
On the length of cryptographic hash-values used in 
identification schemes 

Marc Girault Jacques Stern 

SEPT Laboratoire d'hformatique 
Ecole Normale Supkrieure 

45 rue d'Ulm, 75230 Paris, France. 
e-mail : jacqurs . stern@enrr . fr 

42 rue des Coutures, BP 6243 
14066 Caen, France. 

e-mail : marc. giraultasept . f r 

Abstract. Many interactive identification schemes based on the zero-knowledge 
concept use cryptographic hash-values, either in their basic design or in specific 
variants. In this paper, we first show that 64-bit hash-values, a length often 
suggested, definitely decrease the level of the security of all these schemes. (Of 
course, this does not compromise the security of the schemes by themselves). 
Then we prove that collision-resistance is a sufficient condition to achieve the 
claimed level of security. Finally, by using a weaker notion of collision- 
resistance, we present interesting variants of some of these schemes (in particular 
the Schnorr and the Guillou-Quisquater schemes) which minimize the number of 
communication bits for a given level of security. 

1 Introduction 

In recent years, several interactive identification schemes have been proposed based on 
the zero-knowledge concept [GMR85]. In all these schemes, the prover starts by 
committing himself to some secret values he picks at random. To compute this 
commitment, hash-functions are often used, either in the basic design of the scheme or in 
specific variants. 

The first scheme of this type was the one by Fiat and Shamir, presented at 
CRYPT0'86 conference [FS86]. This scheme is based on the modular square root 
extraction problem. The basic protocol, to be repeated several times, has three passes. In 
a variant whose the goal is to minimize the communication bits, the prover sends in the 
first pass a cryptographic hash-value of some elements selected by him. The length 
suggested by the authors for this hash-value was 128 bits. 

At CRYPT089 conference, Schnorr presented an identification scheme based on 
the discrete logarithm problem [Sc89]. The protocol of this scheme has three passes. In a 
variant whose the goal is to minimize the communication bits, the prover sends in the 
first pass a cryptographic hash-value of some elements selected by him. The suggested 
length for this hash-value was at least k bits, where l-2-' is the level of security 
(impostor detection probability) to be achieved. 

At the rump session of CRYPT0'89 conference, Shamir presented an identification 
scheme based on an NP-complete problem, the so-called permuted kernel problem 
[Sh89]. The basic protocol of this scheme, to be repeated several times, has five passes 
and, in the first pass, the prover sends two cryptographic hash-values of some elements 
selected by him. Hash-values of 64 bits were specifically mentioned in the paper. 
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Finally, at CRYPTOP3 conference, Stern presented an identification scheme based 
on an NP-complete problem, the so-called syndrome decoding problem [St931 (a first 
tentative had already been presented at EUROCRYPT'89 [St89]). The basic protocol of 
this scheme, to be repeated several times, has three passes and, in the first pass, the 
prover sends three cryptographic hash-values of some elements selected by him. Hash- 
values of 64 bits were specifically mentioned in the paper. 

The goal of this paper is to discuss the appropriate length of these hash-values. 
First, we show that, if operations are deemed to be computationally feasible (we will 
make this assumption all along the paper), then 64-bit hash-values definitely decrease the 
level of security of all these schemes. This is shown by exhibiting, for each these 
schemes, specific attacks based on the birthday paradox. Of course, these attacks do not 
compromise the security of the schemes by themselves, but only suggest to use longer 
hash-values. 

Second, we formally prove that collision-resistance is a sufficient condition to 
achieve the level of security which is claimed by the authors. As a consequence, a length 
of 128 bits (if F4 operations are deemed to be computationally infeasible) or more for 
the hash-values seems to be convenient. 

Third, by using a weaker notion of collision-resistance (the so-called r-collision 
resistance), we present interesting variants of some of these schemes (in particular the 
Schnorr and the Guillou-Quisquater scheme) which minimize the number of 
communication bits for a given level of security. 

