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Abstract. Many cryptographic algorithms use number theory. They 
share the problem of generating large primes with a given (fixed) num- 
ber n of bits. In a series of articles, Brandt, Damgard, Landrock and 
Pomerance address the problem of optimal use of probabilistic primality 
proofs for generation of cryptographic primes. Maurer proposed using the 
Pocklington lemma for generating provable primes. His approach loses 
efficiency due to involved mechanisms for generating close to uniform 
distribution of primes. We propose an algorithm which generates prov- 
able primes and can be shown to be the most efficient prime generation 
algorithm up to date. This is possible at the cost of a slight reduction 
of the set of primes which may be produced by the algorithm. However, 
the entropy of the primes produced by this algorithm is assymptoti- 
cally equal to the entropy of primes with random uniform distribut,ion. 
Primes are sought in arithmetic progressions and proved by recursion. 
Search in arithmetic progressions allows the use of Eratosthenes sieves, 
which leads finaly to saving 1 / 3  of the psuedo prime tests compared to 
random search. 

1 Introduction 

Primality testing has a long history and has undergone a radical development 
during the last decade. We shall not go into details of this development but begin 
with mentioning that prime tests split into cornyositeness proofs (which arc 
polynomial) and primality proofs, which are more complex. The fastest known 
primality proof [8] which has been implemented by Atkins and Morain [16], is 
polynomial, but in practice slower than superpolynomial algorithms such as the 
cyclotomy test [4]. 

Algorithms proposed for the specific purpose of generating primes for cryp- 
tographic use are different due to the technological motivation behind them. 
Efficiency and simplicity are the main concerns and - as a consequence of the 
domain of application - ”security” of primes is an issue of concern too. Security 
of a prime p basically means that the discrete logarithm base p and factorization 
of p out of a product of usually two primes should be, if possible, harder than 
average. The last condition raised the wish to have large prime factors in p f 1; 
this was  formalized in conditions for so called ”Gordon secure primes” [lo]. It 
was obvious that with the information about factors of p f 1 available for a 
Gordon prime, a proof by Pocklington’s lemma was almost for free. The first to 
make use of this observation was Maurer in [14]. By the date of Maurer’s paper, 
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Gordon primes were de facto outdated by the ECM ([12]) factoring method: 
Gordon primes were designed to  reduce the odds of pf 1 factoring methods [19], 
but cannot provide any specific protection against elliptic curve factoring. This 
facts are reflected in [2l]. For technological applications, Maurer’s algorithm 
lacks both the ease of implementation and the efficiency requirements - being, 
by the authors statement ([15]), p19 60% slower than Rabin - Miller tests which 
are also simpler to  implement. Maurer does state in [15],p29, that  his algorithm 
is more efficient than probable primes, but this statement is not supported by 
facts and is in contradiction with the rest of the paper. The paper [14] is impor- 
tant for having first indicated that for the specific purpose of cryptographic use, 
provable primes were worth considering. We propose an algorithm that seeks 
primes in arithmetic sequences for which a factorization of the ratio is known 
- this implies a recursive use of the algorithm. For the trial division phase we 
use Eratosthenes sieve methods, which lead to  an increase of the optimal length 
of trial division; optimal trial division was also evaluated in [14], [2]. In the last 
paper, the authors also consider means of speeding up Maurer’s method and 
notice that the ‘almost’ uniform distribution required by Maurer has a negative 
impact on the performance. An elegant analysis of the information entropy of 
primes produced by ”incremental search” - and proved with Rabin - Miller tests 
- is provided in [l]. Incremental search is a special case of arithmetic progressions 
- when the ratio is 2. We shall adapt some of the methods of that  article for the 
analysis of our alogithm. Probabilistic methods like Rabin - Miller may falsely 
declare composites for primes and the probability for this event decreases with 
the iteration of the same test for different bases. In [3] the authors show that 
this probability also depends on the size of the primes produced; tables for the 
error probability q t , k  that a composite with k - binary digits is declared prime 
after t independent Rabin - Miller tests are quoted also in [l]; the tables show 
that the probability of failure of the Rabin - Miller test after t rounds is substan- 
tially lower than the 4-‘ initially proved by Rabin [20]. These results suggest 
to the authors the conclusion that ”using the Rabin test remains in many cases 
the most practical approach” [l],p.l. We show that recursive primality proofs 
combined with search in arithmetic progressions is preferable to  Rabin - Miller 
tests, also from the point of view of efficiency, in the range of sizes of primes 
covered by the tables in [l] and probably for primes up to  at least 1000 bits. For 
larger primes, the difference becomes negligeable. 

