Language Dependent Secure Bit Commitment

Toshiya Itoh ${ }^{1} \quad$ Yuji Ohta ${ }^{1} \quad$ Hiroki Shizuya ${ }^{2}$
${ }^{1}$ Department of Information Processing, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 227, Japan.
${ }^{2}$ Education Center for Information Processing, Tohoku University, Kawauchi, Aoba-ku, Sendai 980, Japan.

Abstract

In this paper, we define two classes of languages, one induces opaque/transparent bit commitments and the other induces transparent/opaque bit commitments. As an application of opaque/transparent and transparent/opaque properties, we first show that if a language L induces an opaque/transparent bit commitment, then there exists a proverpractical perfect zero-knowledge proof for L, and we then show that if a language L induces a transparent/opaque bit commitment, then there exists a bounded round perfect zero-knowledge proof for L.

1 Introduction

A bit commitment is a two party (interactive) protocol between a sender S and a receiver R in which after the sender S commits to a bit $b \in\{0,1\}$ at hand, (1) the sender S cannot change his mind in a computational or an informationtheoretic sense; and (2) the receiver R learns nothing about the bit $b \in\{0,1\}$ in a computational or an information-theoretic sense. Bit commitments have diverse applications to cryptographic protocols, especially to zero-knowledge proofs (see, e.g., [6], [1], [11], [9], [4], etc). For simplicity, we assume that a bit commitment f is noninteractive, i.e., the sender S sends to the receiver R only a single message C. According to computational power of senders and receivers, bit commitments can be classified into the following four possible types (see, e.g., [12]).

	Power of Sender S	Power of Receiver R
Type A	poly-time bounded	poly-time bounded
Type B	poly-time bounded	unbounded
Type C	unbounded	poly-time bounded
Type D	unbounded	unbounded

Feige and Shamir [6] used a bit commitment of Type A to show that any language $L \in \mathcal{N} \mathcal{P}$ has a two round perfect zero-knowledge proof of knowledge. Brassard, Chaum, and Crépeau [1] and Naor et al [11] showed that any language $L \in \mathcal{N P}$ has a perfect zero-knowledge argument assuming the existence of a bit commitment of Type B and Bellare, Micali, and Ostrovsky [4] showed that
any honest verifier statistical zero-knowledge proof for a language L can be transformed to a statistical zero-knowledge proof for the language L assuming the existence of a bit commitment of Type B. In addition, Goldreich, Micali, and Wigderson [9] used a bit commitment of Type C to show that any language $L \in$ $\mathcal{N P}$ has a computational zero-knowledge proof. Now we look at the properties required to bit commitments for each possible type above.

Assume that the sender S is computationally unbounded. If there exist $r, s \in$ $\{0,1\}^{k}$ such that $f(0, r)=f(1, s)$, then a cheating sender S^{*} chooses $r \in\{0,1\}^{k}$ to compute $C=f(0, r)$ and reveals 1 and $s \in\{0,1\}^{k}$ to change his mind. Thus any $r, s \in\{0,1\}^{k}$ must satisfy that $f(0, r) \neq f(1, s)$. Here we refer to such a bit commitment f as transparent. Assume that the receiver R is computationally unbounded. If the distribution of $f(0, r)$ is apart from that of $f(1, r)$, then a cheating receiver R^{*} might learn something about the value of the bit $b \in\{0,1\}$ only looking at $C=f(b, r)$. Thus the distributions of $f(0, r)$ and $f(1, s)$ must be almost identical. Here we refer to such a bit commitment f as opaque.

If both the sender S and the receiver R are computationally unbounded, then any bit commitment f must be transparent and opaque, however it is impossible to algorithmically implement such a bit commitment. This implies that there exists inherently no way of designing bit commitments of Type D. Thus only possible way of doing this is to physically implement such a bit commitment. This is referred to as an envelope. Assuming the existence of the envelope, Goldreich, Micali, and Wigderson [9] showed that any language $L \in \mathcal{N P}$ has a perfect zeroknowledge proof and then Ben-Or et al [2] showed that any language $L \in \mathcal{I P}$ has a perfect zero-knowledge proof. The goal of this paper is to algorithmically construct a bit commitment of Type D in a somewhat different setting.

In this paper, we consider the following framework: Our bit commitment f is allowed to have an additional input $x \in\{0,1\}^{*}$ and its property heavily depends on the additional input $x \in\{0,1\}^{*}$. In this setting, we define two classes of languages, one induces opaque/transparent bit commitments and the other induces transparent/opaque bit commitments. Informally, a language L induces an opaque/transparent bit commitment f_{L} if (1) for every $x \in L$, the distribution of $f_{L}(x, 0, r)$ is identical to that of $f_{L}(x, 1, r)$; and (2) for every $x \notin L$, the distribution of $f_{L}(x, 0, r)$ is completely different from that of $f_{L}(x, 1, r)$, and L induces a transparent/opaque bit commitment f_{L} if \bar{L} induces an opaque/transparent bit commitment $f_{\bar{L}}$. Then we can show the following theorems:
Theorem 18: If a language L induces an opaque/transparent bit commitment, then there exists a prover-practical perfect zero-knowledge proof for L.

Theorem 21: If a language L induces a transparent/opaque bit commitment, then there exists a bounded round perfect zero-knowledge proof for L.

2 Preliminaries

Here we present several definitions necessary to the subsequent discussions.

Definition 1 [8]. Let $L \subseteq\{0,1\}^{*}$. A probability ensemble $\{U(x)\}_{x \in L}$ is said to be identical to a probability ensemble $\{V(x)\}_{x \in L}$ on L if for every $x \in L$,

$$
\sum_{\alpha \in\{0,1\}^{*}}|\operatorname{Prob}\{U(x)=\alpha\}-\operatorname{Prob}\{V(x)=\alpha\}|=0
$$

Let k be a security parameter. Let $g(b, r)$ be a polynomial (in k) time computable function. A function g is a noninteractive bit commitment if after the sender S sends $C=g(b, r)$ to the receiver R, (1) any cheating sender S^{*} cannot change his mind, i.e., S^{*} cannot reveal $r, s \in\{0,1\}^{k}$ such that $C=g(0, r)=g(1, s)$; and (2) any cheating receiver R^{*} learns nothing about the bit $b \in\{0,1\}$ only looking at $C=g(b, r)$. As a modification, let us consider bit commitments in the following setting: Let L be a language and let k be a polynomial. Assume that $f_{L}(x, b, r)$ is a polynomial (in $|x|$) time computable function for any $b \in\{0,1\}$ and any $r \in\{0,1\}^{k(|x|)}$.
Definition 2. A language L is said to induce an opaque/transparent (O / T for short) bit commitment f_{L} if

- opaque: for every $x \in L$, the distribution of $f_{L}(x, 0, r)$ is identical to that of $f_{L}(x, 1, r)$;
- transparent: for every $x \notin L$, there do not exist $r \in\{0,1\}^{k(|x|)}$ and $s \in$ $\{0,1\}^{k(|x|)}$ such that $f_{L}(x, 0, r)=f_{L}(x, 1, s)$,
where k is a polynomial that guarantees the security of f_{L}.
The opaque/transparent property guarantees that for every $x \in L$, any all powerful cheating receiver R^{*} cannot guess better at random the value of the bit $b \in\{0,1\}$ after receiving $f_{L}(x, b, r)$ from the sender S and for every $x \notin$ L, any all powerful cheating sender S^{*} cannot change his mind after sending $f_{L}(x, b, r)$ to the receiver R. Let $\mathcal{O T}$ be the class of languages that induce O / T bit commitments. From Definition 2, it is clear that $\mathcal{O T} \subseteq \mathcal{N} \mathcal{P}$.

Definition 3. A language L is said to induce a transparent/opaque (T / O for short) bit commitment f_{L} if \bar{L} induces an $0 / T$ bit commitment $f_{\bar{L}}$.