2 The Fiat-Shamir scheme 

2.1 Description 

The identification scheme presented by Fiat and Shamir at CRYFT0'86 conference 
[FS86] is based on the difficulty of extracting square roots modulo a composite number 
whose factors are unknown. A trusted center is used to compute the users' secret keys. 
The universal parameters, i.e. those shared by all the users, are : 

- a large composite modulus n (whose factors are only known to the center) 
- two small integers k and f 
- a pseudo-random function$ 

The recommended size for II was (at least) 512 bits in 1986 (today, a larger size 
would probably be recommended). Values for k and r are closely related to the level of 
security of the protocol (see further). Typical values are 6 and 5 (or 9 and 8 for the 
related signature scheme). 

The prover's public key is his "identity" (i.e. a string I which contains relevant 
informations about him and/or his device). His secret key is composed of k values sj 
computed as follows : Let vj = f(lj) for k small values of j such that vj is a quadratic 
residue modulo n (for convenience, we assume thatj  = l . . .k).  Then sj2vj = 1 (mod n)  for 
each value of j. 
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The basic (3-pass) protocol is the following. 

1. The prover randomly selects an integer r in {0 . .A} ,  computes x = r2(modn) and 
sends x to the verifier. 

k 2. The verifier randomly selects an element e = (el,e2, ..., ek) of (0,l) and sends e to 
the prover. 

The prover computes y = r n  s j  (mod n) and sends y to the verifier. 

The verifier computes all the vj and checks : x = y2 n v j  (mod n) . 

3. 

$. 

e, =I 

.?.=I 

Note that an impostor (who ignores s) can easily deceive the verifier with 
probability 2-k,  by selecting an integer y, "guessing" an element e and computing x as in 
step 4. As he is provably unable, if factoring is difficult, to deceive the verifier with 
probability essentially greater than 2-k ,  then it suffices to repeat t times the basic 
protocol to obtain a level of security (i.e. the impostor detection probability) greater than 
or equal to I - 2-" . 

In order to decrease the number of communication bits, Fiat and Shamir have 
suggested to send to the verifier at step 1 the first 128 bits offix) instead of x. Let us call 
c the result and h the function which maps x to c. The check equation of step 4 then 
becomes : 

c = h( y 2  n v j  (modn)) 
e =I 

We will call the new scheme the h-variant of the Fiat-Shamir scheme. In the 
following section, we show that some bad choices for h reduce the level of the security 
of the scheme. To be clear, these "bad" choices are not mentioned in the paper by Fiat 
and Shamir. 

2.2 Too short (or ill-chosen) hash-values decrease the level of security 

Case : c is 64-bit long. If c is too short (say 64 bits), then there is an easy (at least to 
design) attack using the birthday paradox : first, the impostor selects a set E of 232 
integers y and two distincts elements e(l) and e(2) of (0,l)k . For each element y of E, he 
computes : 

h(y2  n v j ( m o d n ) )  and h ( y 2  n v j ( m o d n ) ) .  
e y . 4  C:t)=l 

Due to the birthday paradox, there exist with high probability two integers yI and y2 
such that : 
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Let us call c this common value (the "collision"). If no collision occurred, the 
impostor has to increase slightly the size of E.  

Now, at each execution of the protocol, the impostor does the following. He sends c 
to the verifier, who sends back e to him. Then, if e = he replies with y,. If e = e(*), he 
replies with y2. So, in two cases, the verifier will be satisfied with the reply and the 
impostor acceptance probability is 2-"' instead of 2-' . In particular, if k = 1, then the 
impostor is always accepted. 

