
Fast Generation of Provable Primes Using
Search in Arithmetic Progressions

Preda Mihailescu

Union Bank of Switzerland. CH 8021 Zurich

Abstract. Many cryptographic algorithms use number theory. They
share the problem of generating large primes with a given (fixed) num-
ber n of bits. In a series of articles, Brandt, Damgard, Landrock and
Pomerance address the problem of optimal use of probabilistic primality
proofs for generation of cryptographic primes. Maurer proposed using the
Pocklington lemma for generating provable primes. His approach loses
efficiency due to involved mechanisms for generating close to uniform
distribution of primes. We propose an algorithm which generates prov-
able primes and can be shown to be the most efficient prime generation
algorithm up to date. This is possible at the cost of a slight reduction
of the set of primes which may be produced by the algorithm. However,
the entropy of the primes produced by this algorithm is assymptoti-
cally equal to the entropy of primes with random uniform distribut,ion.
Primes are sought in arithmetic progressions and proved by recursion.
Search in arithmetic progressions allows the use of Eratosthenes sieves,
which leads finaly to saving 1 / 3 of the psuedo prime tests compared to
random search.

1 Introduction

Primality testing has a long history and has undergone a radical development
during the last decade. We shall not go into details of this development but begin
with mentioning that prime tests split into cornyositeness proofs (which arc
polynomial) and primality proofs, which are more complex. The fastest known
primality proof [8] which has been implemented by Atkins and Morain [16], is
polynomial, but in practice slower than superpolynomial algorithms such as the
cyclotomy test [4].

Algorithms proposed for the specific purpose of generating primes for cryp-
tographic use are different due to the technological motivation behind them.
Efficiency and simplicity are the main concerns and - as a consequence of the
domain of application - ”security” of primes is an issue of concern too. Security
of a prime p basically means that the discrete logarithm base p and factorization
of p out of a product of usually two primes should be, if possible, harder than
average. The last condition raised the wish to have large prime factors in p f 1;
this was formalized in conditions for so called ”Gordon secure primes” [lo]. It
was obvious that with the information about factors of p f 1 available for a
Gordon prime, a proof by Pocklington’s lemma was almost for free. The first to
make use of this observation was Maurer in [14]. By the date of Maurer’s paper,

Y.G. Desmedt (Ed.): Advances in Cryptology - CRYPT0 ’94, LNCS 839, pp. 282-293, 1994.
0 Springer-Verlag Berlin Heidelberg 1994

283

Gordon primes were de facto outdated by the ECM ([12]) factoring method:
Gordon primes were designed to reduce the odds of pf 1 factoring methods [19],
but cannot provide any specific protection against elliptic curve factoring. This
facts are reflected in [2l]. For technological applications, Maurer’s algorithm
lacks both the ease of implementation and the efficiency requirements - being,
by the authors statement ([15]), p19 60% slower than Rabin - Miller tests which
are also simpler to implement. Maurer does state in [15],p29, that his algorithm
is more efficient than probable primes, but this statement is not supported by
facts and is in contradiction with the rest of the paper. The paper [14] is impor-
tant for having first indicated that for the specific purpose of cryptographic use,
provable primes were worth considering. We propose an algorithm that seeks
primes in arithmetic sequences for which a factorization of the ratio is known
- this implies a recursive use of the algorithm. For the trial division phase we
use Eratosthenes sieve methods, which lead to an increase of the optimal length
of trial division; optimal trial division was also evaluated in [14], [2]. In the last
paper, the authors also consider means of speeding up Maurer’s method and
notice that the ‘almost’ uniform distribution required by Maurer has a negative
impact on the performance. An elegant analysis of the information entropy of
primes produced by ”incremental search” - and proved with Rabin - Miller tests
- is provided in [l]. Incremental search is a special case of arithmetic progressions
- when the ratio is 2. We shall adapt some of the methods of that article for the
analysis of our alogithm. Probabilistic methods like Rabin - Miller may falsely
declare composites for primes and the probability for this event decreases with
the iteration of the same test for different bases. In [3] the authors show that
this probability also depends on the size of the primes produced; tables for the
error probability q t , k that a composite with k - binary digits is declared prime
after t independent Rabin - Miller tests are quoted also in [l]; the tables show
that the probability of failure of the Rabin - Miller test after t rounds is substan-
tially lower than the 4-‘ initially proved by Rabin [20]. These results suggest
to the authors the conclusion that ”using the Rabin test remains in many cases
the most practical approach” [l],p.l. We show that recursive primality proofs
combined with search in arithmetic progressions is preferable to Rabin - Miller
tests, also from the point of view of efficiency, in the range of sizes of primes
covered by the tables in [l] and probably for primes up to at least 1000 bits. For
larger primes, the difference becomes negligeable.

