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Abstract. Two significant recent, advances in  cryptanalysis, namely t,he 
differential attack put forward by Biham and Shaniir [a] and the linear 
attack by Mat,sui [7 ,  81, have had dcvaslating impact on data  encryptmion 
algorithms. An erriixicnt, problem that  researchers are facing is to design 
S-boxes or substit,ution boxes so that an encrypt,ion algorithm that em- 
ploys the S-boxes is immune to  the at,tac:ks. I n  this paper we preseril 
evidencr iritlivating that  there are many pitfalls 011 t,hr road to achieve 
Ihe goal. 111 part,icular, we show that, certain types of S-boxes which are 
seemly very appealing do not exist. We also show that, cont.rary to previ- 
ous percept,iort, techniques such as chopping or repeating permutations 
do not yield cryptographically strong S-boxes. In addition, we reveal 
an important combinat,orial structure associated with certain quadratic 
permutations, namely, the differencc distribution table of each differen- 
tially 3-uniform quadrat,ic permut,a.t,ion ernbodies a Haclamard matrix. 
A s  an application of this result, we show t.hat chopping a differentially 
2-uniform quadratic perniutation results in an S-box lltat. is very prone 
to the differential c:rypt,aIliilyt.ic att,ack. 

1 Basic Definitions 

Denote by V, thc vcct,or space of 7). tuples of elenients from G F ( 2 ) .  Let LV = 
( a l , .  . . ~ a , )  and 13 = ( b l  . , b,L) b e  two vrrt,ors in x l .  The scalar product of 
(u and j3, drnokd  by (a , /?) ,  is defined by ( u ,  a) = n . l b l  (1) . . . @ a,b,,, where 
multiplication and  addition are over C F ( 2 ) .  In this paper we consider Boolean 
functions from I/;?, to G F ( 2 )  (or simply funct,ions on xL). 

Let f be a function on  I;?. The (1, -I)-sequence defined by ((-l)f(cyo), 
( - - I ) ~ ( ~ I ) ,  . . ., ( - 1 ) f C ~ 2 ~ - 1 ) )  is c a M  tlic s c q m ~ t  o f f ,  and t,he (0, 1)-sequence 
defined by ( f ( o o ) ,  f(a1), . . ., f ( c ~ ~ . - ~ ) )  is call thc trpith tahle of f ,  where 

, O , O ) ,  ~1 = ( 0 , .  . . ~ 0 , l ) )  . . ., c t Z n - - l  = (1, .  . . 1 , l ) .  f is said to be 
h a l a m e d  if its truth table has .L'>-l zeros (oiies). 

An u f i n e  fuiict,ioii f on V, is a fiinct,ioii that takes the form o f f  = ~ 1 x 1  @ 
. . - @ a,,rc, c ,  whorc a j ,  c E G F ( 2 ) ,  j = I ,  2 > .  . . , R .  Furthermore f is called a 
linear function if c = 0. The  seqiiencc of a11 afine (or linear) functiori is called 
an afjTne (or  linear) srque.occ. 

The  Hamming weight of a vector ( 2 .  E 13,, deriohl  by W ( c r ) ,  is the number 
of ones in the  vert,or. 
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A (1, -l)-matrix H of order 721 is called a H a d a i n u r d  matrix if HH‘ = d,, 
where H t  is the transpose of H and /,,L i s  t,he identity matrix of order m. A 
.Sy lves ter -Ha,daniard  m a t r i x  or Wnlsh-  Hadam.urd  nzntrix of order Y ,  denoted by 
H,, , is generated by t8he following rtxursive wlatiori 

Now we introduce bent functions, an i~iiport~ant, combinatorial concept dis- 
covered by Rothaus in  the mid 196O’s, alt81iougli his pioneering work was not 
published until some ten years 1at.w [14]. 

Definitionl. A function J on I/, I F  iald to  be Imlt if 

for every B E V,, . Herr .r = ( X I  . . . % L,, ) and f( Z )  + (8 ,  z) is considered as a real 
valiied function. 

Bent functions can be characterized in  various ways. In particular, the fol- 
lowing st.atement>s arc equivalents (see also [GI):  

( i)  f is bent. 
(ii) {[, t )  - for any affiiie seqiicnce P of lengt,h P, where ( is the sequence 

(iii) f (z )  @ f(x @ a )  is balanced for any non-zero vect,or N E Vn. where z = 
o f f .  