Contrary to the opaque/transparent property, the transparent/opaque property guarantees that for every $x \in L$, any all powerful cheating sender S^{*} cannot change his mind after sending $f_{L}(x, b, r)$ to the receiver R and for every $x \notin L$, any all powerful cheating receiver R^{*} cannot guess better at random the value of the bit $b \in\{0,1\}$ after receiving $f_{L}(x, b, r)$ from the sender S. Let $\mathcal{T O}$ be the class of languages that induce T/O bit commitments. From Definitions 2 and 3, it is obvious that $\operatorname{co} \mathcal{T O}=\mathcal{O} T \subseteq \mathcal{N P}$.

Definition 4 [8]. An interactive protocol $\langle P, V\rangle$ is an interactive proof system for a language L if there exists an honest verifier V that satisfies the following:

- completeness: there exists an honest prover P such that for every $k>0$ and for sufficiently large $x \in L,\langle P, V\rangle$ halts and accepts $x \in L$ with probability at least $1-|x|^{-k}$, where the probabilities are taken over the coin tosses of P and V.
- soundness: for every $k>0$, for sufficiently large $x \notin L$, and for any cheating prover $P^{*},\left\langle P^{*}, V\right\rangle$ halts and accepts $x \notin L$ with probability at most $|x|^{-k}$, where the probabilities are taken over the coin tosses of P^{*} and V.

It should be noted that the resource of P is computationally unbounded while the resource of V is bounded by probabilistic polynomial (in $|x|$) time.

In the remainder of this paper, we assume that a term "zero-knowledge" implies "blackbox simulation" zero-knowledge.

Definition 5 [10]. An interactive proof system $\langle P, V\rangle$ for a language L is said to be (blackbox simulation) perfect zero-knowledge if there exists a probabilistic polynomial time Turing machine M_{U} such that for any (cheating) verifier V^{*} and for sufficiently large $x \in L$, the probability ensemble $\left\{M_{U}\left(x ; V^{*}\right)\right\}_{x \in L}$ is identical to the probability ensemble $\left\{\left\langle P, V^{*}\right\rangle(x)\right\}_{x \in L}$ on L, where $M(; A)$ denotes a Turing machine with blackbox access to a Turing machine A.

From a practical purpose, Boyar, Friedl, and Lund [3] defined a notion of prover-practical (zero-knowledge) interactive proof systems.
Definition 6 [3]. An interactive proof system $\langle P, V\rangle$ for a language $L \in \mathcal{N} \mathcal{P}$ is said to be prover-practical if the honest prover P runs in probabilistic polynomial time and some trapdoor information on input $x \in L$ is initially written on the private auxiliary tape of P.

Let $A, B \in \mathcal{N P}$ and let g be a reduction from A to B, i.e., g is a polynomial time computable function and for any $x \in\{0,1\}^{*}, x \in A$ iff $g(x) \in B$.

Definition 7 [6]. Let $A, B \in \mathcal{N} \mathcal{P}$. A reduction g from A to B is said to be witness-preserving if there exists a polynomial time computable function h that given a witness w for any $x \in A, h(x, w)$ is a witness for $g(x) \in B$.

Definition 8 [6]. Let $A, B \in \mathcal{N} \mathcal{P}$. A reduction g from A to B is said to be polynomial time invertible if there exists a polynomial time computable function γ that given a witness w^{\prime} for $g(x) \in B, \gamma\left(g(x), w^{\prime}\right)$ is a witness for $x \in A$.

3 Examples

It is obvious from the Definitions 2 and 3 that $L \in \mathcal{O} T$ iff $\bar{L} \in \mathcal{T O}$. Thus we only exemplify several languages that induce O / T bit commitments.

For graphs G and H, we use $G \simeq H$ to imply that G is isomorphic to H and use $G \not \not \nVdash H$ to imply that G is not isomorphic to H.

Definition 9. For an integer $h>0$, Universal Graph Isomorphism Tuple UGIT is defined to be UGIT $=\left\{\left\langle h,\left\langle G_{1}^{0}, G_{1}^{1}\right\rangle,\left\langle G_{2}^{0}, G_{2}^{1}\right\rangle, \ldots,\left\langle G_{h}^{0}, G_{h}^{1}\right\rangle\right) \mid G_{i}^{0} \simeq G_{i}^{1}\right.$ for each $i(1 \leq i \leq h)\}$.

Definition 10. For an integer $h>0$, Existential Graph Isomorphism Tuple EGIT is defined to be EGIT $=\left\{\left\langle h,\left\langle G_{1}^{0}, G_{1}^{1}\right\rangle,\left\langle G_{2}^{0}, G_{2}^{1}\right\rangle, \ldots,\left\langle G_{h}^{0}, G_{h}^{1}\right\rangle\right\rangle \mid G_{i}^{0} \simeq G_{i}^{1}\right.$ for some $i(1 \leq i \leq h)\}$.

Definition 11. Let $N=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{h}^{e_{k}}$ be the prime factorization of N. Define $c \mathrm{MOD} d$ to be $N \in c \mathrm{MOD} d$ if and only if $p_{i} \equiv c(\bmod d)$ for each $i(1 \leq i \leq h)$.

In the following, we show that the languages UGIT, EGIT, and 1MOD4 induce O / T bit commitments $f_{\mathrm{UGIT}}, f_{\mathrm{EGIT}}$, and $f_{\text {IMOD4 }}$, respectively.

Lemma 12. The language UGIT induces an O / T bit commitment $f_{\text {UGIT }}$.
Proof: For $x=\left\langle h,\left\langle G_{1}^{0}, G_{1}^{1}\right\rangle,\left\langle G_{2}^{0}, G_{2}^{1}\right\rangle, \ldots,\left\langle G_{h}^{0}, G_{h}^{1}\right\rangle\right\rangle$, let $V_{i}(1 \leq i \leq h)$ be a set of vertices for G_{i}^{0} and G_{i}^{1}, and let $b \in\{0,1\}$ be a bit that a sender S wishes to send to a receiver R. Here we define a bit commitment $f_{\text {UGIT }}$ for UGIT as follows: For each $i(1 \leq i \leq h), S$ chooses $\pi_{i} \in_{\mathrm{R}} \operatorname{Sym}\left(V_{i}\right)$. Then S computes a graph $H_{i}=\pi_{i}\left(G_{i}^{b}\right)$ and sends $\left\langle H_{1}, H_{2}, \ldots, H_{h}\right\rangle$ to R.

Assume that $x \in$ UGIT. It follows from Definition 9 that $G_{i}^{0} \simeq G_{i}^{1}$ for each $i(1 \leq i \leq h)$. Then the distribution of $\left\langle H_{1}, H_{2}, \ldots, H_{h}\right\rangle$ for $b=0$ is identical to that of $\left\langle H_{1}, H_{2}, \ldots, H_{h}\right\rangle$ for $b=1$. Assume that $x \notin$ UGIT. It follows from Definition 9 that there exists at least an $i_{0}\left(1 \leq i_{0} \leq h\right)$ such that $G_{i_{0}}^{0} \not \approx G_{i_{0}}^{1}$. This implies that $\pi_{i_{0}}\left(G_{i_{0}}^{0}\right) \neq \varphi_{i_{0}}\left(G_{i_{0}}^{1}\right)$ for any $\pi_{i_{0}}, \varphi_{i_{0}} \in \operatorname{Sym}\left(V_{i_{0}}\right)$. Then for any $\pi_{i}, \varphi_{i} \in \operatorname{Sym}\left(V_{i}\right)(1 \leq i \leq h)$,

$$
f_{\mathrm{UGIT}}\left(x, 0,\left\langle\pi_{1}, \pi_{2}, \ldots, \pi_{h}\right\rangle\right) \neq f_{\mathrm{UGIT}}\left(x, 1,\left\langle\varphi_{1}, \varphi_{2}, \ldots, \varphi_{h}\right\rangle\right) .
$$

