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Abstract. This paper introduces a new chosen text attack on iterated 
cryptosystems, such as the Data Encryption Standard (DES). The attack 
is very efficient for 8-round DES,2 recovering 10 bits of key with 80% 
probability of success using only 512 chosen plaintexts. The probability 
of success increases to 95% using 768 chosen plaintexts. More key can 
be recovered with reduced probability of success. The attack takes less 
than 10 seconds on a SUN-4 workstation. While comparable in speed to 
existing attacks, this 8-round attack represents an order of magnitude 
improvement in the amount of required text. 

1 Summary 

Iterated cryptosystems are encryption algorithms created by repeating a simple 
encryption function n times. Each iteration, or round, is a function of the previ- 
ous round’s oulpul and the key. Probably the best known algorithm of this type 
is the  Data  Encryption Standard (DES) [6].  Because DES is widely used, i t  has 
been the focus of much of the  research on the strength of iterated cryptosystems 
and is the system used as the sole example in this paper. 

Three major attacks on DES are exhaustive search [2, 71, Biham-Shamir’s 
differential cryptanalysis [l] , and Matsui’s linear cryptanalysis [3, 4, 51. While 
exhaustive search is still the most practical attack for full 16 round DES, re- 
search interest is focused on the latter analytic attacks, in the  hope or fear t ha t  
improvements will render them practical as well. For example, linear cryptanaly- 
sis is much faster than exhaustive search, bu t  requires an  impractical 243 known 
plaintexts. In contrast, exhaustive search requires only one known plaintext block 
or about 1000 bits in a ciphertext only attack. The  goal of our work is therefore 
to reduce the amount of text required in the analytic attacks. 

This paper builds on  techniques from differential and  linear cryptanalysis, 
creating a n  eight round attack which recovers 10 bits of key with only 512 chosen 
plaintexts. While the computation t ime is comparable to pre-existing attacks, the 
amount of required text is reduced by an  order of magnitude. The  best current 
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Biham-Shamir 8-round attack requires over 5,000 chosen plaintexts and Matsui’s 
8-round attack requires approximately 500,000 known plaintexts. In comparing 
our attack with these others, it should be remembered that they recover more 
bits of key and that Matsui’s is a more desirable known plaintext attack. They 
also extend more efficiently to  16 rounds than ours. Our attack should therefore 
be viewed as providing an interesting new possibility that supplements earlier 
attacks when the amount of required text is at a premium. Of course, it is our 
hope that the attack can be extended. 

2 Notation 

We use FIPSPUB-46’s 1)ES numbering so that plaintext, ciphertext, and the bits 
of the intermediate results (Ln,  Rn) are numbered from 1 to 64 reading from left 
to right. This numbering differs from Matsui’s paper, which numbers bits from 
0 to 63, reading from right to left. Similarly, in this paper the input to an S- 
box is taken as (XI,XZ, 23,  2 4 ,  5 5 ,  2 6 )  while Matsui uses ( 2 5 ,  2 4 ,  23, 22, 21, 20). 

We will use Matsui’s notation in which A[i] represents the ith bit of A and 
A [ i ,  j ,  ..., k ]  = A[i]  @ A [ j ]  @ ... @ A [ k ] .  

We will ignore the initial and final permutations, I P  and I P - I ,  since they 
have no cryptographic significance in a chosen or known text attack. Thus, we 
refer to ( L O ,  no), the 64 bits after I P  as the plaintext and ( L n ,  Rn),  the 64 bits 
before IP-’, as the ciphertext. This notation differs from both Biham-Shamir 
and Matsui in that they take (Rn, L,) as the ciphertext. Our notation simplifies 
concatenation of k-round and 1-round attacks into ( k  + I )  round attacks. 

3 Review of Differential and Linear Cryptanalysis 

This section is included for completeness. The reader familiar with differential 
and/or linear cryptanalysis can omit, t,he corresponding subsections. 