( X I , .  . . , zn). 

An n x s S-box or substitution box is a mappirig from Vn to V,, where n 2 S. 
Now we cvrisider a nonlinearity crikrion tha t  measures the strength of an  s- 
box against different>ial cryptanalysis [ 3 ,  41. The  essence of a differential attack 
is tha t  i t  exploih particular entries in the difference distribution t,ables of S- 
boxes employed by a block cipher. The difference distribution table of an n x s 
S-box is a, 2n x 2s  mat8rix. The  rows of the matrix, indexed by the vectors in 
Vn, represent the change in the inpiit,, while the columns, indexed by the vectors 
in V,, represent the  change in the out,put of the S-box. An entry in the table 
indexed by ( a ,  p) indicates the number of input, vectors which, when changed 
by a (in the  sense of bit-wise XOR), result in a change in the output by 13 (also 
in the  sense of bibwise XOR). 

Note tha t  an  entry in a differencc dist,ributiori table can only take an  even 
value, the sum of the values in a row is always T ,  and t,he first row is always 

, O ) .  As entries with higher values in t,he table are particularly useful 
to differenlial cryptanalysis, a necessary condition for an  S-box to be immune to 
differential cryptandysis is tha t  it, does not, have large values in its differential 
distribution t,able (riot c,ounting the first entry in  t.he first row). 
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Definition2. Let F be a n  n x s S-box, where 7) 2 5 Let 0 he the largest value 
in differential dist,ribution table of the S-box (not countiiig tlic first entry in the 
first row), namely, 

Then  F is said to be dzflerentzally h-un?for7n, and accordingly, h is called the 
differential uiiiforriiity of f .  

Obviously the differential uniformity h of ail n x s S-box is constrained by 
2"-' 5 5 5 2". F;xt,ensive resea.rch has heen carricd out in const8ructmiiig differen- 
t,ially S-uniform S-boxes with a low 5 [l, 13, 2 ,  9, 10, 11, 121. Some constructions, 
in particular those based on permiitat,ion polynoinials on f in ik  fields, are sirnplc 
and  elegant. However, caution must be taken with Delinition 2. In particular, 
it  should be noted that low differentia,l uniformity ( a  small 5) is only a neces- 
sary,  but not a sufficient condit,ion for iiniiiunity to differcnt<ial attacks. 'This is 
shown by the fact t#liat S-boxes constructed in [l, 91, which have a fla.t difference 
distribution t,able, a.re extremely weak to different,ial at,tacks, despite t,hat t,hey 
achieve the lowest possible differential uniformity h = 2'"-" [4, 5, 161. A more 
complete measuremcnt. tha t  takes into account t,he iiumher of nonzero entries in 
the first column of a difference distribution t,able is the rohtrstness introducxd 
in [15]. 

Definition3. Let, F = ( f l ,  . . . , $ )  be an I I  x s S-box, where fi is a function 
on V,, i = 1,. . . ~ s, and 71 2 s. Denote by L the largest value in the difference 
distribution table of F, and by N t,he nuniber of nonzero entries in the first 
coliiinn of the  ta.blc. In eit,her case t,he value 2" in the first. row is not counted. 
Then  we say that, E' is K-robiist, aga.inst, different8ial crypta.na.lysis, where R, is 
defined by 

Robustness givcs more accurate inforination about tjlie strength of an  S-box 
against the  differential attack than differential uniformity does. However, differ- 
ential uniformity hams a n  advantage over robustness in tha t  the forrner is easier t o  
discuss than  the latt<er. For this reason, differerent,ia.l uniformity is employed as the 
first indicator for the strength of an  S-box against the differential attack, while 
robustness is considered when more coniplc?t,e inforniat,ion about the strength is 
needed. 

An n x s S-box P' = (fl , . . . f,?) is said t,o be regular if F runs through each 
vector in V, 2"-, tinies while E ruiis through I/, once. S-boxes employed by 
a block cipher must, be regular, since otherwise t,he cipher would be prone to  
statistical attacks. For a regular 7z x s S-box, it,s diffcreritial uniformitmy is larger 
than  2n-s (see also L e m m a 2  of [17]). 'I'he rohiist,ness of f;he S-box is further 
determined by the number oi nonzero entries in the first column of the table. 