Thus the language UGIT induces an O / T bit commitment fugrr.
For an integer $h>0$, define Universal Quadratic Residuosity Tuple UQRT to be UQRT $=\left\{\left\langle h,\left\langle x_{1}, N_{1}\right\rangle, \ldots,\left\langle x_{h}, N_{h}\right\rangle\right\rangle \mid x_{i}\right.$ is a square modulo N_{i} for each i $(1 \leq i \leq h)\}$. Then in a way similar to Lemma 12 , we can show the following:

Lemma 13. The language UQRT induces an O / T bit commitment f_{UQRT}.
Let us proceed to show the other examples.
Lemma 14. The language EGIT induces an O / T bit commitment $f_{E G T T}$.
Proof: Let $x=\left\langle h,\left\langle G_{1}^{0}, G_{1}^{1}\right\rangle,\left\langle G_{2}^{0}, G_{2}^{1}\right\rangle, \ldots,\left\langle G_{h}^{0}, G_{h}^{1}\right\rangle\right\rangle$ and let $V_{i}(1 \leq i \leq h)$ be a set of vertices for G_{i}^{0} and G_{i}^{1}. Let $b \in\{0,1\}$ be a bit that a sender S wishes to send to a receiver R. Here we define a bit commitment $f_{\text {EGIT }}$ for EGIT as follows: For each $\dot{i}(1 \leq i \leq h), S$ first chooses $e_{i} \in_{\mathrm{R}}\{0,1\}$ and $\pi_{i} \in_{\mathrm{R}} \operatorname{Sym}\left(V_{i}\right)$. Then S computes $c \equiv e_{1}+e_{2}+\cdots+e_{h}+b(\bmod 2)$ and a graph $H_{i}=\pi_{i}\left(G_{i}^{e_{i}}\right)$ ($1 \leq i \leq h$) and sends $\left\langle c, H_{1}, H_{2}, \ldots, H_{h}\right\rangle$ to R.

Assume that $x \in$ EGIT. It follows from Definition 10 that there exists at least an $i_{0}\left(1 \leq i_{0} \leq h\right)$ such that $G_{i_{0}}^{0} \simeq G_{i_{0}}^{1}$. Then on that position $i_{0}(1 \leq$ $\left.i_{0} \leq h\right)$, the distribution of $\pi_{i_{0}}\left(G_{i_{0}}^{0}\right)$ is identical to that of $\pi_{i_{0}}\left(G_{i_{0}}^{1}\right)$. This implies that the distribution of $\left\langle c, H_{1}, H_{2}, \ldots, H_{h}\right\rangle$ for $b=0$ is identical to that of $\left\langle c, H_{1}, H_{2}, \ldots, H_{h}\right\rangle$ for $b=1$. Assume that $x \notin$ EGIT. It follows from Definition 10 that for every $i(1 \leq i \leq h), G_{i}^{0} \nsucceq G_{i}^{1}$. Then for any $e_{i}, d_{i} \in\{0,1\}$ and $\pi_{i}, \varphi_{i} \in \operatorname{Sym}\left(V_{i}\right)(1 \leq i \leq h)$,

$$
f_{\mathrm{EGIT}}\left(x, 0,\left\langle e_{1}, \ldots, e_{h}\right\rangle,\left\langle\pi_{1}, \ldots, \pi_{h}\right\rangle\right) \neq f_{\mathrm{EGIT}}\left(x, 1,\left\langle d_{1}, \ldots, d_{h}\right\rangle,\left\langle\varphi_{1}, \ldots, \varphi_{h}\right\rangle\right) .
$$

Thus the language EGIT induces an O / T bit commitment $f_{\text {EGIT }}$.
For an integer $h>0$, define Existential Quadratic Residuosity Tuple EQRT to be EQRT $=\left\{\left\langle h,\left\langle x_{1}, N_{1}\right\rangle, \ldots,\left\langle x_{h}, N_{h}\right\rangle\right\rangle \mid x_{i}\right.$ is a square modulo N_{i} for some i $(1 \leq i \leq h)\}$. Then in a way similar to Lemma 14, we can show the following:

Lemma 15. The language EQRT induces an O / T bit commitment f_{EQRT}.
The final example has different flavor from those of the examples above.
Lemma 16. The language 1 MOD 4 induces an O / T bit commitment $f_{1 \mathrm{MOD}}$.
Proof: Let $x=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{h}^{e_{h}}$ be the prime factorization of x. Let $b \in\{0,1\}$ be a bit that a sender S wishes to send to a receiver R. Define a bit commitment $f_{\text {1MOD4 }}$ for 1MOD4 as follows: First S chooses $r \epsilon_{\mathrm{R}} Z_{x}^{*}$. Then S computes $c \equiv(-1)^{b} r^{2}(\bmod x)$ and sends $c \in Z_{x}^{*}$ to R. It should be noted that -1 is a square modulo x if and only if $x \in 1$ MOD4.

Assume that $x \in 1$ MOD4. From Definition 11 and the fact that -1 is a square modulo x, it follows that $c \in Z_{x}^{*}$ is always a square modulo x regardless of the value of $b \in\{0,1\}$. This implies that the distribution of $c \in Z_{x}^{*}$ for $b=0$ is identical to that of $c \in Z_{x}^{*}$ for $b=1$. Assume that $x \notin 1$ MOD4. From Definition 11 and the fact that $\mathbf{- 1}$ is not a square modulo x, it follows that for any $r \in Z_{x}^{*}$, $c \equiv(-1)^{b} r^{2}(\bmod x)$ is a square modulo x if and only if $b=0$. Then for any $r, s \in Z_{x}^{*}, f_{1 \mathrm{MOD} 4}(x, 0, r) \neq f_{1 \mathrm{MOD} 4}(x, 1, s)$. Thus the language 1MOD4 induces an $0 / \mathrm{T}$ bit commitment $f_{\text {MODA }}$.

It is easy to show that (1) $2 \in Z_{N}^{*}$ is a square modulo N if and only if $N \in \pm 1$ MOD8; (2) $3 \in Z_{N}^{*}$ is a square modulo N if and only if $N \in \pm 1$ MOD 12; and (3) $5 \in Z_{N}^{*}$ is a square modulo N if and only if $N \in \pm 1$ MOD5. Then in a way similar to Lemma 16 , we can show the following:
Lemma 17. The languages $\pm 1 \mathrm{MOD} 8, \pm 1 \mathrm{MOD} 12$, and $\pm 1 \mathrm{MOD} 5$ induce O / \top bit commitments $f_{ \pm 1 \mathrm{MOD} 8}, f_{ \pm 1 \mathrm{MOD} 12}$, and $f_{ \pm 1 \mathrm{MOD5}}$, respectively.

4 Opaque/Transparent Bit Commitments

Assume that a language L induces an O / T bit commitment f_{L}. Now let us consider the interactive protocol $\langle A, B\rangle$ on input $x \in\{0,1\}^{*}$: (A1) A chooses $b \in_{\mathrm{R}}\{0,1\}$ and $r \in_{\mathrm{R}}\{0,1\}^{k(|x|)}$ and sends $a=f_{L}(x, b, r)$ to B; (B1) B chooses $e \in_{\mathrm{R}}\{0,1\}$ and sends $e \in\{0,1\}$ to A; (A2) A sends to $B \sigma \in\{0,1\}^{k(|x|)}$ such that $a=f_{L}(x, e, \sigma)$; and (B2) B checks that $a=f_{L}(x, e, \sigma)$. After $n=|x|$ independent invocations from step A1 to step B2,V accepts $x \in\{0,1\}^{*}$ if and only if every check in step B2 is successful.

By the opaque/transparent property of f_{L}, we can show in almost the same way as the case of random self-reducible languages [13] that L has a perfect zero-knowledge proof. In the protocol $\langle A, B\rangle$, however, A needs to evaluate $\sigma \epsilon$ $\{0,1\}^{k(|x|)}$ such that $a=f_{L}(x, e, \sigma)$ for each iteration. Thus in general, $(A, B\rangle$ could not be prover-practical. In this section, we show a stronger result, i.e., L has a prover-practical perfect zero-knowledge proof.

