian cycle H of G at most in n!
steps. Thus it turns out that the expected number I, of invocations is bounded
by Ice = 142" . n! < 2. In the case of (C3), My always halts and outputs
(%, v+, conv) with a single invocation of V*. Thus My, terminates in expected
polynomial (in |z|) time for any cheating verifier V*.

We then show that for any verifier V*, My on any input x € L simulates the
real interactions between P and V* in a perfect zero-knowledge manner.

In the case of (C3), My always halts in step M4-2 or step M4-3 and outputs
{z,rv-, conv) with the distribution identical to one in {P*, V).

In the case of (C1), the following three cases are possible: (C1-1) My halts in
step M4-2 or step M4-3 and outputs (z, 7y, conv); (C1-2) My halts in step M5-2
or step M7-3 and outputs (z, ry-,conv); and (C1-3) My halts in step M7-4 and
outputs {z, rv., conv}. In the case of (C1-1), it is obvious that the distribution of
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(z, v+, conv) is identical to one in (P, V*). Note that P returns {8, 53, ..., fj|)
iff every a; (1 < i < |z|) is properly generated. From the polynomial time
invertible property of the reduction from any L € NP to DHAM, it follows
that every o; (1 < i < |z|) is properly generated iff G = g(a1,02,...,0,) s a
Hamiltonian graph. Then in the case of (C1-2), the distribution of {z, 7y ., conv)
is identical to one in (P, V*). Let us consider the case that My in step M7-1
finds by # I;é for some £ (1 < £ < n?). We assume without loss of generality that
b[ =0 and bl = 1. Then

wy = (n,sﬁl,sig,...,slnn);
Wy = (24, 75), (5, 78), ., (i, 58), 88 . L& . L 8L )

! it taln
From the assumption that b, = 0 and &; = 1, it follows that w;, passes the test
in step M4-2 and 1, passes the test in step M6-3. Thus the Hamiltonian cycle
H of G is given by

H o= ((x7 GDmg GOl Axg @) m Gl o (o @77 (GRD)-

From the polynomial time invertible property of the reduction from any L € NP
to DHAM, it follows that ¥(G,H) = (61, 82,---, Bz; 1 t2,- - -1 1)) and o =
fo(z,Bi,t) (1 < i < |z|). The T/O property of f; guarantees that for every
z € L, there does not exist 7,5 € {0, 1}*(=D such that fr(z,0,7) = fr(z,1,s).
Then B; = e; for each i (1 < 7 < |z|) and thus in the case of (C1-3), the
distribution of {z,7y., conv) is identical to one in (P, V*).

In the case of (C2), the following three cases are possible: (C2-1) My halts
in step M4-2 or step M4-3 and outputs (z, rv-, conv); (C2-2) My halts in step
M5-2 or step M7-3 and outputs {x, ry-, conv); and (C2-3) My halts in step M7-4
and outputs (z,ry-,conv). In a way similar to the case of (C1), we can show
that in the cases of (C2-1), (C2-2), and (C2-3), the distribution of (z,ry~, conv)
is identical to one in {P,V*}. Then for any cheating verifier V*, My on input
z € L simulates (P, V*) in a perfect zero-knowledge manner.

Thus the interactive protocol (P, V) is a two round perfect zero-knowledge
proof for L if L induces a T/O bit commitment fz. |

6 Concluding Remarks

From Theorem 18, it follows that any langnage L. € OT has an unbounded round
perfect zero-knowledge Arthur-Merlin proof. This however could be improved,
because any language L € OT7 has an N'P-proof [8]. Then

1. If a langnage L induces an O/T bit commitment, then does there exist a
bounded round perfect zero-knowledge proof for the language L?

To affirmatively solve this, a verifier will have to flip private coins, because
Goldreich and Krawczyk [7] showed that there exists a bounded round (blackbox
. simulation) zero-knowledge Arthur-Merlin proof for L, then L € BPP.
Languages that induce O/T or T/O bit commitments might have diverse
applications to many cryptographic protocols. Then
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2. What is the other application of languages that induce O/T or T/O bit
commitments?

Every known random self-reducible language [13], e.g., graph isomorphism,

quadratic residuosity, etc., induces an O/T bit commitment. Then finally

3. For any language L, if L is random self-reducible, then does L induce an
O/T bit commitment?
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