2 Outline of the Algorithm 

Let B > 0 and n > 0 be positive integers and s , c  > 1 real constants. We 
propose following algorithm for generating provable primes of n digits, together 
with their certifiactes: 
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Algor i thm A P :  
Input: n. 
Cons tan t s :  B ,  c ,  s. 

Step 1 .  If n < B return a random prime with n bits (generated by trial 
division). 

Step 2. Produce an integer F with 2'" < F < 2"" which is completely factored, 
by recursive use of this algorithm. The constant c may be 1/2, or  1/3 , 
depending on the prime ceritfication used (see bellow). 

Step 3. Draw a random number t E (2"-2/F,  2"-'/F - sn). 
Step 4. Find a prime in the arithmetic progression P = { N  1 N = N ~ + i a ;  NO = 

t a +  1;a = 2 F ; 0  5 i 5 s}. 

The primality test for Step 4 splits naturally in three parts which are applied 
to  prime candidates in the progression P until a prime is found - together with 
a corresponding certificate, or the bound s is passed and the algorithm returns 
failure. 

Part I : Trial division by primes < A, where A is a given upper bound. 
calculate ub = a mod p ,  V p  < A .  calculate NL = NO mod p ,  'dp < A. initiate 
an array tab of length s. For all p < A,  set tab[i] = 1 for all solutions of the 
modular equation N j  + iag = 0 mod p .  This is obviously an Eratosthenes 
sieve. 

Part I1 : Compositeness test using Rabin - Miller. traverse the table tab 
starting with i = 0 and perform a Rabin - Miller test with base 2 ,  for the 
i-th elements in the progression P ,  such that tab[i ]  = 0. Continue if the test 
declares "composite", go to  Part 111 otherwise. 

Part I11 : Pr ima l i ty  proof  using the Pocklington lemma. 

We recall the Pocklington lemma: 

Propositionl. I Let N be an integer, such that N - 1 = F . R, where F is 
completely factored. Suppose that, 

Vq I F,  30, with ( ( u i N - ' ) / q ,  N )  = 1 and = 1 mod N (1) 

Then  all primes p I N are of the shape p = k F  + 1 .  In particular, if F > fl, 
then N is prime. 

Proof. Let a = nqlF c y q .  Then 

( d N - ' ) I q ,  N )  = 1 and ( u N - l  = 1 mod N Vq I F (2) 