3.1 Differential Cryptanalysis 

The basic idea of differential cryptanalysis is that, while any single plaintext 
produces a ciphertext that appears random, the same is not true on a differen- 
tial basis. Two chosen plaintexts, P and P’, which XOR to a carefully chosen 
differential plaintext PI = P @ P* can encipher to  two ciphertexts C and C’ 
such that C’ = C @ C’ takes on a specific value with non-negligible probability. 
As a trivial example, P’ = 0 causes C’ = 0 with probability 1 since P = P* 
implies C = C’. More interestingly, Biham and Shamir found that, for 5-round 
DES, PI = 405C000004000000, causes C‘ = 04000000405C0000, with proba- 
bility h6. They use this 5-round “characteristic” in an attack on 8-round 
DES by deciphering portions of the ciphertext ( L 8 ,  R8) to determine when their 
characteristic has occurred, in which case they are able to derive a number of 
bits of key. Their attack is efficient because the partial deciphering of (L8 ,  Rs) 



19 

to tell when the characteristic has occurred depends on portions of the key small 
enough to  allow a search. Making use of symmetries, they are able to break 
$-round DES with 5,000 chosen plaintexts and 16-round DES with 247 chosen 
plaintexts. 

For the purposes of this paper, it is not necessary for the reader to understand 
further details of Biham and Shamir’s attack. It is sufficient to be familiar with 
the concept of working differentially. The interested reader is referred to  [l] for 
a complete description of Biham and Shamir’s breakthrough in cryptanalysis. 

3.2 Linear Cryptanalysis 

A second breakthrough, linear cryptanalysis, was recently introduced by Mat- 
sui [l, 3, 4, 51. This approach works with a known plaintext attack, as opposed 
to a chosen text attack. Linear cryptanalysis finds probabilistic parity relations 
between selected bits of the plaintext, the ciphertext, and the key. These parity 
relations derive from parity relations within the S-boxes that differ from the 
uniform 50-50 distribution and which can then be connected through multiple 
rounds. 

Matsui was able to  find useful parity relations for an arbitrary number of 
rounds of DES. For example, he found that for three round DES, 

with probability p = 0.695. In general, he uses either an n - 1 round or n - 2 
round parity relation to  attack n-round DES. He can use the 3-round relation 
(1) in a 4-round attack, by noting that although 1<1[26] @ K3[26] is not known, 
its effect is to  cause the reduced equation 

to be satisfied eigher with probability 0.695 or 0.305, both of which are different 
from 0.5, the value expected with random data. Matsui can decipher backwards 
through round 4, as shown in figure 1, to  calculate the value of the necessary 
bits. This decipherment depends on six bits of key, requiring a search over only 
64 values. 

While we only describe Matsui’s 4-round attack, the general idea follows 
in a straightforward manner from this example. Using the best 6-round parity 
relation, which holds with probability 0.5 - 1.95 * T9, Matsui was able to break 
8-round DES with approximately 500,000 known plaintexts in less than a minute 
on a workstation. Similarly, using the best 14-round parity relation, which holds 
with probability 0.5 - 1.19 * 2-’l, he was able to break 16-round DES with 
243 known plaintexts in 50 days using 12 HP9735 workstations. The interested 
reader is referred to [3, 4, 51 for more information. 
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Fig. 1. Matsui’s $-round attack on DES 

4 Differential-Linear Cryptanalysis 

By the technique to be described in section 5, we can complement bits 2 
and/or 3 of L1 and keep the other 62 bits of (L1,  r Z 1 )  unchanged. The key 
observation in our attack is that  this behavior in ( L 1 , R l )  leaves many bits 
of (L4 ,R4)  unchanged. In particular, the input bits to  Matsui’s best 3-round 
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L\: Toggle bits 2 and/or 3
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i: No change
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3 rounds

Inputs to parity relation are unchanged with p — 1

Li [3, 8, 14, 25] [17]

Matsui's best 3-round parity relation
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Output of parity relation is unchanged with p = 0.576
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Bit 17 is an

Rs [17]