Theorem 18. If a language L induces an O / T bit commitment, then there exists a prover-practical perfect zero-knowledge proof for the language L.

Proof: Let f_{L} be an O / T bit commitment induced by a language L. From Definition 2, we have an $\mathcal{N P}$-statement below:

$$
\begin{equation*}
x \in L \Longleftrightarrow \exists r, s \in\{0,1\}^{k(|x|)} \text { s.t. } f_{L}(x, 0, r)=f_{L}(x, 1, s) . \tag{1}
\end{equation*}
$$

Let us consider the following interactive protocol $\langle P, V\rangle$ for L.

Interactive Protocol $\langle P, V\rangle$ for L

common input: $x \in\{0,1\}^{*}$.
P0-1: P reduces an $\mathcal{N} \mathcal{P}$-statement of Eq.(1) to a directed Hamiltonian graph $G=(V, E)$, where $|V|=n=|x|^{c}$ for some constant $c>0$.
P0-2: P defines an adjacency matrix $A_{G}=\left(a_{i j}\right)$ of $G=(V, E)$.
V0-1: V reduces an $\mathcal{N} \mathcal{P}$-statement of Eq.(1) to a directed Hamiltonian graph $G=(V, E)$, where $|V|=n=|x|^{c}$ for some constant $c>0$.
V0-2: V defines an adjacency matrix $A_{G}=\left(a_{i j}\right)$ of $G=(V, E)$.
P1-1: P chooses $\pi \in_{\mathrm{R}} \operatorname{Sym}(V)$ and $s_{i j} \in_{\mathrm{R}}\{0,1\}^{k(|x|)}(1 \leq i, j \leq n)$.
P1-2: P computes $c_{i j}=f_{L}\left(x, a_{\pi(i) \pi(j)}, s_{i j}\right)$.
$P \rightarrow V: C=\left(c_{i j}\right)(1 \leq i, j \leq n)$.
V1: V chooses $e \in_{\mathrm{R}}\{0,1\}$.
$V \rightarrow P: e \in\{0,1\}$.
P2-1: For $e=0, P$ assigns $\left\langle\pi, s_{11}, \ldots, s_{n n}\right\rangle$ to w.
P2-2: For $e=1, P$ assigns $\left(\left\langle i_{1}, j_{1}\right\rangle, \ldots,\left\langle i_{n}, j_{n}\right\rangle, s_{i_{1} j_{1}}, \ldots, s_{i_{-}} j_{n}\right\rangle$ to w such that $\left\langle i_{1}, j_{1}\right\rangle, \ldots,\left\langle i_{n}, j_{n}\right\rangle$ is a single cycle.
$P \rightarrow V: w$.
V2-1: For $e=0, V$ checks that $c_{i j}=f_{L}\left(x, a_{\pi(i) \pi(j)}, s_{i j}\right)$ for each $i, j(1 \leq$ $i, j \leq n$).
V2-2: For $e=1, V$ checks that $\left\langle i_{1}, j_{1}\right\rangle, \ldots,\left\langle i_{n}, j_{n}\right\rangle$ is indeed a single cycle and that $c_{i_{m}} j_{m}=f_{L}\left(x, 1, s_{i_{m} j_{m}}\right)$ for each $m(1 \leq m \leq n)$.

After $n=|V|$ independent invocations from step P1-1 to step V2-2, V accepts $x \in\{0,1\}^{*}$ if and only if every check in step V2-1 and step V2-2 is successful.

We show that the protocol $\langle P, V\rangle$ is a prover-practical perfect zero-knowledge proof for the language L if L induces an O / T bit commitment f_{L}.

Completeness: If L induces an O / T bit commitment f_{L}, then $L \in \mathcal{N} \mathcal{P}$, i.e.,

$$
x \in L \Longleftrightarrow \exists r, s \in\{0,1\}^{k(|x|)} \text { s.t. } f_{L}(x, 0, r)=f_{L}(x, 1, s) .
$$

Assume that for the common input $x \in L$ to $\langle P, V\rangle$, the honest prover P has $r, s \in\{0,1\}^{k(|x|)}$ such that $f_{L}(x, 0, r)=f_{L}(x, 1, s)$. Since the reduction from any $L \in \mathcal{N P}$ to a directed Hamiltonian graph (DHAM) is known to be witnesspreserving, P can compute in polynomial (in $|x|$) time a Hamiltonian cycle H of $G=(V, E)$ in step P0-1. Then P can execute in polynomial (in $|x|$) time every process of $\langle P, V\rangle$. It is obvious that P always causes V to accept $x \in L$.

Soundness: From Eq.(1), it follows that for any $x \notin L$, there does not exist $r, s \in\{0,1\}^{k(|x|\rangle}$ such that $f_{L}(x, 0, r)=f_{L}(x, 1, s)$. This implies that $G=(V, E)$ generated in step V0-1 is not a Hamiltonian graph. We show the soundness condition of $\langle P, V\rangle$ by contradiction. Assume that for some $k_{0}>0$ and infinitely many $x \notin L$, there exists a cheating prover P^{*} that causes V to accept $x \notin L$ with probability at least $|x|^{-k_{0}}$. Let $L^{\prime} \subseteq \bar{L}$ be an infinite set of such $x \notin L$. Then from a standard analysis (see, e.g., [5]), it follows that there must exist $C=\left(c_{i j}\right)$ that passes both tests in steps V2-1 and V2-2. We note that for any $x \in L^{\prime}$, there do not exist $r, s \in\{0,1\}^{k(|x|)}$ such that $f_{L}(x, 0, r)=f_{L}(x, 1, s)$. This implies that P^{*} cannot change his mind after step P1-2 even if P^{*} is infinitely powerful. To pass the test in step $V 2-1, C=\left(c_{i j}\right)$ must be an encoding of a non-Hamiltonian graph $G=(V, E)$ generated in step $V 0-1$, while to pass the test in step $\mathrm{V} 2-2, C=\left(c_{i j}\right)$ must be an encoding of a Hamiltonian graph $\tilde{G}=(\bar{V}, \tilde{E})$. This contradicts the assumption that $G=(V, E)$ generated in step V0-1 is not a Hamiltonian graph. Then for each $k>0$ and sufficiently large $x \notin L$, any cheating prover P^{*} causes V to accept $x \notin L$ with probability at most $|x|^{-k}$.

Perfect Zero-Knowledgeness: This can be shown in a way similar to the case of random self-reducible languages [13]. The construction of M_{U} for any cheating verifier V^{*} is as follows:

Construction of \boldsymbol{M}_{U}

common input: $x \in L$.
M0-1: count $:=0$; and conv $:=\varepsilon$, where ε is a null string.
M0-2: M_{U} provides V^{*} with $r_{V^{*}}$ as random coin tosses for V^{*}.
M0-3: M_{U} simulates steps $\mathrm{P} 0-1$ and $\mathrm{P} 0-2$.
M1-1: M_{U} chooses $\alpha \in_{\mathrm{R}}\{0,1\}$.
M1-2: M_{U} chooses an n vertex random cycle of which adjacency matrix is $H=\left(h_{i j}\right)$.
M2-1: If $\alpha=0$, then M_{U} simulates steps $\mathrm{P} 1-1$ and $\mathrm{P} 1-2$.
M2-2: If $\alpha=1$, then M_{U} chooses $s_{i j} \in_{\mathrm{R}}\{0,1\}^{k(|x|)}$ and computes $c_{i j}=$ $f\left(x, h_{i j}, s_{i j}\right)$.
M3: M_{U} runs V^{*} on input $\left\langle x, r_{V^{*}}\right.$, conv, $\left.C\right\rangle$ to generate e.
M4-1: If $e \notin\{0,1\}$, then M_{U} halts and outputs $\left\langle x, r_{V^{*}}\right.$, conv $\left.\|\langle C, e\rangle\right\rangle$, where $x \| y$ denotes the concatenation of strings $x, y \in\{0,1\}^{*}$.
M4-2: If $e \neq \alpha$, then go to step M1-1.
M4-3: If $e=\alpha$, then M_{U} simulates steps P2-1 and P2-2 depending on $\alpha \in$ $\{0,1\}$.
M5-1: M_{U} sets conv $:=$ conv $\|(C, e, w)$ and count $:=$ count +1 .
M5-2: If count < n, then go to step M1-1; otherwise M_{U} halts and outputs $\left\langle x, r_{V^{-}}, \operatorname{con} v\right\rangle$.