If rlJN is a prime, the above equations hold a fortiori mod r .  The multilpicative 
group mod r has thus a subgroup of index F generated by (u thus proving the 
first assertion: F 1 ( r  - 1) and, a fortiori, r 2 F + 1. If F > fi , it follows that 
T > n , V r  I N ,  r prime. This is a contradiction, since N must have at  least one 
prime factor r 5 0. Consequently, N must be prime, which ends the proof. 
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In part I11 of the algorithm, for each qllF, a base a,  verifying (3.4) is sought 
among the first primes, starting with 2. If for some base a:-' = 1 mod N 
does not hold, N is composite (little Fermat does not hold). If for some q ,  no 
base verifying (1) is found before a fixed upper bound R of trials, no primality or 
compositeness proof can be provided and N is incremented (Part I1 is proceeded). 
Finally, if bases a p  are found Qq I F ,  N is prime. The prime certificate consists of 
the pairs {(a,, q )  I q I F }  together with certificates for each prime q ,  recursively 
[18]. Providing all these pairs together with the certificates for q being prime 
gives a proof of N's  primality by the above lemma. In [5] a certification method 
using an O(n1/3) factored part of n - 1 is provided. It requires proving that a 
certain discriminant is not a perfect square. Suppose n = F t  + 1 and F > f i ,  
and bases a,  verifying (3.4) have been found for all q I F .  If n is composite, it 
is built up of two primes p ;  = k; . F + 1. Let n = a F 2  + bF + 1; by comparing 
n = p l p 2  we get k l k z  = a and k l  + kz = b .  It is then easy to  see that n is 
composite iff A = b2 - 4a is a perfect square. This again can be checked by 
verifying if A is a perfect square modulo a set of primes { p  I n p  > F } ;  if this is 
the case, ( k i  mod F) = ki < F .  Otherwise n is prime. One can take in general 
{ p  I p < l ogF}  as set of primes. 

3 Optinial Trial Division and Run Time Analysis 

We assume a machine with wordlength L3,  the time for a short integer mul- 
tiplication is t and let m = n /B .  The time involved in the trial division is: 
Ti = t((1 + ~ ) m  + logA)& and is build up of (1 + c)m short divisions for 
calculating a' and N' and log A divisions for calculating a modular inverse, for 
each prime; we shall write Tt = tm(1 + c + 6)&, with 6 = - 0 for 
m -+ 00. Note that  the trial divisions are performed only once and do not have 
to be repeated for all n candidates. Assuming that the prime candidates for 
AP are equally distributed among the residue classes mod p for all small test 
primes p ,  the fraction of prime candidates after this step is, by Mertens' theorem 
f = k. The second part then takes in average: -7 

where the length of the expected seek interval is d .  n ,  and naive multiplication is 
used for exponentiation. We shall see that d = 1, so we subsequently neglect this 
factor. Optimal table length A may be found by writing g p ( A )  = Tt(A) +T'(A) 
and taking the derivative. The optimal value found is A p  = log(nam) kn2m ' with 

a constant k = close to  0.4. As a term of comparison, optimal table 
length in [14] is O(nm). Actually, Maurer's argument goes like this: adding a 
prime A to  the table saves a pseudoprime test with probability 1/A, so optimal 
length is reached when the expected saving T,/A balances the expected extra 
division which he sets to 1 . T d ;  the argument is incorrect, since both values 
should be averaged over the whole seek interval. It does however yield a good 

-7 
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estimate of the optimal value AR = S n m ,  with a(A)  defined in [14], as 
found by taking the derivative of the adequate function g~ (indices P stay for 
progression search, R for random search). In [2] the optimal table length is even 
smaller: O(,&). An alternative to the sieve method consists in computing 
the current remainders N ,  = N; + ia mod p .  This yields the same assymptotics 
as A p ,  with 6 replaced by a constant cr = 2wt, where t ,  is the ratio between the 
time for a short addition and a short multiplication. Beside the smaller constant, 
this approach has the disadvantage that the remainders mod p must be stored 
(three values for each test prime p ) .  Comparing Ap to AR shows that the use 
of the Eratosthenes sieve sensibly increases optimal table length, leading to the 
elimination of more candidates in the trial division phase. One can evaluate this 
performance improvement: since the number of pseudoprime tests is in average 
fn both for random search and for search in progressions, in the last case the 