2 Outline of the Algorithm

Let B > 0 and n > 0 be positive integers and s , c > 1 real constants. We
propose following algorithm for generating provable primes of n digits, together
with their certifiactes:

284

Algor i thm A P :
Input: n.
Cons tan t s : B , c , s.

Step 1 . If n < B return a random prime with n bits (generated by trial
division).

Step 2. Produce an integer F with 2'" < F < 2"" which is completely factored,
by recursive use of this algorithm. The constant c may be 1/2, or 1/3 ,
depending on the prime ceritfication used (see bellow).

Step 3. Draw a random number t E (2"-2/F, 2"-'/F - sn).
Step 4. Find a prime in the arithmetic progression P = { N 1 N = N ~ + i a ; NO =

t a + 1;a = 2 F ; 0 5 i 5 s}.

The primality test for Step 4 splits naturally in three parts which are applied
to prime candidates in the progression P until a prime is found - together with
a corresponding certificate, or the bound s is passed and the algorithm returns
failure.

Part I : Trial division by primes < A, where A is a given upper bound.
calculate ub = a mod p , V p < A . calculate NL = NO mod p , 'dp < A. initiate
an array tab of length s. For all p < A, set tab[i] = 1 for all solutions of the
modular equation N j + iag = 0 mod p . This is obviously an Eratosthenes
sieve.

Part I1 : Compositeness test using Rabin - Miller. traverse the table tab
starting with i = 0 and perform a Rabin - Miller test with base 2 , for the
i-th elements in the progression P , such that tab[i] = 0. Continue if the test
declares "composite", go to Part 111 otherwise.

Part I11 : Pr ima l i ty proof using the Pocklington lemma.

We recall the Pocklington lemma:

Propositionl. I Let N be an integer, such that N - 1 = F . R, where F is
completely factored. Suppose that,

Vq I F, 30, with ((u i N - ') / q , N) = 1 and = 1 mod N (1)

Then all primes p I N are of the shape p = k F + 1 . In particular, if F > fl,
then N is prime.

Proof. Let a = nqlF c y q . Then

(d N - ') I q , N) = 1 and (u N - l = 1 mod N Vq I F (2)

If rlJN is a prime, the above equations hold a fortiori mod r . The multilpicative
group mod r has thus a subgroup of index F generated by (u thus proving the
first assertion: F 1 (r - 1) and, a fortiori, r 2 F + 1. If F > fi , it follows that
T > n , V r I N , r prime. This is a contradiction, since N must have at least one
prime factor r 5 0. Consequently, N must be prime, which ends the proof.

285

In part I11 of the algorithm, for each qllF, a base a, verifying (3.4) is sought
among the first primes, starting with 2. If for some base a:-' = 1 mod N
does not hold, N is composite (little Fermat does not hold). If for some q , no
base verifying (1) is found before a fixed upper bound R of trials, no primality or
compositeness proof can be provided and N is incremented (Part I1 is proceeded).
Finally, if bases a p are found Qq I F , N is prime. The prime certificate consists of
the pairs {(a,, q) I q I F } together with certificates for each prime q , recursively
[18]. Providing all these pairs together with the certificates for q being prime
gives a proof of N's primality by the above lemma. In [5] a certification method
using an O(n1/3) factored part of n - 1 is provided. It requires proving that a
certain discriminant is not a perfect square. Suppose n = F t + 1 and F > f i ,
and bases a, verifying (3.4) have been found for all q I F . If n is composite, it
is built up of two primes p ; = k; . F + 1. Let n = a F 2 + bF + 1; by comparing
n = p l p 2 we get k l k z = a and k l + kz = b . It is then easy to see that n is
composite iff A = b2 - 4a is a perfect square. This again can be checked by
verifying if A is a perfect square modulo a set of primes { p I n p > F } ; if this is
the case, (k i mod F) = ki < F . Otherwise n is prime. One can take in general
{ p I p < l ogF} as set of primes.