We are particularly interested in n x s S-boxes that have the following prop- 
erty: for any nonzero vcctor a E V", F ( x )  I -J~ P ( x  + ( Y )  runs through half of the 



vectors in V, , each 2’’ t ’  .imes, but riot through the other half of t he  vectors 
in V,. With each row in the difference distribut,ion table of such an S-box, half 
of its entries cont,ain a value 2”-’+’ while the ot.her half contain a value zero. 
For simplicity, we say such a difference dist,ribut4iori h b l e  t,o be un.zformly half-  
occupied. Clearly an  n x s S-box with a UHOIIDT or uniformly half-occupied 
differencc, distribution table a,chipves the differential uniformity of 2n-s+1. In 
Theorem 3 of [17], it has been proved ithat for quadratic S-boxes, 2n-s+1 is the 
lower bound on differential uniformitmy. 

Not,e t$hat, a differentially 2-uniform permntation is also a permutation with a 
UHODDT, and vice versa. These peri-nut,at,ions have many nice properties [13, 2 ,  
9 ,  10, 11, 121. In particular, t8hcy achieve t,he highest possible robustness against 
the differential a t t x k .  ‘The concept of 71 x s S-boxes with a UHODDT can bc 
viewed as a generalizat,ion of different,ially 2-uniform perniutations. Hence n x s S- 
boxes wit,h a, UHODDT are very appealing and h a w  received extensive research 
(see for instance [2]). 

Thew are two  important qurst,ioris about, S-ho.xcs with a TJIIODDT, namely 

( i )  Do there exist S-boxes with a C‘HODDT ? If there do, how t80 construct 

(ii) What is the robustness of an  S-box with a. UHODDT 7 
= s, the answer to the first. question i s  “yes”. It has been shown 

in 113, 11. 21 t>hal certhin permutation polyrioriiials on G F ( Y ) ,  n odd, have a 
IJHOUD’I‘. So far no result has been known regarding the c.ase of n > S. In 
Section 2,  we will partially solve the problerti by showing that, there exist no 
quadratic n x s S-boxes with a. IJHODDT, if either ‘ri or s is even. The  second 
question will be discussed in  Sectlion 3. We will prove tha t  the robustness of an 
S-box wit.1: a IJHODDT is very low. 

them ‘? 

When 

Another iniportaiil question is t,he synt,liwis of S-boxes, riarriely 

(iii) How t,o const(ruct, S-boxes from existing ones ‘! 

This  queslion will be disciisscd in Section 4. We will show t,hat many synthesis 
inet,hods which were preneously t aken  fur y m n i c d ,  in fact do not  yield strong S- 
boxes, even though thc starting S-boxes employed are all strong ones. Section 5 is 
solely devoted to the invest,igation of conibinatorial properties of the  differential 
distribution table of an quadrat>ic pprmntation. We reveal a result tha t  is very 
interesting even from t,he point, of view of pure combinat,orica, namely, every 
uniformly half-occupied difference distribution table of a quadratic permutation 
embodies a Sylvester-HadamarcIl mat rix. 

2 Nonexistence of Certain Quadratic S-boxes 

2.1 

As mcnt,ioued in the previous seci,ioii, an n x s S-box wit,h a UHODDT or uni- 
formly half-occupied difference dist,ril>iition h b l e  achieves the differential uni- 
forrriit,y of ~ - ~ + l ,  and for quadrat.ic S-I)oxes, is t,he lower bound OII 

0 1 1  Quadratic S-boxes with a UHODDT 
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differential uniformity. In the following we show an impossibility result, namely,
there exist no quadratic S-boxes that have a UHODDT if either n or s is even.

Assume that F = ( / i , . . . , fs) is a quadratic n x s S-box with a UHODDT,
where n > s. We prove that neither n nor s can be even.