= o( ( Iodnm) ,) -, 2 
for ra -F 00. This improvement appears to  be more substantial than what can be 

exponentiations drop by a factor of fp = , o g A p  
log n2m/ log(n2m) 3 

~~ 

saved in a probabilistic proof approach by better error estimates, like in [3]. For 
n = 1024 the number of primes for the trial division phase is about 215 (with 
A M 219) and this may be argued to be too large for some machines. Using the 
incremental difference storing for the primes, this requires 32 KB of memory 
which should be afordable on most current PC’s. The saving factor is 0.72 and 
it results in about 10 pseudo prime tests less! It is theoretically intersting to 
observe that A p  = 0 can be achieved by using a divide and conquer 
method. The idea is following: group the test primes in A/( logAfi)  products 
of length fi and take first the remainders modulo these products and then 
the remainders of these remainders modulo the single primes; this yields: Tt = 
2 t f i ( l +  e + 6)&. Iterating this method leads to  the stated result, when the 
factor 2 6  is replaced by (logm) . ml/logm = O(1ogm). This means taking 
products of length m/2, m/4,  ..., 2. Of course, the building of the factors belongs 
to a precomputation phase and the storage space explodes to O(n2m2)  - the 
method is not meant for implementation! Note that the base 2 is a suitable 
base for the Pocklington lemma, being a q-th power nonresidue with probabilit,y 
(1 - l / q ) .  This is remarcable, since exponentiation base 2 is particularly efficient 
([2]).We shall consider here the version of the algorithm where F is built up of 
a single prime. With this, the time for part I11 is 1 - 6 exponentiations, since 
for proving that 2 is an adequate F-th power nonresidue, one only raises to the 
power ( n  - l)/F, the exponent thus having length n(1 - E ) .  With probability 
l/F a further base should be tested: we do not take this event into account, 
since its probability is exponentially low. If E = 1/3 , checking that A is not a 
perfect square takes C logp = O(1ogF) = O(n) short opertations, which are 
negligeable. We now want to motivate our claim that this algorithm is more 
efficient than pseudo - prime algorithms, for the range of values of n of current 
interest. Of course, the sieve method can also be used with pseudo - primes 
in incremental search, although this method was not proposed before. Some 
implementation might also use suboptimal tablelength, due to limited memory. 

( 0,: ) 



We thus do not consider the advantages of trial division as specific for AP. The 
advantage of our algorithm compared to pseudo - prime algorithms will thus 
relay in the shorter proof, the disadvantage, in recursion. It is these two factors 
we shall have to compare. If R is the number of Rabin - Miller tests performed 
until a pseudoprime is found and T, is the time for an n-bit exponentiation, 
the time for the proof is, as seen above, (1  - c)Te and the time involved in 
recursion is upper bounded by T, = (A) . RT, . The total overhead for proving 
a prime is thus: T, = (A . R + (1  - 6 ) )  . T,. With n = 384 - which is currently 
standard for RSA - for a weak implementation, with 6 = 1/2 and A = 1000 - 
thus R F=: 20, the overhead is Tp x *Te. If 6 = 1/3, Tp < T,, even without 
increasing the tables. With optimal tables, Tp < T,, up to more than 1000 bits. 
A standard implementation of our algorithm needs thus less than the time for 
one additional exponentiation as overhead for a primality proof, for n 5 1000 
bits. Compared to that, a Rabin - Miller test with probability of error < 2-" 
requires three additional exponentiations for 384 bits and two for 600 bits; no 
values for n = 1000 are provided in [l]. Extrapolating the values from [l], two 
Rabin - Miller tests for n = 1000 bits will provide an error probability p e  with 
2-60 < p ,  < 2-48. For primes with more than 1000 bits our algorithm may 
become more expensive than a pseudo - prime algorithm, while keeping the 
advantage of providing a primality proof. I t  must be noted that for large primes, 
the number R of Rabin tests which eliminate composite candidates increases 
(linearly with n)  and the overhead for the primality proof becomes negligeable: 
a good approximation of R is R(n,A)  = x 0.392&, the logarithm 
being the natural one. From this and the estimate for the overhead Tp above, it 
follows. 

(4) 
c4 0.392(1-6)logA %--+ 1 2/3 . f(n) = Tp = - + 

n 80 n/log(n) R T, 1 - c4 

and f(n) < 2% for n > 1000. Thus AP is never more than 2% slower than 
probabilistic primes methods, if at all! 