3 Optinial Trial Division and Run Time Analysis

We assume a machine with wordlength L3, the time for a short integer mul-
tiplication is t and let m = n /B . The time involved in the trial division is:
Ti = t((1 + ~) m + logA)& and is build up of (1 + c)m short divisions for
calculating a' and N' and log A divisions for calculating a modular inverse, for
each prime; we shall write Tt = tm(1 + c + 6)&, with 6 = - 0 for
m -+ 00. Note that the trial divisions are performed only once and do not have
to be repeated for all n candidates. Assuming that the prime candidates for
AP are equally distributed among the residue classes mod p for all small test
primes p , the fraction of prime candidates after this step is, by Mertens' theorem
f = k. The second part then takes in average: -7

where the length of the expected seek interval is d . n , and naive multiplication is
used for exponentiation. We shall see that d = 1, so we subsequently neglect this
factor. Optimal table length A may be found by writing g p (A) = Tt(A) +T'(A)
and taking the derivative. The optimal value found is A p = log(nam) kn2m ' with

a constant k = close to 0.4. As a term of comparison, optimal table
length in [14] is O(nm). Actually, Maurer's argument goes like this: adding a
prime A to the table saves a pseudoprime test with probability 1/A, so optimal
length is reached when the expected saving T,/A balances the expected extra
division which he sets to 1 . T d ; the argument is incorrect, since both values
should be averaged over the whole seek interval. It does however yield a good

-7

286

estimate of the optimal value AR = S n m , with a(A) defined in [14], as
found by taking the derivative of the adequate function g~ (indices P stay for
progression search, R for random search). In [2] the optimal table length is even
smaller: O(,&). An alternative to the sieve method consists in computing
the current remainders N , = N; + ia mod p . This yields the same assymptotics
as A p , with 6 replaced by a constant cr = 2wt, where t , is the ratio between the
time for a short addition and a short multiplication. Beside the smaller constant,
this approach has the disadvantage that the remainders mod p must be stored
(three values for each test prime p) . Comparing Ap to AR shows that the use
of the Eratosthenes sieve sensibly increases optimal table length, leading to the
elimination of more candidates in the trial division phase. One can evaluate this
performance improvement: since the number of pseudoprime tests is in average
fn both for random search and for search in progressions, in the last case the

= o((Iodnm) ,) -, 2
for ra -F 00. This improvement appears to be more substantial than what can be

exponentiations drop by a factor of fp = , o g A p
log n2m/ log(n2m) 3

~~

saved in a probabilistic proof approach by better error estimates, like in [3]. For
n = 1024 the number of primes for the trial division phase is about 215 (with
A M 219) and this may be argued to be too large for some machines. Using the
incremental difference storing for the primes, this requires 32 KB of memory
which should be afordable on most current PC’s. The saving factor is 0.72 and
it results in about 10 pseudo prime tests less! It is theoretically intersting to
observe that A p = 0 can be achieved by using a divide and conquer
method. The idea is following: group the test primes in A/(logAfi) products
of length fi and take first the remainders modulo these products and then
the remainders of these remainders modulo the single primes; this yields: Tt =
2 t f i (l + e + 6)&. Iterating this method leads to the stated result, when the
factor 2 6 is replaced by (logm) . ml/logm = O(1ogm). This means taking
products of length m/2, m/4, ..., 2. Of course, the building of the factors belongs
to a precomputation phase and the storage space explodes to O(n2m2) - the
method is not meant for implementation! Note that the base 2 is a suitable
base for the Pocklington lemma, being a q-th power nonresidue with probabilit,y
(1 - l / q) . This is remarcable, since exponentiation base 2 is particularly efficient
([2]).We shall consider here the version of the algorithm where F is built up of
a single prime. With this, the time for part I11 is 1 - 6 exponentiations, since
for proving that 2 is an adequate F-th power nonresidue, one only raises to the
power (n - l)/F, the exponent thus having length n(1 - E) . With probability
l/F a further base should be tested: we do not take this event into account,
since its probability is exponentially low. If E = 1/3 , checking that A is not a
perfect square takes C logp = O(1ogF) = O(n) short opertations, which are
negligeable. We now want to motivate our claim that this algorithm is more
efficient than pseudo - prime algorithms, for the range of values of n of current
interest. Of course, the sieve method can also be used with pseudo - primes
in incremental search, although this method was not proposed before. Some
implementation might also use suboptimal tablelength, due to limited memory.