Note that for any $x \in L$, the distribution of $f_{L}(x, 0, r)$ is identical to that of $f_{L}(x, 1, r)$. This implies that the distribution of $f_{L}\left(x, a_{\pi(i) \pi(j)}, s_{i j}\right)$ is identical to that of $f_{L}\left(x, h_{i j}, s_{i j}\right)$ for every $x \in L$. Then the probability that $e=\alpha$ in step M4-3 is exactly $1 / 2$. Since M_{U} iterates $n=|x|^{6}$ times the procedure from
step M1-1 to step M5-2, M_{U} runs in expected polynomial (in $|x|$) time. Note again that for every $x \in L$, the distribution of $f_{L}(x, 0, r)$ is identical to that of $f_{L}(x, 1, r)$. Then the probability ensemble $\left\{\left\langle P, V^{*}\right\rangle(x)\right\}_{x \in L}$ is identical to the probability ensemble $\left\{M_{U}\left(x ; V^{*}\right)\right\}_{x \in L}$ on L.

Thus the protocol $\langle P, V\rangle$ is a prover-practical perfect zero-knowledge proof for L if L induces an O / T bit commitment f_{L}.

For a language $L \in \mathcal{N P}$, define a polynomial time computable relation R_{L} to be $\langle x, y\rangle \in R_{L}$ if and only if $\rho(x, y)=$ true, where ρ is a polynomial (in $|x|$) time computable predicate that witnesses the language $L \in \mathcal{N} \mathcal{P}$. As immediate corollaries to Theorem 18, we can show the following:

Corollary 19 (to Theorem 18). Let L be $\mathcal{N P}$-complete. If the language L induces an O / T bit commitment, then the polynomial time hierarchy collapses.

Corollary 20 (to Theorem 18). If a language L induces an $0 / T$ bit commitment, then there exists a perfect zero-knowledge proof of knowledge for R_{L}.

5 Transparent/Opaque Bit Commitments

Here we consider the case that L induces a T / O bit commitment (see Definition 3), and show that if a language L induces a T/O bit commitment, then there exists a bounded round perfect zero-knowledge proof for L.

Theorem 21. If a language L induces a T / O bit commitment, then there exists a two round prefect zero-knowledge proof for the language L.

Proof: Let L be a language that induces a T / O bit commitment f_{L}. Here we overview the outline of the protocol $\langle P, V\rangle$ for L. Let $x \in\{0,1\}^{*}$ be a common input to $\langle P, V\rangle$. For each $i(1 \leq i \leq|x|), V$ chooses $e_{i} \in_{\mathrm{R}}\{0,1\}, r_{i} \in_{\mathrm{R}}\{0,1\}^{k(|x|)}$ and computes $\alpha_{i}=f_{L}\left(x, e_{i}, r_{i}\right)$. Then V reduces the following $\mathcal{N} \mathcal{P}$-statement,

$$
\begin{equation*}
\exists e_{1}, e_{2}, \ldots, e_{|x|} \exists r_{1}, r_{2}, \ldots, r_{|x|} \text { s.t. } \bigwedge_{i=1}^{|x|} \alpha_{i}=f_{L}\left(x, e_{i}, r_{i}\right), \tag{2}
\end{equation*}
$$

to a directed Hamiltonian graph $G=(V, E)$, where $|V|=|x|^{d}$ for some constant $d>0$. Let H be a Hamiltonian cycle of G. From the witness-preserving property of the reduction from any $L \in \mathcal{N} \mathcal{P}$ to DHAM, there exist polynomial time computable functions g and h that satisfy

$$
\begin{aligned}
& G=g\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{|x|}\right) \\
& H=h\left(\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{|x|}\right\rangle,\left\langle e_{1}, e_{2}, \ldots, e_{|x|} ; r_{1}, r_{2}, \ldots, r_{|x|}\right\rangle\right) .
\end{aligned}
$$

Here V generates many random copies of G and commits to them with the T / O bit commitment f_{L}. After these preliminary steps, V shows to P that V knows the Hamiltonian cycle H of G. If V succeeds to convince P, then P shows to V that P knows $e_{1}, e_{2}, \ldots, e_{|x|}$.

Interactive Protocol $\langle P, V\rangle$ for L

common input: $x \in\{0,1\}^{*}$.
V1-1: V chooses $e_{i} \in_{\mathrm{R}}\{0,1\}$ and $r_{i} \in_{\mathrm{R}}\{0,1\}^{k(|x|)}$ for each $i(1 \leq i \leq|x|)$.
V1-2: V computes $\alpha_{i}=f_{L}\left(x, e_{i}, r_{i}\right)$.
V1-3: V computes $G=g\left(\alpha_{1}, \ldots, \alpha_{|x|}\right)$, i.e., V reduces the $\mathcal{N} \mathcal{P}$-statement of Eq.(2) to a directed Hamiltonian graph $G=(V, E)$, where $|V|=$ $n=|x|^{d}$ for some $d>0$.
V1-4: V defines an adjacency matrix $A_{G}=\left(a_{i j}\right)$ of $G=(V, E)$.
V1-5: V computes $H=h\left(\left\langle\alpha_{1}, \ldots, \alpha_{|x|}\right\rangle,\left\langle e_{1}, \ldots, e_{|x|} ; r_{1}, \ldots, r_{|x|}\right\rangle\right)$, where H is one of Hamiltonian cycles of $G=(V, E)$.
V1-6: V chooses $\pi_{\ell} \in_{\mathrm{R}} \operatorname{Sym}(V)\left(1 \leq \ell \leq n^{2}\right)$ and $s_{i j}^{\ell} \epsilon_{\mathrm{R}}\{0,1\}^{k(|x|)}(1 \leq$ $i, j \leq n)$.
V1-7: V computes $c_{i j}^{l}=f_{L}\left(x, a_{\pi_{1}(i) \pi_{i}(j)}, s_{i j}^{l}\right)$.
$V \rightarrow P:\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{|x|}\right\rangle,\left\langle\left(c_{i j}^{1}\right),\left(c_{i j}^{2}\right), \ldots\left(c_{i j}^{n^{2}}\right)\right\rangle(1 \leq i, j \leq n)$.
P1: P chooses $b_{\ell} \in_{\mathrm{R}}\{0,1\}$ for each $\ell\left(1 \leq \ell \leq n^{2}\right)$.
$P \rightarrow V:\left\langle b_{1}, b_{2}, \ldots, b_{n^{2}}\right\rangle \in\{0,1\}^{n^{2}}$.
V2-1: If $b_{\ell}=0\left(1 \leq \ell \leq n^{2}\right), V$ assigns $\left\langle\pi_{\ell}, s_{11}^{\ell}, s_{12}^{\ell}, \ldots, s_{n n}^{\ell}\right\rangle$ to w_{ℓ}.
V2-2: If $b_{\ell}=1\left(1 \leq \ell \leq n^{2}\right), V$ assigns

$$
\left\langle\left\langle i_{1}^{l}, j_{1}^{l}\right\rangle,\left\langle i_{2}^{l}, j_{2}^{l}\right\rangle, \ldots,\left\langle i_{n}^{l}, j_{n}^{l}\right\rangle, s_{i_{1}^{l} j_{1}^{l}}^{l}, s_{i_{2}^{l} j_{2}^{l}}^{l}, \ldots, s_{i_{n}^{l} j_{n}^{l}}^{l}\right\rangle
$$