Recall that a vector a 6 Vn is called a linear structure of a function / on Vn

if f(x) © f(x © a) is a constant. The set of the linear structures of / forms a
linear subspace. The dimension of the subspace is called the linearity dimension
of/. Let cti,... ,a-2»_i be the 2" — 1 nonzero vectors in Vn and g\,. • -,92'-i be
the 2s — 1 nonzero linear combinations of / i , . . . , /'.,. We construct a bipartite
graph whose vertices comprise o:i, . . ., ojn... i on one side and g\, . • • ,Q2'-i or i

the other side. An edge or link between ctj and gj exists if and only if «; is a
linear structure of gj.

Theorem 2 of [17] states that n — £'; is even, where £j is the linearity dimension
of </j. Equivalently, n and £{ must be both even or both odd. Since each </; is
balanced, it can not be bent. By Lemma 5 of [17], a quadratic, function is bent if
and only if it does not have linear structures. Hence we have I'j. > 1. On the other
hand, from the proof for Corollary 1 of [17], we have £,: < n — 2. We distinguish
the following two cases:

Case 1: n is odd and £i is 1,3,5,..., or n — 2.
Case 1: n is odd a,nd & is 1, 3 ,5 , . . . , or n — 2.
First we consider Case 1. Let pj denote the number of 4 , 1 < i < 2" — 1, such

that f.i — j . Then we have a sequence of numbers Pi,/>3,P5,. • . }pn-2- Obviously,

Pi +P3 + P5+ h Pn-2 - 2S - 1- (1)

Since F is a S-box with a UHODDT, for any nonzero vector o^ G Vn

F(x) 0 F(x ® ak) = ( / i ( i ) 8 h (x * «*). • • •. / . (*) © f,{x 0 ak))

is not regular. Thus, by Lemma 6, there exists a linear combination of fi(x) ©
fi(x®ak),. . ., / , (a ; )e / , (xeafe) , say <?j(a;)©3j(*©afc), such that 3j(s)©Sj(«©
a<;) is not balanced. Since yj(x) (B gj(x © at) is affine, gj(x) © 3j(a; © at) must
be constant. This proves that any nonzero vector ak € Vn is a linear structure
of a gj, a linear combination of / i , . . . , / , . On the other hand, by Theorem 4
of [17], for each ak, there exists at most one gj among gi,..., <72s-i s u c n that
ak is a linear structure of gj. By the construction of the bipartite graph, each
otk is linked to a unique gj. Also each gi with (j = j has j linearly independent
linear structures and 2J — 1 nonzero linear structures. Hence we have

(21 - l)pi + (23 - l)p3 + (25 - l)p5 + • • • + (2"^2 - l )p n_ a = 2" - 1. (2)

From (1) and (2) we have

(21 - 2)pi + (23 - 2)p3 + (25 ~ 2)p5 + • • • + (2 n - 2 - 2)pn_2 = 2" - 2s

or equivalently

(22 - 1)P3 + (24 - l)p5 + • • • + (2" - 3 - l ) P n _ 2 = 2 ' - 1 ( 2 " - - 1) (3)



388 

Note tha t  2k - I is divisible by 3 if and only k 2 2 is even. Thus the left hand 
side of (3)  is divisible by 3.  This implies that  tjhe (T-' - 1) part in the right 
hand side of the equation is divisible by 3 .  Hence s must be odd. Thus  there 
exists no  quadratic n x s S-box wi th  a UIIODI)'I' if n is odd ( n  2 5) and s is 
even. 

We now consider Case 2 .  Let, y j  dcnot,e t,he number of ti, 1 5 i 5 2, - 1, such 
tha t  
and  

= j .  Similarly to Case 1, we have a seqiience of numbers q 2 , 4 4 ,  f&, . . . , ~ " - 2 ,  

yz + 94 + 96 , . . + qn-2 = 2s - I ,  
. + ( 2 r 1 - - 2  - 1)yn-2 = 2" - 1. (2 - 1)y2 + (a4  - l)@ + (26  - 1)yl; + ' .  

(23 - 21q4 + p5 - qcls + . . . + ( 2 7 3 - 3  - 2)4.,1-2 = 2'1-1 - 3 . ~ +  I .  (4) 

2 

By simplc deduction, 

It is not, hard to  see t,hat the left hand side of (4) i s  even when n 2 4, while 
tmhc right hand side of (4)  is always odd for s >_ 2. From this we can conclude 
tha t  there exists no quadratic 11 x s S-box with a IJHODDT if n is even with 
91 2 4. 