(0,:)

We thus do not consider the advantages of trial division as specific for AP. The
advantage of our algorithm compared to pseudo - prime algorithms will thus
relay in the shorter proof, the disadvantage, in recursion. It is these two factors
we shall have to compare. If R is the number of Rabin - Miller tests performed
until a pseudoprime is found and T, is the time for an n-bit exponentiation,
the time for the proof is, as seen above, (1 - c)Te and the time involved in
recursion is upper bounded by T, = (A) . RT, . The total overhead for proving
a prime is thus: T, = (A . R + (1 - 6)) . T,. With n = 384 - which is currently
standard for RSA - for a weak implementation, with 6 = 1/2 and A = 1000 -
thus R F=: 20, the overhead is Tp x *Te. If 6 = 1/3, Tp < T,, even without
increasing the tables. With optimal tables, Tp < T,, up to more than 1000 bits.
A standard implementation of our algorithm needs thus less than the time for
one additional exponentiation as overhead for a primality proof, for n 5 1000
bits. Compared to that, a Rabin - Miller test with probability of error < 2-"
requires three additional exponentiations for 384 bits and two for 600 bits; no
values for n = 1000 are provided in [l]. Extrapolating the values from [l], two
Rabin - Miller tests for n = 1000 bits will provide an error probability p e with
2-60 < p , < 2-48. For primes with more than 1000 bits our algorithm may
become more expensive than a pseudo - prime algorithm, while keeping the
advantage of providing a primality proof. I t must be noted that for large primes,
the number R of Rabin tests which eliminate composite candidates increases
(linearly with n) and the overhead for the primality proof becomes negligeable:
a good approximation of R is R(n,A) = x 0.392&, the logarithm
being the natural one. From this and the estimate for the overhead Tp above, it
follows.

(4)
c4 0.392(1-6)logA %--+ 1 2/3 . f(n) = Tp = - +

n 80 n/log(n) R T, 1 - c4

and f(n) < 2% for n > 1000. Thus AP is never more than 2% slower than
probabilistic primes methods, if at all!

4 Analysis of the Algorithm

This algorithm has two different and independent reasons for producing non uni-
formly distributed primes. The first is that while searching primes in arithmetical
progressions, primes at the end of long gaps are chosen with higher probability.
This very phenomenon was investigated by Brandt and Darmgard in [l], for
progressions with ratio 2. Their results relay upon the prime r-tuple conjecture
of Hardy - Littlewood. This is an assympotoic formula for the number Td(N) of
positive integers n 5 N such that n + d l , n + d?, . . . , n + d, are simultaneously
primes. The vector d is the r-tuple (d 1 , d?, . . . , d,). The conjecture says:

288

‘-‘(P-v (PI) wilh sd = np *, provided sd # 0 and where vd(p) is the number
of distinct residue classes modulo p occupied by the numbers in the r-tuple d.
Gallagher [9] uses this conjecture to prove that:

sd - h‘ for h + 00 where H’ = { (d l , dz, . . . , d,.) I d E N , d i # d j } (6)
dEH’

In order to use Gallagher’s result for primes in arithmetic progressions with
ratio F , we must assume the extended Riemann conjecture and F = o(fi), for
proving the necessary distribution of priines in arithmetic progressions [S]. With
this, Gallagher’s result can be generalized to following statement. The number
& k (h , N) of integers n < N for which the interval (n , n + h F) contains exactly
k primes in the progression 1 + t F verifies:

for N + 00, h - Am log N
e-xXk

Q k (h , N) - IV- k! F (7)

and lemma 5 from [l] can be restated:

Propositionz. Let Gh(z) denote the number of primes p in the progression
1 + t F , such that p < z and p - q 5 h F , where q i s the prime preceding p an the
progression. Assumang the r-tuple conjecture, the ERH and with F = o(fi), f o r
any constant A,