to w_{ℓ} such that $\left\langle i_{1}^{l}, j_{1}^{\ell}\right\rangle,\left\langle i_{2}^{l}, j_{2}^{\ell}\right\rangle, \ldots,\left\langle i_{n}^{l}, j_{n}^{l}\right\rangle$ is a single cycle.
$V \rightarrow P:\left\langle w_{1}, w_{2}, \ldots, w_{n^{2}}\right\rangle$.
P2-1: P computes $G=g\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{|x|}\right)$ and an adjacency matrix $A_{G}=$ $\left(a_{i j}\right)$ of G.
P2-2: For each $b_{\ell}=0\left(1 \leq \ell \leq n^{2}\right)$, if $c_{i j}^{\ell}=f_{L}\left(x, a_{\pi_{\ell}(i) x_{l}(j)}, s_{i j}^{l}\right)$ for each $i, j(1 \leq i, j \leq n)$, then P continues; otherwise P halts and rejects $x \in\{0,1\}^{*}$.
P2-3: For each $b_{\ell}=1\left(1 \leq \ell \leq n^{2}\right)$, if $\left(i_{1}^{\ell}, j_{1}^{l}\right\rangle,\left(i_{2}^{\ell}, j_{2}^{\ell}\right\rangle, \ldots,\left\langle i_{n}^{\ell}, j_{n}^{\ell}\right)$ is indeed a single cycle and $c_{i_{m}^{l} j_{m}^{l}}^{l}=f_{L}\left(x, 1, s_{i_{m}^{l} j_{m}^{l}}^{l}\right)$ for each $m(1 \leq m \leq n)$, then P continues; otherwise P halts and rejects $x \in\{0,1\}^{*}$.
P2-4: If there exist $\beta_{i} \in\{0,1\}, t_{i} \in\{0,1\}^{k(|x|)}$ such that $\alpha_{i}=f_{L}\left(x, \beta_{i}, t_{i}\right)$ for every $i(1 \leq i \leq|x|)$, then P continues; otherwise P halts and rejects $x \in\{0,1\}^{*}$.
$P \rightarrow V:\left\langle\beta_{1}, \beta_{2}, \ldots, \beta_{|x|}\right\rangle$.
V3: If $\beta_{i}=e_{i}$ for every $i(1 \leq i \leq|x|)$, then V halts and accepts $x \in$ $\{0,1\}^{*}$; otherwise V halts and rejects $x \in\{0,1\}^{*}$.

Now we turn to show that if L induces a T / O bit commitment f_{L}, then the protocol $\langle P, V\rangle$ for L is a two round perfect zero-knowledge proof for L.

Completeness: Assume here that $x \in L$. If V follows the protocol above, then $G=(V, E)$ is always a Hamiltonian graph. From the T/O property of f_{L}, it follows that for every $x \in L$, there does not exist $r, s \in\{0,1\}^{k(|x|)}$ such that $f_{L}(x, 0, r)=f_{L}(x, 1, s)$. Thus for each $i(1 \leq i \leq|x|), P$ can find in step P2-4 a
unique $\beta_{i} \in\{0,1\}$ such that $\alpha_{i}=f_{L}\left(x, e_{i}, t_{i}\right)$ for some $t_{i} \in\{0,1\}^{k(|x|)}$. Then V always halts and accepts $x \in L$ in step V3.

Soundness: Assume that $x \notin L$. Define an interactive protocol $\langle A, B\rangle$ for $\bar{L} \in \mathcal{O} \mathcal{T}$ to be on input $x \in\{0,1\}^{*}(1) A$ (resp. B) plays the role of V (resp. P); and (2) $\langle A, B\rangle$ simulate $\langle P, V\rangle$ except that the process from step V1-6 to step $\mathrm{P} 2-3$ in $\langle P, V\rangle$ is executed in serial.

From the T/O property of f_{L}, it follows that for every $x \notin L$, the distribution of $f_{L}(x, 0, r)$ is identical to that of $f_{L}(x, 1, s)$. Then the protocol $\langle A, B\rangle$ can be simulated in a perfect zero-knowledge manner for every $x \notin L$ by using the resettable simulation technique [9]. It turns out that the subprotocol of $\langle P, V\rangle$, from step V1-6 to step P2-3, is perfectly witness indistinguishable [6], because it can be regarded as the parallel composition of the protocol $\langle A, B\rangle$ by exchanging the roles of A and B. Then in the protocol $\langle P, V\rangle$, any cheating P^{*} cannot guess better at random the value of $e_{i} \in\{0,1\}$ for each $i(1 \leq i \leq|x|)$. Thus for each $k>0$ and sufficiently large $x \notin L$, any cheating prover P^{*} causes V to accept $x \notin L$ with probability at most $|x|^{-k}$.

Perfect Zero-Knowledgeness: This can be shown in almost the same way as the case of graph nonisomorphism [9]. From the polynomial time invertible property of the reduction from any $L \in \mathcal{N P}$ to DHAM, there exist polynomial time computable functions g and γ that satisfy

$$
g\left(\alpha_{1}, \ldots, \alpha_{|x|}\right)=G ; \quad \gamma(G, H)=\left\langle\beta_{1}, \ldots, \beta_{|x|} ; t_{1}, \ldots, t_{|x|}\right\rangle
$$

where H is one of Hamiltonian cycles of G and $\alpha_{i}=f_{L}\left(x, \beta_{i}, t_{i}\right)$ for each i $(1 \leq i \leq|x|)$. Here we use H_{t} to denote the t-th (n-vertex) single cycle for each $t(1 \leq t \leq n!)$ in the lexicographic order. Then the construction of M_{U} for any cheating verifier V^{*} is as follows:

Construction of \boldsymbol{M}_{U}

common input: $x \in L$.
M0-1: count $:=1$; and conv $:=\varepsilon$, where ε is a null string.
M0-2: M_{U} provides V^{*} with $r_{V^{*}}$ as random coin tosses for V^{*}.
M1-1: M_{U} runs V^{*} on input x, r_{V} to generate $\left\langle\alpha_{1}, \ldots, \alpha_{|x|}\right\rangle,\left\langle\left(c_{i j}^{1}\right), \ldots\left(c_{i j}^{n^{2}}\right)\right\rangle$.
M1-2: conv $:=\operatorname{conv} \|\left\langle\left\langle\alpha_{1}, \ldots, \alpha_{|x|}\right\rangle,\left\langle\left(c_{i j}^{1}\right), \ldots\left(c_{i j}^{\mathbf{n}^{3}}\right)\right\rangle\right\rangle$.
M2: M_{U} chooses $b_{\ell} \in_{\mathrm{R}}\{0,1\}$ for each $\ell\left(1 \leq \ell \leq n^{2}\right)$.
M3-1: M_{U} runs V^{*} on input $x, r_{V^{*}},\left\langle b_{1}, b_{2}, \ldots, b_{n^{2}}\right\rangle$ to generate $\left\langle w_{1}, \ldots, w_{n^{2}}\right\rangle$.
M3-2: conv := conv $\|\left\langle\left\langle b_{1}, \ldots, b_{n^{2}}\right\rangle,\left\langle w_{1}, \ldots, w_{n^{2}}\right\rangle\right\rangle$.
M4-1: M_{U} computes $G=g\left(\alpha_{1}, \ldots, \alpha_{|x|}\right)$ and an adjacency matrix $A_{G}=\left(a_{i j}\right)$ of G.
M4-2: For each $b_{\ell}=0\left(1 \leq \ell \leq n^{2}\right)$, if $c_{i j}^{\ell}=f_{L}\left(x, a_{\pi_{\ell}(i) \pi_{\ell}(j)}, s_{i j}^{\ell}\right)$ for each i, j ($1 \leq i, j \leq n$), then M_{U} continues; otherwise M_{U} halts and outputs $\left\langle x, r_{V^{-}}\right.$, conv \rangle.
M4-3: For each $b_{\ell}=1\left(1 \leq \ell \leq n^{2}\right)$, if $\left\langle i_{1}^{l}, j_{1}^{\ell}\right\rangle,\left\langle i_{2}^{l}, j_{2}^{l}\right\rangle, \ldots,\left\langle i_{n}^{l}, j_{n}^{l}\right\rangle$ is indeed a single cycle and $c_{i_{m}^{l} j_{m}^{l}}^{\ell}=f_{L}\left(x, 1, s_{i_{m}^{l} j_{m}^{l}}^{\ell}\right)$ for each $m(1 \leq m \leq n)$, then