Case : c is a truncation of x. If h is only a truncation of x, for instance if c is composed 
of the 128 rightmost bits of x, then another type of attack allows the impostor to achieve 
the same probability of acceptance as above. The impostor selects an integer z less than n 
whose 128 rightmost bits are zero, and two distinct elements e(1) and e(2) of {O..l}k. Let 
rn be equal to z n vy' (mod n )  and k be equal to - nvj IT "7' (mod n)  . 

ejD,=l eY',=l cj"=l 

By using the Pollard-Schnorr attack of the Ong-Schnorr-Shamir signature scheme 
[PS87], it is possible to find in polynomial time two integers y1 and y2 such that : 

y: + ky: = nt (mod n )  

which implies, by multiplying with rl[vj(modn): 
.)" =] 

With probability about 1/2, yI2 n v j  (mod n)  is greater than y22 n v j  (modn). In 
I .- -1 eY'.=l 

such a case, the above equation implies that the 128 rightmost bits of y12 nvj (mod n)  
e"l -1 

I -  

are equal to the 128 rightmost bits of y22 nvj (modn). (In the other case, try with 
e y  =I 

another value of z). Let us call c this common value. Then the rest is as above. Note that 
this attack can be adapted to the case where c is composed of the 128 leftmost bits (or 
even any 128 consecutive bits) of x. 

2.3 The level of security of the h-variant 

We now show that the h-variant does achieve the security level which is claimed, if h is 
collision-free. In fact, we prove a more general theorem, for which we need the 
following definitions : 

Definition 1. A r-collision for a function h is a r-tuple (xl,x2, ..., X J  of r pairwise distinct 
values such that h(xl) = h(x2) = ... = h(xr). 

Definition 2. (informal) A function h is r-collision-free (or r-collision-resistant) if it is 
computationally infeasible to find a r-collision for h. 
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We now establish a precise connection between r-collision resistance and the level 
of security of the h-variant. 

Theorem 1. If there exists a PPTM (Probabilistic Polynomial Turing Machine) M such 
that the probability that M be accepted by an honest verifier is greater than 
(r-1)2-k +E, with E>O, then there exists a PPTM A? which with overwhelming 
probability either computes the square root of one product of the form : 

k 
nvjcj (modn) 
j = 1  

where cj = -I, 0 or +I (not all of them zero) orfinds a r-collision for h. 

Remark: As observed in [FFS88], the first conclusion contradicts the intractability of 
factoring assumption, as a coalition of the legitimate user and of the potential attacker 
could factor n. The second conclusion implies that h is not r-collision-free. 

Prooc Let Q be the set of m elements in which M picks its random values and E be the 
set {O,l}k, both of them with the uniform distribution. For each value (o,e) of  ZZx E ,  M 
passes the protocol (we say it is a success) or not. Let S be the subset of s2 x E composed 
of all the successes. Our assumption is that : 

with -0 and Card(sZ x E )  = 1n .2~ .  
Let ZZr be the section {WE Q : Card{ eE E : (w,e) is a success} 1 r } .  We have : 

Card( S) I Card( a,). 2k + ( r  - l)(m - Card(s2,)) 
Then : 

which imdies : 

2 E .  
Card (Q, ) 
Card(Q) 

Let be the PPTM obtained by resetting M ~ - 1  times. With constant probability, 
2 picks w in Q, and the probability can be made close to 1 by repeating the execution of 
2. At the end, r values yl, yz ..., y,  are found such that, for distinct e('), e(*) ,..., e@) : 
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Now, there are two possibilities : 

before hashing. In that case, y1/y2is a square root of a product of the form 

n v j c '  (mod n) ,  where ci = -1, 0 or+ 1 (not all of them zero) ; 
k 

j= 1 

b) or all these values are pairwise distinct and a r-collision for h has been found. 0 

This result suggests to use hash-functions which are only resistant to r-collisions 
(with r > 2), so that the hash-values computed in the first pass can be made much shorter. 
Indeed the decrease of the level of security can be balanced by sending a slightly larger 
value of e in the second pass (more precisely, if r = 2 " ,  eE{O,l}ktu instead of 
eE(0,l)'). But this is not so interesting in the Fiat-Shamir scheme, as it would also 
imply a larger number of secrets sj, a very undesirable feature. On the contrary, this idea 
is particularly attractive in the Schnorr scheme, as shown in the following section. 

3 The Schnorr scheme 

3.1 Description 

The identification scheme presented by Schnorr at CRYPTO'89 conference [Sc89] is 
based on the difficulty of computing a discrete logarithm. The universal parameters are : 

- a large prime p 
- a prime q such that q I p -  1 
- an integer a (the "base") such that a4 = l(mod p )  
- a small integer k. 