4 Analysis of the Algorithm 

This algorithm has two different and independent reasons for producing non uni- 
formly distributed primes. The first is that while searching primes in arithmetical 
progressions, primes at  the end of long gaps are chosen with higher probability. 
This very phenomenon was investigated by Brandt and Darmgard in [l], for 
progressions with ratio 2. Their results relay upon the prime r-tuple conjecture 
of Hardy - Littlewood. This is an assympotoic formula for the number Td(N) of 
positive integers n 5 N such that n + d l ,  n + d?,  . . . , n + d, are simultaneously 
primes. The vector d is the r-tuple ( d 1 ,  d?, . .  . , d,). The conjecture says: 



288 

‘-‘(P-v (PI) wilh sd = np *, provided sd  # 0 and where vd(p) is the number 
of distinct residue classes modulo p occupied by the numbers in the r-tuple d. 
Gallagher [9] uses this conjecture to prove that: 

sd  - h‘ for h + 00 where H’ = { ( d l ,  dz, . . . , d,.) I d E N , d i  # d j } ( 6 )  
dEH’ 

In order to  use Gallagher’s result for primes in arithmetic progressions with 
ratio F ,  we must assume the extended Riemann conjecture and F = o(fi), for 
proving the necessary distribution of priines in arithmetic progressions [S]. With 
this, Gallagher’s result can be generalized to following statement. The number 
& k ( h ,  N )  of integers n < N for which the interval (n ,  n + h F )  contains exactly 
k primes in the progression 1 + t F  verifies: 

for N + 00, h - Am log N 
e-xXk 

Q k ( h , N )  - IV- k! F (7) 

and lemma 5 from [l] can be restated: 

Propositionz. Let Gh(z) denote the number of primes p in the progression 
1 + t F ,  such that p < z and p - q 5 h F ,  where q i s  the prime preceding p an the 
progression. Assumang the r-tuple conjecture, the ERH and with F = o(fi), f o r  
any constant A, 

The factor p ( F ) / F  stems from the fact that p (F )  out of F residue classes 
modulo F contain primes. The proof of this lemma uses ( 6 )  and Dirichlet’s 
theorem on distribution of primes in arithmetic progressions [6] .  Let h!fk be the 
set of primes with k bits and for k 5 B, let ML = h f k ,  For k > 8, we put: 
ML = { p  E I p = t q  + 1 ,  p E M[k,,l+,}. Then ML is a subset of the primes 
that can be produced using AP. Let H i  be the uncertainty about primes sought 
in arithmetic porgressions by AP and HL be the uncertainty of randomly chosen 
primes in M i .  Using (7) and methods like in [l], one can prove that: 

H i  
H: 
- - 1 f o r k i o o .  (9) 

It  can also be shown with the same means that the expected length of the seek 
interval for primes in ML is k. This result is not trivial. The average distance 
between two primes in an arithmetic progression is k, but a prime laying at  
the end of an ”average length interval” is found after only k/2 trials, since the 
starting point of the seek-sequence may lay anywhere between this prime and 
its predecessor. However, the expected value of the length of the seek interval is 
not k/2 but k and this is a consequence of the fact that  primes at  the end of 
longer intervals are chosen with higher probability. So, incidentaly, the average 
number of candidates to be tested for primality is the same in random choice as 
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in progressions, asuming the r-tuple conjecture! In [2], this result is stated for 
incremental search, as an empiric evidence. The paper [l] provides the tools for 
such a proof, but does not address t.he topic. We state a theorem on arithmetic 
progressions, which contains the empirical result in [2] as a subcase, when the 
ratio of the progression is F = 2. 