Theoreni4. For n 2 4,  there eszsls no quadratac n x s S-box with a UHODDT 
if either n or s zs even.  

Siinimarizing Case 1 arid Case 2 .  we have 

'l'heoreni 4 can be viewed as an extension of Corollary 2 in [17], which states 
t)hat there exists no diffrrent,ia.lly 2-uriiforrri quadratic permutation on an  even 
dimensional vect,or space. 

By Theorem 4, n x s S-boxes wit,h a UHODDT do not exist if either n or s is 
even. When 71 is odd and 71 = s ,  as mentioned hc+'orc, we do have differentmially 
2-uniforri-i quadratic pennutmation [13, 2, 111. Thus a problem that is left open is 
whether t'liere are quadratic S-boxes with a IJHODDT for n > s, both 71 and s 
odd. It should bc pointed out t,hat. an S-box whicli has an  odd number of input 
bits arid also an odd number of out,put h i k  rriay not be very useful in practice. 

2.2 An Extension 

Thc result III the previous subsectioii c m  be extended to a special kind of dif- 
ferentiall> 2n-s+t- unifoiin quadratic S-boxes Let P' be a n x s S-box such tha t  
for any nonzero vector CY E V,, F ( z )  @ h l ( x  6 a )  riins through vectors in 
V,, each 2 ' l - s + t  times, but not through the reniairiirig 2s - 2'-' vectors in  V,, 
where f 2 I The case when t = I has been discussed in the previous subsection 
In the following we presetiC a iioneustence result on the case when t > 1 

Tlieoreru5. ff n is odd u n d  f a 5  eirrii  there ez is fa  n o  quudralac n x s S-boxes 
such t h a t  for any  nonzero nectoi u E l ib ,  F ( c )  + F ( z  ~ f ,  a )  runs through 2'-' 
uer iors  z i t  I;, each 27'-'+t t i m e 5  but irot throuqh t l i f  reinariiing vectors 2n V, 

The proof will be provided i i i  the fu l l  version 
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3 Columns of a UHODDT 

In the  previous section we proved tha t  ttlicre does not exist, a. quadratic. n x s 
S-box with a IJHODDT if either n or s is even. It, is not clear whether or not 
higher degree S-boxes with a UHODDT exist,. If there do exist, such S-boxes, we 
would like to know whet,her or not they satisfy a more stringent requirement, 
namely high robustness. Results to be shown below give R negative answer to  
the question. 

T h e  following lernrna is exact,ly the same as Theorem 1 of [17]. 

Lemma 6. Let F = (fi ~ . . . , f J )  be a mappzizg from V, l o  k , ,  where each .fj is a 
junction, on V,. Th.tvi F is regular if and on ly  Lf each nowero h e a r  combznatzon 
of fi, . . . , fJ is balanced. 

It is easy to show that, the profile of the difference distribution table of an S- 
box is not changed by a noiisirigular linear tra.risformatioii on input coordinates 
(see for instance ['L, 17]), In partic.ular we ha.ve 

Leinma7. Let E' = ( f i ,  . . . , f,?) be a regalor S-box wzth u IJHODDT or' una- 
fornaly half-occupied diflerenm drslributzoii fab le .  Let A be (1 iionsangular matrix 
of order n and B a nonszngular iriulrix o f  order s oi ler  GF(2) .  Then both Let 

are regular S-boxes with u TJHOUDT. 
G'(.x) = F ( z A )  = ( . f l ( zA) ,  . . . , f , (zA))  a n d  H(z) = F ( z ) B  = (f~(z), . . . , f n ( z ) ) B  

By definition, each row in a uniformly half-occupied difference distribution 
table, except the first, contains an equal number of zero and nonzero entries. The 
following lemma shows tha t  a similar result holds wit,h coliiinns in the table. 

Lemmas. L e t  F be a regular. n x s S-box wzih, a lJHODD1'. Then each column, 
except the f i r s t ,  in, the diflereiice distrihutzon tuble contatns a n  equal number of 
zero and non.zero t rrtries. 

Proof. We prove tha t  for each lionzero / j  E \<., t,herc exist 2"-' nonzero a E V, 
such that F ( z )  a F ( z  @ m) = d has solutions for z. 