The recommended sizes for I;. and q were respectively (at least) 512 bits and 140 
bits in 1989. The value of k is closely related to the level of security of the protocol (see 
further). A typical value is 40 (or 72 for the related signature scheme). 

The prover's secret key is an integer s in [ l...q). His public key is v = a-'(modp). 
The basic (3-pass) protocol is the following. 

1. The prover randomly selects an integer r in { l...q}, computes x = a'(mod p )  and 
sends x to the verifier. 

The verifier randomly selects an element e of (0 ... 2' -I}and sends e to the prover. 

The prover computes y = r +  se( mod q )  and sends y to the verifier. 

The verifier checks : x = aYvc(  mod p) . 

2. 

3. 

4. 
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Note that an impostor (who ignores s) can easily deceive the verifier with 
probability 2 - k ,  by selecting an integer y. "guessing" an element e and computing x as in 
step 4. As he is provably unable, if computing discrete logarithms is difficult, to deceive 
the verifier with probability essentially greater than 2 - k ,  then the level of security is 
equal to 1 - 2-&. 

In order to decrease the number of communication bits, Schnorr has suggested to 
send to the verifier at step 1 c = h ( x )  where h is a k-bit hash-function. The check 
equation of step 4 then becomes : 

c = h(ctYv'(mod p ) )  

We will call the new scheme the h-variant of the Schnorr scheme. In the following 
section, we show that some bad choices for h reduce the level of security of the scheme. 

3.2 Too short hash-values decrease the level of security 

The first observation is the same as in the Fiat-Shamir scheme : if c is too short, 
then the security level may be lower than expected. For example, if c is only 64-bit long, 
then a birthday attack quite similar to the one described in subsection 2.2 can be designed 
(no matter how the function h is defined). As a consequence, c should be at least 128-bit 
long if we want the security level be equal to 2 - k .  

The second observation differs from Fiat-Shamir case : as far as we are aware, the 
level of security does not decrease if c is only a truncation of x, provided the number of 
bits is large enough (say 128 bits, because of the first observation). This shows that, in 
this scheme, one-wayness (and a fortiori collision-resistance) does not seem to be a 
necessary condition for h, in order to achieve a security level be equal to 2 - k .  
Nevertheless, collision-resistance remains a sufficient condition to achieve this security 
level, as shown now. 

3.3 The level of security of the h-variant 

We can state a s imi la r  theorem to the one of section 2 : 

Theorem 2. If there exists a PPTM M such that the probability that M be accepted by an 
honest verijier is  greater than ( r  - 1)2-k +E, with E>O, then there exists a PPTM fi 
which with overwhelming probability either computes the discrete logarithm of v 
(modulo q in base a) orfinds a r-collision for h. 

Prooc The proof is quite similar to the theorem of section 2. At the end, r values yI,  
y2 ,..., y ,  are found such that, for pairwise distinct e l ,  e2, ..., e,: 

h(cty'vel(mod p ) )  = h(aY*vel(modp))= ...........= h(aY7vCr(mod p ) )  
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Now, there are two possibilities 

a) either two of the values are equal before hashing, say : cly~vcl(modp) and 

aY2ve2 (mod p )  . In that case, - - yz (mod q )  is the discrete logarithm of v modulo q in 

base a. 
e2 -el 

b) or all these values are pairwise distinct and a r-collision for h has been found. 17 

3.4 An interesting optimization 

The preceding theorem leads to an interesting optimization of the Schnorr scheme. The 
idea is to use r-collision hash-functions with r > 2, so that the hash-values computed in 
the first pass can be made much shorter. The decrease of the level of security is 
compensated by sending a slightly larger value of e in the second pass. Contrary to the 
Fiat-Shamir scheme, this does not have any undesirable consequence. 