Theorem3. Let Pk = { p  = XF + u} f l  Mk be the set of k-bit numbers in an 
arilhmetic progression, with (u ,  F )  = 1. Assuming the r-tuple conjecture, the 
extended Riemann conjecture and if F = o ( 4  ), then the expected search length 
for  finding a prime b y  incremental search in Pk, with random starting point is 

k 

E(1) = l o g ( 2 L ) 9 ,  

Proof. Let l ( p )  = 7 be the distance of the prime p to its prime predecessor q in 
Pk. The probability that a prime p is chosen is P(p) = &: in fact, I (p )  out of 

N / ( 2 F )  possible startpoints lead to the choice of p ,  so E(1) = CpEpk P ( p ) y  = 

CpEP,. %. Let L = (0 < X i  < X2 < . . . < A, < co} be a partition and k such 
that the term o(1) in Proposition 2 is < l /rn2. Then 

By Proposition 2, the number of primes with IX; < I ( p )  < IXa+l is 

with 6 < 2 /m2 .  It follows that E(1) = ( l o g N ) w f ( L )  + O(l/m), where f (L)  
is a Riemann sum of the function h(z)  = x 2 e - " ;  letting m grow together with 
k, so that the condition on the error term stays valid, f(L) will converge to the 
integral JF f(z) = 2, which finishes our proof. 

This result needs some comments. It shows that introducing small factors in 
F will decrease the expected seek length; this seems to  suggest a means to  
reduce the number of pseudoprime tests in our algorithm. However, if p I F then 
(1 + t F ,  p )  = 1,  so p will be ineffective in the trial division stage. Overall, what 
one gains in the seek interval length, one loses in the trial division. One may thus 
aswell choose F to be a prime and this explains our statement about the expected 
seek interval. The second reason for nonuniform distribution is more dramatic: 
certain primes with n bits are not produced at all (their probability is 0). We 
finally want to  prove that this does not affect the entropy in the sense that the 
uncertainty about a prime randomly chosen in M i  is asymptotically equal to  
the uncertainty of a prime randomly chosen in Mk. For random choice, it is easy 
to see that the entropy is Hk = log(((Mk(() resp. H i  = log((\Mi\(). We need to 
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give an estimate of 11ML11. By definition, ML = ( p  = 2tq + 11 q E M [ k , , ] + i )  

and it  follows that: 
M k  

where k;  = [ *] + 1, ko = k ,  i > 0. By induction we have: $ + f 5 lei 5 6 + $ 
and we let rn be the least index for which km < B, so that IIM&II = -. 
This anchors the recursion and we have, after some manipulations of the above 
inequalities: 

2km-1 

o k  q k  

By definition of m we have rn = +- 1. Putting 2 = 2 k ,  (13) implies: [ log3 1 
1 

2 log3 
H ;  = log 2 - (log log 2 ) 2  (- + o( 1)). 

Since Hk = log(*), we have a forteriori 2 N 1 for k +. 00; together with 
(12), this yields: 

H [  - - 1  f o r k - + c o ,  
Hk 

which is a measure for the distribution of the primes produced by AP. 

5 Cryptographic Security and Related Topics 

It has already been remarked [all that  facing recent factorization and discrete 
logarithm mehtods, concepts of secure primes like the ones of Gordon [lo] become 
irrelevant. Actual questions for security of prime generating algorithms remain 
following. The distribution of the produced primes, which was measured in the 
preceding chapter by their entropy. This was shown to be assymptotically equal 
to  the entropy of randomly chosen k-bit primes. The fact that the produced 
primes are collission free is also a consequence of the above. Finally, the iterated 
encryption attack for the RSA algorithm seems to suggest that pl should have 
some larger factor ([14]) - although this fact was also relativized by [21]. However, 
cryptography remains a somewhat subjective field. The author of [23] has been 
cited for saying that, while knowing that ‘secure primes’ are not harder to  brake, 
he would still prefer Gordon primes for the systems he uses. An argument for this 
atitude may be the fact that algorithms against which Gordon primes offer no 
additional security may be regarded as more difficult to implement, the crew of 
possible crackers being thus reduced.. . The particularities of AP are particularly 
favourable for efficient generation of primes with special structure. This can be 
required in algorithms like the [7] or the new signature scheme of Nyberg and 
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Seek 
[nterval 