Fix 20 E V,. Since the diftercnce distribution h b l c  of I f '  is uiiifvrrrily half- 
occupied, F ( z o )  @ P(z0 61 a )  runs through each nonzero 19 € VS 2n-s  times 
while cv runs through L{z. As xu is arbit,rary, for each nonzero ,B E there 
exist 2n . 'L"-s pairs (z, a )  such that, P ( L )  (11 F ( z  @ a )  = ~, where a # 0.  On 
the  other harid, since the differeiic,e distribution table of F is uniformly half- 
occupied, F ( z )  @ b'(z @ a )  = 13 eit,her has 2'7-s+1 solutions or has no solution 
for x. Thus for each nonzero /7 E 1.; t,liere exist 2" .2n-s/2n-'+1 - - 2n-1 nonzero 
vectors cy E V, sucli that) F ( z )  6 F ( z  @ (I) = / j  has: soli~t~ions for x .  

Recall that, the robustness of an S-box is t letermin~d by the largest value in 
the difference dist,ribution table of t,he S-box, arid also by the number of nonzero 
entries in the  first) colurri~i of the table. The lemma described below gives the 
precise number of nonzero entries in Ihe first, column of a uniformly half-occupied 
difference distribut8ion table. 
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Leinma9. Let  F bt. (I r t y u l u r  IL x 5 S-bor u ~ t h  u IJHODDT. Then there are 
nonzero tntries in i h L  hrst coluinu of t h e  dz,@crenee dzstrabulaon 

table (eccltidiny t h e  f i r s t  t n t r y j  

2 7 1 - 1  - 2 5 - 1  

As an irriiiiediate coiisequence of 1,einnia 9. w(~ obtain the robustness of a.n 
S-box with a IJHODDT: 

R= [1 - ( 2 T b - 1  - y s - 1 ) / 2 " . ] ( 1  - y ? ' - S + 1 / 2 ? 7 )  = ( 1 / 2 +  . L - n + S - l ) ( l  - 2-3+1), 

When Ti = s, we have K = 1 - 2 - " + ' ,  which is t,hc highcst possible value for 
robustness. However, when s is relatively smaller t,lian 1 1 ,  say 1% - s > 3 ,  R is very 
close to l / 2 .  For comparison, wc not,(: t,hat thc3 robustness of S-boxes const,ructed 
in [15] is R.I. least 7/8. 

4 On Methods for Synthesizing S-boxes 

This section is conccrncd with methods for constructing S-boxes from existing 
oncs We show that a number of techniques wluch were previously taken for 
granted do riot yield good S-boxes 

4.1 Chopping Permutations 

Chopping pcrmutat,ions wliicli are crypt,ographically strong has been conctived 
as a proiiiising iiiethod to construct S-boxes for DES-like encryption algorithms. 
For this rea.son, many researchers have focused thcir attenttion on permutations, 
especially t,hose on a finite field [2, 9,  10, 11, 121. Results to be present in this 
subsection indicate tha t ,  contrary t,o the common perception, this practice does 
r i d  produce good S-boxes. 

First we prove the following: 

Theoreiii 10. Let E' = (fi ~ . . . , fs) be (1 regu./ar. TI  x s S-box with LL UHODD7: 
where n >_ s und tach, f j  as a function, on  Vn. Th,e following two s tatements  hold: 

(2) Let 1 5 t 5 s -  1 and let G be an ,i'-hoz obhrned b y  droppin,y s--t component 
func t ions  f r o m  P ,  say G' = ( f l ~  . . . , ft). T h e n  the dzfference distribution table 
of G is  not uni formly half-occupied. 

(2;) Let n, >_ t 2 s +- I and l e t  H be u n  S-box obtazned b y  addzn,g t - s component 
functavns to  P', say H = (fi, 
newly added. T h e n  the digerelice dastrzbutaon tahle of H is not uni formly 

, f S ,  f,+l,. . . , ft), where fS+l, 

hnlf-[)(:crlpied. 