In order to make a precise statement, we need a result related to the birthday 
paradox : 

Lemma. Let E be a set of cardinality n, F, a sample of size m drawn from E with 
replacements and r an integer. Let us call r-coincidence an element of E to which exactly 
r elements of F, are equal to. For n a suflciently large integer, m = (b!)yr nr-‘Ir, with 
h I 1 and m/n 5 11128, the probability that there is no s-coincidence for s 2 r is very 
close to e-A (hence greater than l/e ). 

Proof (sketch). By a classical result from von Mises (see e.g. [Fe68] page 106), the 
probability p(i,r)that there are exactly i r-coincidences is : 

with : 

If m= (hr!)vrnr-”r with m l n  I1/128, then A = = h. Hence the probability p(0,r) 
that there is no r-coincidence at all is very close to e-A, and so is the probability that 
there is no s-coincidence for s 2 r if h I 1. (Intuitively, the reason why is the following : 
if the probability that there is a s-coincidence for s 2 r + 1 were not nearly equal to zero, 
then the probability 1-p(0,r) that there is a r-coincidence would be nearly equal to 1 ; 
this is not the case since 1 - p(0 ,  r )  = 1- e-A 5 1 - l/e = 0.632). 

This result allows to specify a version of the Schnorr scheme which minimizes the 
number of communication bits. Let m be an integer greater than or equal to the number 
of operations deemed to be computationally infeasible (typically m = P4), and h be a 
pseudo-random hash-function whose the values range in the interval ( 0  ..a-1 ] with 
m =  (b!)vrnr-vr,  mln 5 u128 and h I I . Then, using a traditional argument, h can be 
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considered as r-collision-free, as the probability that a r-collision is found with a number 
of computations supposed to be infeasible is substantially less than 1 (to be precise, less 
than 0.632 and even less than 1 - e-'). For instance, if r = 2, the usual choice : m = nv2 
gives h = 1/2. If n 2 214, the assumptions of the lemma are satisfied, and the function can 
be considered as (2-) collision-resistant. 

If r > 2, according to the theorem of subsection 3.2.1, the level of security has 
decreased to 1 - (r - 1)2-'. But we can compensate this decrease by choosing e in the 
range { 0 . . . 2 ~ + ~ 0 g + ~ )  }. For that reason, it may be convenient that r-1 is a power of 2. 

As a consequence, some practical values for r are 5 and 9. Fixing m to 264 and h to 
1/2 as above, we have r = 5 3 n 2 2*'/2.27 and r = 9 j n 2 272/3.84 3 n 2 Z7' (since 
we must have m/n I l/128). 

In the first case, e must be k+2-bit long and the hash-values 79-bit long, if we want 
to achieve a level of security equal to I - 2-'. 

In the second case, e must be k+3-bit long and the hash-values 71-bit long. We 
therefore have saved about 57 bits in the first pass (compared to a 128-bit hash-value 
computed from a (2-)collision-resistant hash-function) and, in the second pass, we have 
only three bits more to transport. Globally, we have saved 54 bits, for a total of 71 + (k  + 
3) + 140 = 214 + k, instead of 268 + k. If k = 40, then we have a total of 254 instead of 
308, i.e. the number of communication bits has decreased by about 18%. 

The same optimization applies to the Guillou-Quisquater scheme [GQ88]. In that 
case, the number of communication bits can be typically decreased from 680 to 626 bits, 
i.e. by about 8%. 

4 The Stern identification scheme 

4.1 Description 

The identification scheme presented by Stem at CRYFT0'93 conference [St931 i s  based 
on the difficulty of the syndrome decoding problem, that is the (NP-complete) problem 
of finding a word of given syndrome and of given weight. The universal parameters are : 

- a random binary ( k  x n )  matrix A ( k  < n) 
- an integer p 
- a hash-function h. 

Typical values for (k,n,p) are (256,512,56) or, still better, (512,1024,110). The 
prover's secret key is a random n-bit word s of weight (i.e. the number of '1' bits of s, 
denoted by Isl) equal to p .  His public key is v = A ( s ) .  The basic (3-pass) protocol is as 
follows. 
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1. The prover randomly selects an n-bit word y and a permutation o of the integers 
{I ... n}, computes c,=h(o,A(y)), c, =h(y.o), c, =h(y ' .o) ,  withy'=y@s (when 
€B stands for bitwise addition modulo 2 and y .0  refers to the image of J 

under permutation a), and sends c,, cI and c, to the verifier. 