173 
238 
260 
331 
495 
472 
662 

Riippel [17], which require factors of p - 1 of fixed length. It is also the case for 
'secure primes'. We end this chapter with an application of AP for finding Gordon 
strong primes. Let A4 be a magnitude considered infeasible for algorithms on 
computers - say, M = 264. We want to  produce primes p ,  such that,  there are 
primes 1 and 6' with: I I ( p  - l), I' 1 ( p  + 1) and I, 1' > M .  Let uo and vo be the 
minimal solutions of the equation vl' - ul = 1. Following modification in the 
definition of the progression P ,  in step 4 of AP gives a solution to  the problem: 
P = { N I N  = NO + Xu; No = t a  + 2 4  + 1;  a = 21 ' 1 ' ;  X 2 0). The choice o f t  in 

step 3 must also be adjusted accordingly , so that t E(2n-1;2ua1, 2"-:uo' - sn)  
It is easy to  verify that a prime in the progression P has the desired properties. 

Psp SeekInt/ SeekInt/ 
tests log(x) #Psp.Tests 

9.3 0.98 18.6 
13.0 1.03 18.5 
14.0 0.98 18.5 
17.8 0.93 18.5 
26.9 1.07 18.4 
25.7 0.89 18.4 
35.7 0.93 18.5 

6 Performance 

The simple version of AP has been implemented on a SUN/IPX machine. It 
uses suboptimal table length ( A  = 215) and naive multiplication. Following table 
shows the performance of this implementation, with averaged values (over 100 
generated primes) for different prime lengths. 

Table 1. Performance AP 

768 
1024 

Runtime ~ ( n )  = 
(set) +n)lt(n) 

17.5 8.4 
49.1 11.8 
70.1 11.0 t 213.8 12.2 

This table reflects the behaviour of predicitions in practice. The most stable 
predicted value, is the ratio (length of the seek - interval)/ (number of pseudo 
prime tests): it balances around 18.5, whereas the expected value is w 18.52. 
The length of the seek interval also balances around log(t), but the variance is 
larger. The O(n4) behaviour of the algorithm is less well reflected, certainly 
because of the overhead which is independent of the length of the primes found. 
The ratio r = t(2n)/t(n) - where t(x) is the average time for finding a t-bits 
prime - has used corrected times, proportional to the relative seek interval. The 
table reflects a monotonous increase of the apparent specific exponent of the 
run time. Obviously the data is insufficient and this exponent will approach the 
expected value 4 for larger primes. Actually this behaviour only confirms the 
known rule that subquadratic multiplication algorithms are not recommendable 
for small lengths of the multiplicants. 
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7 Conclusions 

We proposed an algorithm for generating provable primes using incremental 
search in arithmetic progressions. We showed that trial division can be per- 
formed using the Eratosthenes sieve method, which increases the number of 
prime candidates eliminated by the trial division step by an assyrnptotic factor 
of 3/2. Independently of the search approach used, we showed that our algorithm 
is more efficient than probable prime algorithms for primes of at least up to 1000 
bits length, whereas for larger primes the loss in efficiency is not more than 2%, 
while the primes produced are always provided with a certificate. T h e  advantages 
of our algorithm are more substantial when the primes produced are required to  
have special prime divisors of p f  1, since this feature can be incorporated for free 
in the algorithm. The advantages of this algorithm are at the cost of a reduction 
of the set of primes which can be produced and their nonuniform distribution. 
We proved though that the information entropy of the primes produced by the 
algorithm is assymptotically equal t,o the entropy of randomly chosen primes. 
We finally presented the performance of a - non optimal - implementation of the 
algortihm on a SUN/IPX machine. 
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