Fig. 2. Differential-Linear attack on 8-round DES
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parity relation (bits 3, 8, 14, and 25 of L4 and bit 17 of J?4) never change, 3

so that the parity of the output bits (bits 3, 8, 14, and 25 of Rj and bit 17
of Z7) is unchanged with probability r = p2 -f q2 = 0.576 where p = 0.695 is
the probability of Matsui's parity relation holding once, and q — I — p. The
probability is p2 + q2 because Matsui's parity relation must hold, or fail, twice
- once for the reference plaintext and once for the plaintext which toggles only
bits 2 and/or 3 in round 1. Unlike in ethics, two wrongs do make a right in
mod-2 arithmetic. This behavior is depicted in the upper two blocks of figure
2, with the upper block being differential in nature and the second block being
primarily linear.

L\: Complement bits 2 and/or 3

LJ_ no change

R\: No change

Li [3, 8, 14, 25] unchanged [17] unchanged

Fig. 3. Differential characteristic

Figure 3 shows why the differential characteristic holds going from (Li, Ri)
to (L4,rt4). Because R\ — 0 differentially, the output of f(R,K) in round 2
must also be 0 differentially. Thus, R'2 — L[ and R'2 has only bits 2 and/or 3
toggled. These two bits only affect the input of SI, so only the outputs of SI

The same applies to toggling bits 10 and/ot 11, but for simplicity we will not deal
with that here.
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can change in round 3. Since R& = 1,; and bits 3, 8, 14, and 25 are not outputs 
of S1, these bits will be unchanged in L i .  Further, because of the E-expansion, 
the 4 outputs of S1 affect the inputs of 6 S-boxes in round 4. Two S-boxes will 
therefore be unchanged, namely S1 and S7. Bit 17 of Ri, is the output of S1, so 
it will remain unchanged. 

As figure 2 shows, the parity invariance to be observed occurs in round 7 with 
probability 0.576. Following Matsui, we decipher the two ciphertexts (L8, RR) 
and (L; ,  Rg) backward through one round to  get the output bits of the parity 
relation: bits 3, 8, 14, and 25 of R7, and bit 17 of L7. Bits 3,  8 ,  14, and 25 of 
R7 are known because R7 = L g ,  the left half of the ciphertext. Only bit) 17 of 
L7 must be computed. This computation involves only S1 in round 8, so we can 
test the 6-bit subkey 2<8,1. When the correct value of K g , l  is used, we expect 
t o  observe parity invariance 57.6% of the time; when an incorrect value is used, 
the produced data is more random and we expect to observe parity invariance 
closer to 50% of the time. 

Based on Matsui’s rule of thumb that approximately 8 / ( ~ - 0 . 5 ) ~  observations 
are needed when r is the probability of observing a parity relation, one would 
expect our attack to require about 1,400 pairs of chosen plaintexts. While one 
would expect this number must bc increased to  create the desired toggling in 
round 1 as opposed to  round 0 (the plaintext), the next section develops an 
approach that obtains the desired behavior while reducing the required amount 
of text. 

5 Structures 

Our attack requires plaintext pairs which toggle bits 2 and/or 3 in round 1. 
We produce this behavior with structures similar to those used by Biham and 
Shamir. Choose any reference plaintext and let P(0) through P(64) be the 64 
plaintexts obtained by varying bits 9, 17, 23, and 31 of Lo and bits 2 and 3 of 
Ro. These bits of Lo correspond to the four outputs of S1, and bits 2 arid 3 of 
Ro become bits 2 and 3 of L1, the bits to be toggled. 

Bits 2 and 3 are the middle input bits to S1. Since these bits are the only 
bits that can change in Ho, only the outputs of S1 can change in round 1, as 
shown in figure 4. Because we included all 16 possibilities for these bits in the 
structure, if we knew the 6-bit subkey K1,1, for each of the 64 P(i)’s we could 
choose three other P(j)’s which had the desired toggling in round 1. One P ( j )  
would toggle bit 2, one would toggle bit 3, and one would toggle bits 2 and 3. The 
64 chosen plaintexts might therefore seem to produce 64 * 3 = 192 differential 
pairs (observations), but only half of these, or 96 pairs, are distinct since ( i , j )  
and ( j ,  i) are the same pair. 