The verifier randomly selects an element b of {0,1,2) and sends b to the prover. 2. 

3. The prover sends to the verifier : 4. The verifier checks : 

- i f  b = O :  (y,o) h(o,A(y))=co and h(y.o)=Ci 
- i f b = l : ( y ' , o )  h(a,A(y')@v)=c, and h(y'.o)=c, 
- if b = 2  : (y.a,y ' .a)  h(y.o)=c,, h(y' .o)=c, and 

1y.a c3 y' .01 = p 

Note that an impostor (who ignores s) can deceive the verifier with probability 213, 
by using one of the three following strategies : 

a) he selects a permutation (T and two words y and y' such that A( y')  = A ( y )  63 v ,  and 
computes c,, cI and c, as above. Then he is able to answer correctly to 
b = 0 and b = 1, but not to b = 2.  

b) he selects a permutation a and two wordsy and y' such that Iy 63 y'l = p ,  and computes 
c,, C, and c2 as above. Then he is able to answer correctly to 
b = 0 and b = 2, but not to b = 1. 

c) he selects a permutation d and two wordsy and y' such that ly@y'l= p .  computes 
co = h ( ~ , A ( y ' ) @ v )  and computes c, andc, as above. Then he is able to answer 
correctly to b = 1 and b = 2, but not to b = 0. 

Provided an impostor cannot deceive the verifier with probability greater than 2/3, 
then it suffices to repeat t times the basic protocol in order to obtain an impostor 
detection probability greater than or equal to 1-(2/3)'. 

4.2 Too short hash-values decrease the level of security 

We now show that an impostor can deceive the verifier with probability 1 if hash-values 
co, c, and c, are #-bit long. More precisely, we show that, if only one of these hash- 
values is 64-bit long, then the impostor has a strategy, based on the birthday paradox, 
which allows him to deceive the verifier with probability equal to 1. 

Case : co is 64-bit long. The attack is as follows. First, the impostor selects two words z 
and Z' such that I Z  @ z'I = p . Then he prepares a set C of Z32 permutations (3 of (1.. . n} . 
For each permutation (r of this set, he computes h(o,A(z.o-')) and h(o,A(z'.o-')@v). 
Due to the birthday paradox, there exist with high probability two permutations o and 0' 
in C such that h(o ,A(z .o- ' ) )=h(o ' ,A(z ' .a ' - ' )~v) .  Let us call c,, this common value 
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(the "collision"), and set y = 2 . C '  and y'= zl.ol-'. If no collision occurred, the impostor 
has to increase slightly the size of C. 

Now, at each execution of the basic protocol, the impostor does the following. He 
sends cot c1 = h(z )  and c2 = h(z')  to the verifier. If the verifier sends b = 0, he replies 
with ( y , o ) .  If b = I ,  he replies with ( y ' , ~ ' ) .  If b = 2 ,  he replies with (z,z'). In each 
case, the verifier will be satisfied with the reply. 

Case : cl is 64-bit long. The attack is as follows, The impostor selects a permutation 0 
and a word y'. Then he prepares a set El of 232 words yl of syndrome equal to A( y ' )  @ v ,  
i.e. words y ,  such that A( y , )  = A( y ' )  @ v .  (Note that there are about 2"-' such words, 
hence more than 2256, and that they can be computed in a straightforward manner). He 
also prepares a set E2 of 232 words yI2 such that Iy' B y 2 /  = p .  With high probability, 
there exist yl in E, and yz in E2 such that h(y, .o)  = h(y,.o). Let us call cI this common 
value. 