The factor p (F) / F stems from the fact that p (F) out of F residue classes
modulo F contain primes. The proof of this lemma uses (6) and Dirichlet’s
theorem on distribution of primes in arithmetic progressions [6] . Let h!fk be the
set of primes with k bits and for k 5 B, let ML = h f k , For k > 8, we put:
ML = { p E I p = t q + 1 , p E M[k,,l+,}. Then ML is a subset of the primes
that can be produced using AP. Let H i be the uncertainty about primes sought
in arithmetic porgressions by AP and HL be the uncertainty of randomly chosen
primes in M i . Using (7) and methods like in [l], one can prove that:

H i
H:
- - 1 f o r k i o o . (9)

It can also be shown with the same means that the expected length of the seek
interval for primes in ML is k. This result is not trivial. The average distance
between two primes in an arithmetic progression is k, but a prime laying at
the end of an ”average length interval” is found after only k/2 trials, since the
starting point of the seek-sequence may lay anywhere between this prime and
its predecessor. However, the expected value of the length of the seek interval is
not k/2 but k and this is a consequence of the fact that primes at the end of
longer intervals are chosen with higher probability. So, incidentaly, the average
number of candidates to be tested for primality is the same in random choice as

289

in progressions, asuming the r-tuple conjecture! In [2], this result is stated for
incremental search, as an empiric evidence. The paper [l] provides the tools for
such a proof, but does not address t.he topic. We state a theorem on arithmetic
progressions, which contains the empirical result in [2] as a subcase, when the
ratio of the progression is F = 2.

Theorem3. Let Pk = { p = XF + u} f l Mk be the set of k-bit numbers in an
arilhmetic progression, with (u , F) = 1. Assuming the r-tuple conjecture, the
extended Riemann conjecture and if F = o (4), then the expected search length
for finding a prime b y incremental search in Pk, with random starting point is

k

E(1) = l o g (2 L) 9 ,

Proof. Let l (p) = 7 be the distance of the prime p to its prime predecessor q in
Pk. The probability that a prime p is chosen is P(p) = &: in fact, I (p) out of

N / (2 F) possible startpoints lead to the choice of p , so E(1) = CpEpk P (p) y =

CpEP,. %. Let L = (0 < X i < X2 < . . . < A, < co} be a partition and k such
that the term o(1) in Proposition 2 is < l /rn2. Then

By Proposition 2, the number of primes with IX; < I (p) < IXa+l is

with 6 < 2 /m2 . It follows that E(1) = (l o g N) w f (L) + O(l/m), where f (L)
is a Riemann sum of the function h(z) = x 2 e - " ; letting m grow together with
k, so that the condition on the error term stays valid, f(L) will converge to the
integral JF f(z) = 2, which finishes our proof.

This result needs some comments. It shows that introducing small factors in
F will decrease the expected seek length; this seems to suggest a means to
reduce the number of pseudoprime tests in our algorithm. However, if p I F then
(1 + t F , p) = 1, so p will be ineffective in the trial division stage. Overall, what
one gains in the seek interval length, one loses in the trial division. One may thus
aswell choose F to be a prime and this explains our statement about the expected
seek interval. The second reason for nonuniform distribution is more dramatic:
certain primes with n bits are not produced at all (their probability is 0). We
finally want to prove that this does not affect the entropy in the sense that the
uncertainty about a prime randomly chosen in M i is asymptotically equal to
the uncertainty of a prime randomly chosen in Mk. For random choice, it is easy
to see that the entropy is Hk = log(((Mk(() resp. H i = log((\Mi\(). We need to

290

give an estimate of 11ML11. By definition, ML = (p = 2tq + 11 q E M [k , ,] + i)

and it follows that:
M k

where k; = [*] + 1, ko = k , i > 0. By induction we have: $ + f 5 lei 5 6 + $
and we let rn be the least index for which km < B, so that IIM&II = -.
This anchors the recursion and we have, after some manipulations of the above
inequalities:

2km-1

o k q k

By definition of m we have rn = +- 1. Putting 2 = 2 k , (13) implies: [log3 1
1

2 log3
H ; = log 2 - (log log 2) 2 (- + o(1)).

Since Hk = log(*), we have a forteriori 2 N 1 for k +. 00; together with
(12), this yields:

H [- - 1 f o r k - + c o ,
Hk

which is a measure for the distribution of the primes produced by AP.