All 96 pairs in a structure could be used to help determine K8,1 if K l , l  were 
known. Since we do not know I<l , l ,  we search over all values of (I<1,1,1<~,1). 
Two of the bits of Kl,l are also part of I < B , I ,  so there are only 10 bits and 1024 
possible subkeys to search over. Since each structure of 64 plaintexts produces 
96 differential pairs and 1400 pairs are required by Mat,sui’s rule of thumb, our 
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Q: 16 possible values RQ: Toggle bits 2 and/or 3

Search A'i i (6 bits)

, L
Si's outputs

L\\ Toggle bits 2 and/or 3 R\: No change

Fig. 4. First round of 8-round differential-linear attack

attack should work with approximately 64/96 * 1400 = 900 chosen plaintexts.
Our experiments find good agreement: 512 chosen plaintexts produce an 80%
success rate and 768 chosen plaintexts have a 95% success rate in determining
the 10 bits of key in (A'i,i, A's.i)- These two attacks use 8 and 12 structures of
64 chosen plaintexts respectively.

An even higher success rate can be obtained, with no increase in the number
of required plaintexts, if we use ideas related to "list decoding" of error correcting
codes. The most likely (A'i,i, -/^8,i) is tried first in the semi-exhaustive search
over the 46 remaining key bits and, if it does not work (which happens one time
in five for the 512 chosen plaintexts attack), the next most likely value is tried,
etc. With a list of two, this method increases the average computation by only
20%, while increasing the probability of success to 87%. A list of size 8 increases
the probability of success to 95%.

6 Additional Bits of Key

While a conservative definition of security would regard a cryptosystem as broken
when even one bit of key can be recovered, the 10 bits recovered in our attack
leaves a large semi-exhaustive search over 246 keys. However, we can recover
additional bits of key using other, lower probability 3-round parity relations in
rounds 5 to 7, in place of Matsui's optimal 3-round parity relation. For example,
bits 5, 15, 21, 27, and 63 of round 4 also remain unchanged when bits 2 and/or
3 of round 1 are toggled. Therefore, we can use the relation

(L4[5,15,21,27] © (R7[b, 15,21,27] © L7[29]) = 0. (3)

Differentially, equation (3) holds with probability 0.527, instead of 0.576 for
Matsui's optimal relation. Use of this parity relation requires searching over
(A'i,i, I<8fi) instead of (/<i,i, /^8,i), thereby recovering the six additional bits of
key Ks,6-
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The lower probability of the second relation increases the probability of error. 
The 768 chosen plaintexts which had a 95% success rate on the first ten bits of 
key, have an 85% success rate for all sixteen bits of key. The idea of list decoding, 
mentioned above, can be applied here with even greater success. 

7 Work in Progress 

The above analysis treats each differential pair as if it were independent of all 
other pairs. Since each structure of 64 chosen plaintexts yields 96 differential 
pairs, this assumption is clearly not true. However, the close agreement between 
the predicted and experimental results shows that the effect of dependence is 
small for the eight round attack. 

We have begun a more precise analysis based on the fact that in each struc- 
ture of 64 chosen plaintexts, there are 16 sets of four plaintexts. These four 
plaintexts differ only in bits 2 and/or 3 of (L1 , RI),  and therefore have the same 
input to Matsui’s parity relation. Starting from the probability of the parity 
relation, we can calculate the probability that each set of four texts will have a 
particular set of four output parity bits. When we ran our eight round attack us- 
ing the results from this more complex analysis, we obtained only a one percent 
improvement in the probability of success. Although the more complex analysis 
makes only a small difference in the eight round attack, it might be more useful 
in attacks on a larger number of rounds. Such work is in progress. 
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