Now, at each execution of the basic protocol, the impostor does the following. He 
sends c0 = h(o, A(y , ) ) ,  c1 and c, = h( y ' . o )  to the verifier. If the verifier sends b = 0, he 
replies with (y , ,o ) .  If b = 1, he replies with (9  ,a). If b = 2 ,  he replies with (y2 .0 ,y ' .0 ) .  
In each case, the verifier will be satisfied with the reply. 

Case : c2 is 64-bit long. The attack is essentially the same as the previous one. First, the 
impostor selects a permutation o and a word y. Then he prepares a set El of 232 words 
yll of syndrome equal to A ( y ) @ v  and a set E2 of z3' words yI2 such that Iy@yt21= p .  
With high probability there exist a word yI1 in E,  and a word y ' ,  in E2 such that 
h( ytl .a) = h(y ' ,  .a). Let us call c2 this common value. 

Now, at each execution of the basic protocol, the impostor does the following. He 
sends co = h ( o , A ( y ) ) ,  c, = h ( y . o )  and c2 to the verifier. Then, if b = 0 ,  he replies 
with(y,o). If b = l ,  he replies with ( y ' , , ~ ) .  If b = 2 ,  he replies with ( y . ~ . y ' ~ . ~ ) .  In 
each case, the verifier will be satisfied with the reply. 

4.3 The level of security 

The level of security results from the following theorem, implicitly contained in [St931 : 

Theorem 3. If there exists a PPTM M such that the probability that M be accepted by an 
honest verifier is greater than 213 + E, with 0-0, then there exists a PPTM M which, 
with overwhelming probability, either computes a word of weight p and of syndrome v or 
f inds  a collisionfor h. 

5 The Shamir identification scheme 

5.1 Description 

The identification scheme presented by Shamir at CRYPTO'89 conference [Sh89] is 
based on the permuted kernel problem, that is the (NP-complete) problem of finding a 
permutation which puts a given vector into the kernel of a given matrix. The universal 
parameters are : 
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- a (small) prime p 
- a random p-ary (k x n )  matrix A ( k  i n )  
- a hash-function h. 

Typical values for @,k,n) are (251,16,32) or, still better, (251,37,64). All 
calculations are done modulo p .  The prover's secret key is a random permutation n: of the 
integers {1 ... n}. His public key is an n-vector v such that v . ~  E KerA (where, as above, 
v.x: refers to the image of v under permutation n). The basic (5-pass) protocol is as 
follows. 

1. The prover randomly selects an n-vector y and a permutation o of the integers 
{1 ... n}, computes co=h(o,A(y)) and c, =h(o ' ,y .o) ,  with d=n:cs,  and sends c, 
and c, to the verifier. 

The verifier randomly selects an integer d in (0 . . . p -  1)and sends d to the prover. 2. 

3. The prover computes w = y.o+dv.o' and sends w to the verifier. 

4. The verifier randomly selects a bit b and sends b to the prover. 

5. The prover sends to the verifier : 6. The verifier checks : 

- i f  b=O :o h( (T, A ( w. o-' )) = co 
- i f b = l : o '  h(o' ,w-dv.0')  =c, 

Note that an impostor (who ignores 7c) can deceive the verifier with probability 
( p  + 1)/2p, by using one of the two following strategies : 

a) he selects an n-vector y, two permutations (T and o' and an integer d, in {0 . . . p -  l}, 
then computes co as above and c, =,$(a', y.o-d,vo'). At step 3, he sends w = y.0 to the 
verifier, whatever d is. Then he is able to answer correctly either to 
b=Oandanyd ,  o r t o  b = l a n d d = d , ,  butnotto b = l a n d d # d d , .  

b) he selects an n-vector y, two permutations 0 and (T' and an integer d, in (0.. . p - I}, 
then computes c, = h(o,A(y+d,v.o'o-')). At step 3, he sends w = y.a+dv.o' to the 
verifier. Then he is able to answer correctly either to 
b = 1 and any d ,  or to b = 0 and d = d,, but not to b = 0 and d # d,. 