5 Cryptographic Security and Related Topics

It has already been remarked [all that facing recent factorization and discrete
logarithm mehtods, concepts of secure primes like the ones of Gordon [lo] become
irrelevant. Actual questions for security of prime generating algorithms remain
following. The distribution of the produced primes, which was measured in the
preceding chapter by their entropy. This was shown to be assymptotically equal
to the entropy of randomly chosen k-bit primes. The fact that the produced
primes are collission free is also a consequence of the above. Finally, the iterated
encryption attack for the RSA algorithm seems to suggest that pl should have
some larger factor ([14]) - although this fact was also relativized by [21]. However,
cryptography remains a somewhat subjective field. The author of [23] has been
cited for saying that, while knowing that ‘secure primes’ are not harder to brake,
he would still prefer Gordon primes for the systems he uses. An argument for this
atitude may be the fact that algorithms against which Gordon primes offer no
additional security may be regarded as more difficult to implement, the crew of
possible crackers being thus reduced.. . The particularities of AP are particularly
favourable for efficient generation of primes with special structure. This can be
required in algorithms like the [7] or the new signature scheme of Nyberg and

291

Seek
[nterval

173
238
260
331
495
472
662

Riippel [17], which require factors of p - 1 of fixed length. It is also the case for
'secure primes'. We end this chapter with an application of AP for finding Gordon
strong primes. Let A4 be a magnitude considered infeasible for algorithms on
computers - say, M = 264. We want to produce primes p , such that, there are
primes 1 and 6' with: I I (p - l), I' 1 (p + 1) and I, 1' > M . Let uo and vo be the
minimal solutions of the equation vl' - ul = 1. Following modification in the
definition of the progression P , in step 4 of AP gives a solution to the problem:
P = { N I N = NO + Xu; No = t a + 2 4 + 1; a = 21 ' 1 ' ; X 2 0). The choice o f t in

step 3 must also be adjusted accordingly , so that t E(2n-1;2ua1, 2"-:uo' - sn)
It is easy to verify that a prime in the progression P has the desired properties.

Psp SeekInt/ SeekInt/
tests log(x) #Psp.Tests

9.3 0.98 18.6
13.0 1.03 18.5
14.0 0.98 18.5
17.8 0.93 18.5
26.9 1.07 18.4
25.7 0.89 18.4
35.7 0.93 18.5

6 Performance

The simple version of AP has been implemented on a SUN/IPX machine. It
uses suboptimal table length (A = 215) and naive multiplication. Following table
shows the performance of this implementation, with averaged values (over 100
generated primes) for different prime lengths.

Table 1. Performance AP

768
1024

Runtime ~ (n) =
(set) +n)lt(n)

17.5 8.4
49.1 11.8
70.1 11.0 t 213.8 12.2

This table reflects the behaviour of predicitions in practice. The most stable
predicted value, is the ratio (length of the seek - interval)/ (number of pseudo
prime tests): it balances around 18.5, whereas the expected value is w 18.52.
The length of the seek interval also balances around log(t), but the variance is
larger. The O(n4) behaviour of the algorithm is less well reflected, certainly
because of the overhead which is independent of the length of the primes found.
The ratio r = t(2n)/t(n) - where t(x) is the average time for finding a t-bits
prime - has used corrected times, proportional to the relative seek interval. The
table reflects a monotonous increase of the apparent specific exponent of the
run time. Obviously the data is insufficient and this exponent will approach the
expected value 4 for larger primes. Actually this behaviour only confirms the
known rule that subquadratic multiplication algorithms are not recommendable
for small lengths of the multiplicants.

292

7 Conclusions

We proposed an algorithm for generating provable primes using incremental
search in arithmetic progressions. We showed that trial division can be per-
formed using the Eratosthenes sieve method, which increases the number of
prime candidates eliminated by the trial division step by an assyrnptotic factor
of 3/2. Independently of the search approach used, we showed that our algorithm
is more efficient than probable prime algorithms for primes of at least up to 1000
bits length, whereas for larger primes the loss in efficiency is not more than 2%,
while the primes produced are always provided with a certificate. T h e advantages
of our algorithm are more substantial when the primes produced are required to
have special prime divisors of p f 1, since this feature can be incorporated for free
in the algorithm. The advantages of this algorithm are at the cost of a reduction
of the set of primes which can be produced and their nonuniform distribution.
We proved though that the information entropy of the primes produced by the
algorithm is assymptotically equal t,o the entropy of randomly chosen primes.
We finally presented the performance of a - non optimal - implementation of the
algortihm on a SUN/IPX machine.