M5-1: M_{U} resets V^{*} to the state of step M1-2.
M5-2: If count $>n!$, then M_{U} halts and outputs $\left\langle x, r_{V^{*}}\right.$, conv \rangle.
M5-3: If $H_{\text {count }}$ is a Hamiltonian cycle of G, then $H:=H_{\text {count }}$ and go to step M7-2.
M5-4: M_{U} chooses $\tilde{b}_{\ell} \in_{\mathrm{R}}\{0,1\}$ for each $\ell\left(1 \leq \ell \leq n^{2}\right)$.
M6-1: M_{U} runs V^{*} on input $x, r_{V^{*}},\left\langle\tilde{b}_{1}, \ldots, \tilde{b}_{n^{2}}\right\rangle$ to generate $\left\langle\tilde{w}_{1}, \ldots, \tilde{w}_{n^{2}}\right\rangle$.
M6-2: For each $\tilde{b}_{\ell}=0\left(1 \leq \ell \leq n^{2}\right)$, if $c_{i j}^{l}=f_{L}\left(x, a_{\tilde{x}_{\ell}(i) \tilde{\pi}_{\ell}(j)}, \tilde{s}_{i j}^{l}\right)$ for each i, j ($1 \leq i, j \leq n$), then M_{U} continues; otherwise count $:=$ count +1 and go to step M5-1.
M6-3: For each $\tilde{b}_{\ell}=1\left(1 \leq \ell \leq n^{2}\right)$, if $\left\langle\tilde{i}_{1}^{l}, \tilde{j}_{1}^{l}\right\rangle,\left\langle\tilde{i}_{2}^{l}, \tilde{j}_{2}^{l}\right\rangle, \ldots,\left\langle\tilde{i}_{n}^{l}, \tilde{j}_{n}^{l}\right\rangle$ is a single cycle and $c_{i_{m}^{l} \tilde{j}_{m}^{l}}^{l}=f_{L}\left(x, 1, \tilde{s}_{\tilde{i}_{m}^{l}}^{l} \tilde{j}_{m}^{l}\right)$ for each $m(1 \leq m \leq n)$, then M_{U} continues; otherwise count $:=$ count +1 and go to step M5-1.
M7-1: If $b_{\ell} \neq \tilde{b}_{\ell}$ for some $\ell\left(1 \leq \ell \leq n^{2}\right)$, then M_{U} computes a Hamiltonian cycle H of $G=(V, E)$ from w_{ℓ} and \tilde{w}_{ℓ}; otherwise count $:=$ count +1 and go to step M5-1.
M7-2: M_{U} computes $\left\langle\beta_{1}, \beta_{2}, \ldots, \beta_{|x|} ; t_{1}, t_{2}, \ldots, t_{|x|}\right\rangle=\gamma(G, H)$.
M7-3: If $\alpha_{i}=f_{L}\left(x, \beta_{i}, t_{i}\right)$ for every $i(1 \leq i \leq|x|)$, then set conv := conv $\|\left\langle\beta_{1}, \beta_{2}, \ldots, \beta_{|x|}\right\rangle$; otherwise M_{U} halts and outputs $\left\langle x, r_{V^{*}}\right.$, conv \rangle. M7-4: M_{U} halts and outputs $\left\langle x, r_{V^{*}}\right.$, conv \rangle.

We first show that M_{U} terminates in expected polynomial (in $|x|$) time for any cheating verifier V^{*}. Define $K \subseteq\{0,1\}^{n^{2}}$ to be a subset of $\left\langle b_{1}, b_{2}, \ldots, b_{n^{2}}\right\rangle \in$ $\{0,1\}^{n^{2}}$ for which V^{*} passes the tests in steps M4-2 and M4-3. Then the following three cases are possible: (C1) $\|K\| \geq 2$; (C2) $\|K\|=1$; and (C3) $\|K\|=0$, where $\|A\|$ denotes the cardinality of a finite set A.

In the case of (C 1), the expected number $I_{\mathrm{C} 1}$ of invocations of V^{*} satisfies

$$
I_{\mathrm{C} 1} \leq 1+\frac{\|K\|}{2^{n^{2}}} \cdot\left(\frac{\|K\|-1}{2^{n^{2}}}\right)^{-1}=1+\frac{\|K\|}{\|K\|-1} \leq 3
$$

In the case of (C2), the probability that V^{*} passes the tests in steps M4-2 and M4-3 is exactly $2^{-n^{2}}$. Then M_{U} halts and outputs $\left\langle x, r_{\left.V^{*}, \text { conv }\right\rangle \text { in step M4-2 or }}\right.$ M4-3 with probability $1-2^{-n^{3}}$. If V^{*} passes the tests in steps M4-2 and M4-3, then M_{U} must exhaustively searches a Hamiltonian cycle H of G at most in n ! steps. Thus it turns out that the expected number $I_{\mathrm{C} 2}$ of invocations is bounded by $I_{C 2}=1+2^{-n^{2}} \cdot n!<2$. In the case of (C3), M_{U} always halts and outputs $\left\langle x, r_{V^{*}}\right.$, conv \rangle with a single invocation of V^{*}. Thus M_{U} terminates in expected polynomial (in $|x|$) time for any cheating verifier V^{*}.

We then show that for any verifier V^{*}, M_{U} on any input $x \in L$ simulates the real interactions between P and V^{*} in a perfect zero-knowledge manner.

In the case of (C3), M_{U} always halts in step M4-2 or step M4-3 and outputs $\left\langle x, r_{V^{*}}\right.$, conv \rangle with the distribution identical to one in $\left\langle P^{*}, V\right\rangle$.

In the case of (C1), the following three cases are possible: (C1-1) M_{U} halts in step M4-2 or step M4-3 and outputs $\left\langle x, r_{V^{*}}\right.$, conv \rangle; (C1-2) M_{U} halts in step M5-2 or step M7-3 and outputs $\left\langle x, r_{V^{*}}\right.$, conv \rangle; and (C1-3) MU halts in step M7-4 and outputs $\left\langle x, r_{V^{*},}\right.$ conv \rangle. In the case of (C1-1), it is obvious that the distribution of
$\left\langle x, r_{V^{*}}\right.$, conv \rangle is identical to one in $\left\langle P, V^{*}\right\rangle$. Note that P returns $\left\langle\beta_{1}, \beta_{2}, \ldots, \beta_{|x|}\right\rangle$ iff every $\alpha_{i}(1 \leq i \leq|x|)$ is properly generated. From the polynomial time invertible property of the reduction from any $L \in \mathcal{N P}$ to DHAM, it follows that every $\alpha_{i}(1 \leq i \leq|x|)$ is properly generated iff $G=g\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{|x|}\right)$ is a Hamiltonian graph. Then in the case of (C1-2), the distribution of $\left\langle x, r_{V^{*}}\right.$, conv \rangle is identical to one in $\left(P, V^{*}\right)$. Let us consider the case that M_{U} in step M7-1 finds $b_{\ell} \neq \tilde{b}_{\ell}$ for some $\ell\left(1 \leq \ell \leq n^{2}\right)$. We assume without loss of generality that $b_{\ell}=0$ and $\tilde{b}_{\ell}=1$. Then

$$
\begin{aligned}
& w_{\ell}=\left\langle\pi_{\ell}, s_{11}^{l}, s_{12}^{l}, \ldots, s_{n n}^{l}\right\rangle ; \\
& \tilde{w}_{\ell}=\left\langle\left\langle\tilde{i}_{1}^{l}, \tilde{j}_{1}^{l}\right\rangle,\left\langle\tilde{i}_{2}^{l}, \tilde{j}_{2}^{l}\right\rangle, \ldots,\left\langle\tilde{i}_{n}^{l}, \tilde{j}_{n}^{l}\right\rangle, \tilde{s}_{\tilde{i}_{1} \tilde{j}_{1}}^{l}, \tilde{s}_{\tilde{i}_{2} \tilde{j}_{2}}^{l}, \ldots, \tilde{s}_{\tilde{i}_{n}}^{l} \tilde{j}_{n}\right\rangle .
\end{aligned}
$$