Provided an impostor cannot deceive the verifier with probability greater than 
(p+1)/2p, then it suffices to repeat t times the basic protocol in order to obtain an 
impostor detection probability greater than or equal to 

1 - ( p + 1 / 2 p ) '  (= 1-2-' ifp is not too small). 
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5.2 Too short hash-values decrease the level of security 

We now show that an impostor can deceive the verifier with probability ( p + 2 ) / 2 p  if 
hash-values co and c, are @-bit long. More precisely, we show that, if only one of these 
hash-values is &-bit long, then the impostor has a strategy, based on the birthday 
paradox, which allows him to deceive the verifier with probability equal to (p+2) /2p .  
This is of particular significance if the value sent by the verifier in the second pass is 
restricted to 0 or 1 (a possibility mentioned in [Sh89]), since the impostor acceptance 
probability then grows up from 3/4 to 1. 

Case : co is 64-bit long. The attack is as follows. First, the impostor selects a 
permutation o', an n-vector z and two distinct elements d, and d,. Then he prepares a set 
Z of 232 permutations (3 of {1 ... n } .  (Note that there are n!>32!22"' such 
permutations). For each permutation D of this set, he computes 
h(o,A(z.o-' +d,v.o'o-')) and h(o,  A(z.o-' +d,v.o'o-')). Due to the birthday 
paradox, there exist with high probability two permutations o1 and a, in C such that 
h(o,,A(z.o;' +d,v.cr'cr;')) = h(o,,A(z.o,' + d , ~ . o ' o ; ~ ) ) .  Let us call co this common 
value. 

Now, at each execution of the basic protocol, the impostor does the following : he 
sends co and c, = h(o ' , z )  to the verifier, who sends back d to him. He sends 
w = z+dv.o' to the verifier, who sends back b to him. Then, if b = 1, he replies with 0'. 

If b = 0 and d = d, (resp. d = d , ) ,  he replies with o, (resp. 02) .  In other cases, he sends 
anything. So, in p + 2 cases, the verifier will be satisfied with the reply. 

Case : c1 is 64-bit long. First, the impostor selects a permutation o, an n-vector y and 
two distinct elements d, and d,. Then he prepares a set c' of 232 permutations G' of 
{1 ... n}. For each permutation o' of this set, he computes h(o' ,y.o-d,v.o')  and 
h ( ~ ' , y . 0 - d 2 v . 6 ' ) .  With high probability, there exist two permutations o', and o', in x' 
such that h(o' ,  , y.o - d,v.o', ) = h(o' ,  , y.o - d2v.ot2 ) and we call c1 this common value. 

Now, at each execution of the basic protocol, the impostor does the following : he 
sends co = h ( o ,  A ( y ) )  and c, to the verifier, who sends back d to him. He sends w = y.O 
to the verifier, who sends back b to him. Then, if b = 0, he replies with o. If b = 1 and 
d = dl (resp. d = d 2 ) ,  he replies with a', (resp. o', ) . In other cases, he sends anything. 
So, in p + 2 cases, the verifier will be satisfied with the reply. 

5.3 The level of security 

The level of security results from the following theorem, implicitly contained in [Sh89] : 

Theorem 4. If there exists a PPTM M such that the probability that M be accepted by an 
honest verijier is greater than ( p +  1)/2p + E, with E>O, then there exists a PPTM fi 
which with overwhelming probability either computes a permufation K such that 
v. n E KerA orfinds a collision for h. 
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6 Conclusion 

First, we have considered several identification schemes using hash-values in the 
first pass (either in their basic design or in specific variants) and given evidence that 64- 
bit hash-values were too short to achieve the level of the security claimed by their 
authors, by exhibiting for each of them one or more specific attacks. Second we have 
proved that collision-resistance was a sufficient condition to achieve this level. Third we 
have shown that the number of conlmunication bits could be minimized in schemes 
based on modular arithmetic by using r-collision resistant hash-functions instead of 
collision-resistant hash-functions. As an example, the number of bits transported in the 
first pass of the Schnorr scheme can be decreased from 128 to 71, and the total number 
of bits transported from 308 to 254, i.e. by 18%, for a level of security equal to 1-240. 
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