Acknowledgement :
I wish to thank P. Landrock and 1.Damgard for valuable discussions, informa-
tions and literature.

References

1. Brandt, J.; Damgard, I.: On Generation of Probable Primes by Incremental Search,
Proceedings CRYPT0’92, Lecture Notes in Computer Science Vol. 740 pp. 358-71

2. Brandt, J.; Damgard I.; Landrock, P.: Speeding u p Prime Number Generation,
Proc. of Asiacrypt 91, Lecture Notes in Cornputer Science, Vol 739, pp. 440-50.

3. Damgard I.; Landrock, P.; Pomerance, C.: Average Case Bounds for the Strong
Probable Prime Test, Math. Comp., Vol 61, Oct 1993, pp. 177-195,

4. Bosma, W.; VanderHulst, L.: Primality Test Using Cyciotomy, Phd, University of
Amsterdam, 1990

5. Couvreur, C.; Quisquater, J.J.: An introduction to fast generation of large primes,
Philips Journal of Research, vol. 37, pp 231-264, 1982

6. Davenport, Harold: Multiplicative Number Theory, Springer 1980, Second Edtion.
7. Digital Signature Algorithm, Federal Information Processing Standards Publica-

tion XX, 1993 February 1.
8. Goldwasser,S. and Kilian, J.: Almost all primes can be quickly certified, Proc. of

the 18th Annual ACM Symposium on the Theory of Computing, 1986, pp. 316-329.
9. Gallagher, P.X.: On the distribution of primes in short interevds, Mathematika,

10. Gordon, J.: Strong primes are easy to find, Advances in Cryptology - EURO-
CRYPT ‘84, Lecture Notes in Computer Science, vol. 209, 1984, pp. 216-223.

11. Knuth, Donald E.: The Art of Computer Programming, Addison-Wesley, 1981

V O ~ . 23, 1976, pp. 4-9

293

12. Lenstra, H.W.: Factoring Integers With Elliptic Curves, Annals of Mathematics,
vol. 126, 1987, pp649-673.

13. Lenstra, A.K. and Lenstra, H.W.,Jr.: Algorithms in number theory, Technical Re-
port 87-008, May 1987, University of Chicago, Dept. of Computer Science.

14. Maurer, Ueli M.: Fast Generation ofprime Numbers and Secure Public-Key Cryp-
tographic Parameters, Internal Report, Dept. of Comp. Science, Princeton Univer-
sity, 1991.

15. Maurer, Ueli M.: Fast Generation of Prime Numbers and Secure Public-hky Cryp-
tographic Parameters, Internal Report, Dept. Informatik, ETH Zrich, 1993.

16. Morain, F.: Distributed primality proving and the primality of (23539+1)/3, Ad-
vances in Cryptology, EUROCRYPT ‘90, Lecture Notes in Computer Science, vol.
473, 1990, pp. 110-123.

17. Nyberg,K.; Ruppel,R.:A New Signature Scheme Based on the DSA Giving Message
Recovery, Preprint, 1993.

18. Plaisted, D. A.: Fast verification, testing and generation of large primes, Theoret-
ical Computer Science, vol 9, 1979, pp. 1-17.

19. Pollard, J.M.:Theorems on factorization and primality testing, Proceedings of the
Cambridge Philosophical society, Vol. 76, 1974, pp. 521-528.

20. Rabin, M.O.: Probabilistic algorithm for testing primality, Journal of number the-
ory, vol 12, 1980, pp. 128-138

21. Rivest, R.: Are ‘Strong’ Primes needed for RSA ?, preprint, 1991
22. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures

and public-key cryptosystems, Communications of the ACM, Vol. 21, No. 2, 1978,
pp. 120-126.

23. Schneier, B.: Applied Cryptography, Wiley & Sons, 1993

	Introduction
	Outline of the Algorithm
	Optinial Trial Division and Run Time Analysis
	Analysis of the Algorithm
	Cryptographic Security and Related Topics
	Performance
	Conclusions
	Acknowledgement
	References