From the assumption that $b_{\ell}=0$ and $\tilde{b}_{\ell}=1$, it follows that w_{ℓ} passes the test in step M4-2 and \tilde{w}_{ℓ} passes the test in step M6-3. Thus the Hamiltonian cycle H of G is given by

$$
H=\left\langle\left\langle\pi_{\ell}^{-1}\left(\tilde{i}_{1}^{\ell}\right), \pi_{\ell}^{-1}\left(\tilde{j}_{1}^{\ell}\right)\right\rangle,\left\langle\pi_{\ell}^{-1}\left(\bar{i}_{2}^{\ell}\right), \pi_{\ell}^{-1}\left(\tilde{j}_{2}^{\ell}\right)\right\rangle, \ldots,\left\langle\pi_{\ell}^{-1}\left(\tilde{i}_{n}^{\ell}\right), \pi_{\ell}^{-1}\left(\tilde{j}_{n}^{\ell}\right)\right\rangle\right\rangle .
$$

From the polynomial time invertible property of the reduction from any $L \in \mathcal{N P}$ to DHAM, it follows that $\gamma(G, H)=\left\langle\beta_{1}, \beta_{2}, \ldots, \beta_{|x|} ; t_{1}, t_{2}, \ldots, t_{|x|}\right\rangle$ and $\alpha_{i}=$ $f_{L}\left(x, \beta_{i}, t_{i}\right)(1 \leq i \leq|x|)$. The T/O property of f_{L} guarantees that for every $x \in L$, there does not exist $r, s \in\{0,1\}^{k(|x|)}$ such that $f_{L}(x, 0, r)=f_{L}(x, 1, s)$. Then $\beta_{i}=e_{i}$ for each $i(1 \leq i \leq|x|)$ and thus in the case of (C1-3), the distribution of $\left\langle x, r_{V^{*}}\right.$, conv \rangle is identical to one in $\left\langle P, V^{*}\right\rangle$.

In the case of (C2), the following three cases are possible: (C2-1) M_{U} halts in step M4-2 or step M4-3 and outputs $\left\langle x, r_{V^{*}}\right.$, conv \rangle; (C2-2) M_{U} halts in step M5-2 or step M7-3 and outputs ($x, r_{V^{*}}$, conv); and (C2-3) M_{U} halts in step M7-4 and outputs $\left\langle x, r_{V^{*}}, \operatorname{conv}\right\rangle$. In a way similar to the case of (C1), we can show that in the cases of (C2-1), (C2-2), and (C2-3), the distribution of $\left\langle x, r_{V^{*}, \text { conv }}\right\rangle$ is identical to one in $\left\langle P, V^{*}\right\rangle$. Then for any cheating verifier V^{*}, M_{U} on input $x \in L$ simulates $\left\langle P, V^{*}\right\rangle$ in a perfect zero-knowledge manner.

Thus the interactive protocol $\langle P, V\rangle$ is a two round perfect zero-knowledge proof for L if L induces a T / O bit commitment f_{L}.

6 Concluding Remarks

From Theorem 18, it follows that any language $L \in \mathcal{O} T$ has an unbounded round perfect zero-knowledge Arthur-Merlin proof. This however could be improved, because any language $L \in \mathcal{O} \mathcal{T}$ has an $\mathcal{N} \mathcal{P}$-proof [8]. Then

1. If a language L induces an O / T bit commitment, then does there exist a bounded round perfect zero-knowledge proof for the language L ?

To affirmatively solve this, a verifier will have to flip private coins, because Goldreich and Krawczyk [7] showed that there exists a bounded round (blackbox simulation) zero-knowledge Arthur-Merlin proof for L, then $L \in \mathcal{B P P}$.

Languages that induce O / T or T / O bit commitments might have diverse applications to many cryptographic protocols. Then
2. What is the other application of languages that induce O / T or T / O bit commitments?

Every known random self-reducible language [13], e.g., graph isomorphism, quadratic residuosity, etc., induces an O / T bit commitment. Then finally
3. For any language L, if L is random self-reducible, then does L induce an O/T bit commitment?

References

1. Brassard, G., Chaum, D., and Crépeau, C., "Minimum Disclosure Proofs of Knowledge," J. Comput. System Sci., Vol.37, No.2, pp.156-189 (1988).
2. Ben-Or, M., Goldreich, O., Goldwasser, S., Håstad, J., Kilian, J., Micali, S., and Rogaway, P., "Everything Provable is Provable in Zero-Knowledge," Proceedings of Crypto'88, Lecture Notes in Computer Science 403, pp. 37-56 (1990).
3. Boyar, J., Friedl, K., and Lund, C., "Practical Zero-Knowledge Proof: Giving Hints and Using Deficiencies," J. Cryptology, Vol.4, No.3, pp.185-206 (1991).
4. Bellare, M., Micali, S., and Ostrovsky, R., "The (True) Complexity of Statistical Zero-Knowledge," Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, pp.494-502 (1990).
5. Feige, U., Fiat, A., and Shamir, A., "Zero-Knowledge Proofs of Identity," J. Cryptology, Vol.1, No.2, pp.77-94 (1988).
6. Feige, U. and Shamir, A., "Zero-Knowledge Proofs of Knowledge in Two Rounds," Proceedings of Crypto's9, Lecture Notes in Computer Science 435, pp.526-544 (1990).
7. Goldreich, O. and Krawczyk, H., "On the Composition of Zero-Knowledge Proof Systems," Proceedings of ICALP'90, Lecture Notes in Computer Science 443, pp. 268-282 (1990).
8. Goldwasser, S., Micali, S., and Rackoff, C., "The Knowledge Complexity of Interactive Proof Systems," SIAM J. Comput., Vol.18, No.1, pp.186-208 (1989).
9. Goldreich, O., Micali, S., and Wigderson, A., "Proofs That Yield Nothing But Their Validity or All Languages in $\mathcal{N P}$ Have Zero-Knowledge Proof Systems," J. Assoc. Comput. Mach., Vol.38, No.1, pp.691-729 (1991).
10. Goldreich, O. and Oren, Y., "Definitions and Properties of Zero-Knowledge Proof Systems," J. Cryptology, Vol.7, No.1, pp.1-32 ((1994).
11. Naor, M., Ostrovsky, R., Venkatesan, R., and Yung, M., "Perfect Zero-Knowledge Arguments for $\mathcal{N} \mathcal{P}$ Can Be Based on General Complexity Assumptions," Proceedings of Crypto'92, Lecture Notes in Computer Science 740, pp.196-214 (1993).
12. Ostrovsky, R., "Comparison of Bit-Commitment and Oblivious Transfer Protocols when Players have Different Computing Power," DIMACS Technical Report \#9041, pp.27-29 (1990).
13. Tompa, M. and Woll, H., "Random Self-Reducibility and Zero-Knowledge Interactive Proofs of Possession of Information," Proceedings of the 28th Annual IEEE Symposium on Foundations of Computer Science, pp.472-482 (1987).