Proof. (i) Since F has a UHODDT, for any nonzero u # 0,  F ( x ) @ F ( a : @ u )  runs 
through 2"' vectors in K ,  each 2''-'+' ti mes, but not t,hroiigh the other 2'-' 
vectors in V3 , while a runs through \I;. Fix a nonzero vector, say y = (0, p) E V,, 
where 0 is t,hr zero vector in V, and /3 is a nonzero vector in By Lemma 8 
there exist 2"-' nonzero vector a such that F ( z ) t ~ F ( z @ a )  = y hassolutions for 
t. Thus  there exist F-' nonzero vector (Y such t,hat, G(z) $ G ( z $ a )  = 0, where 
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0 is the zero vector in V,, has solutions for .t. It IS easy to  show tha t  G is not 
uniforrnly half-occupied. Since G is regular tlliere exist 2,-' - '2-l nonzero vector 
(Y such tha t  G ( t )  @ G ( x  @ (Y) = 0 (see Lenirila 8)  if (2 is uniformly half-occupied. 

(ii) follows (i) .  

From Theorem 10 chopping a regular S-box with a UHODDT does not yield 
a regular S-box with a UHODDT. In particular, chopping a differentially 2- 
uniform permutation on V, does rio!. produce an  S-box with a UHODDT. 

permutations have h e n  studied very extensively, an important problem is about 
the structure of the difference distribution h b l e  of an S-box obtairied by chop- 
ping such a permutation. We will devote a single section, Secbion 5, t o  this topic. 

In additsion to chopping permutations, other techniques, such as linear trans- 
f o r m  or modulo operations on inputs or outputs of differenhlly 2-uniform per- 
mutations, and  repeating differentially 2-uniform permut,ations, m e  also con- 
ceived as possible S-box synthesis methods. In t,he following we show t,hat, none 
of these methods generat,es an  S-box with a IJHODDT. 

As quadratic, permutations with a UHODDT or differentially 2-uniform quadratic 

4.2 

Let F be a differentially 2-uniform permutation on V,, B a matrix of' order n x s 
( n  > s )  over G F ( 2 ) .  Set G(y) = F ( y B )  where y E LL. Since the rank of B is 
s ,  y B  runs through 2' veclors in Vs each 2n-a  times while y runs through V,. 
Since F is a permutation on yq, G(y) is a regular n x s S-box. 

Unfortuiiately t,lte diffprence distribution table of G(y) is not uniforrrily half- 
occupied. The  reason is described in the following. Since 7) > s there exists a 
nonzero vector, say 9, such tha t  /3H = 0,  where 0 is the zero vect,or in V,. Note 
t1ia.t G(y) @ G(y G I  p)  = F ( y B )  cfi F ( ( y  + : I ) R )  = f+'(yB) % F ( y B  @ PB) = 
F ( y B )  @ F ( y B )  = 0,  where 0 is the zero vector in V,, for every y E V,. 

Linear Transforms Applied on Inputs 

4.3 

Let, F bc a differentially 2-uniform permutat,iori on V, ,  and 13 a matrix of order 
n x s ( n  > s) over G'F(2).  Set G(z) = b'(:r)B. Note t,ha.t the rank of' B is s. 
Herice yl3 runs through 2' vect,ors in Vs each 27L-s  times while y runs through 
\$. As F is a perrriut,ation 011 L;x, C: i s  a regular 71 x s S-box. 

Since n > s, t.here exists a matrix of order n x (n. - s), say D ,  such that the 
matrix A = [BD]  of order n is iionsingiilar. Set P ( x )  = F ( x ) A .  By Lenirna7, 
9 is a also a different,ially 2-uniform perrriut~;tt,ion. By 'I'lieorein 10, G is not, an 
S-box wit,h a UHODDT. 

Linear 'Ik.aiisforrns Applied on Outputs 

4.4 Connecting Permutations in Parallcl 

Let F be a differentially 2-uniform permutation on Vs. Set 

(:(U) = (1 ;Fi x:,+i)+7(r) ti+ r : ,+ iF (~  (I) ( k )  
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where d: = (21,. . ., xs), y = ( 2 1 , .  . . ,xs,~,+l), N E 1;. Note that, G(z,O) = F ( z ) ,  
G(x ,  1) = F ( z  63 a).  Since F is pcrniutation on L:, G is a regular (s + I)  x .? 

S-box. 
Let ,I!? = ( a ,  1). Clearly G(y @ p)  = G‘(y) for every y E K + l .  Thus G(y) + 

G(y @ p) = 0, where 0 is t,he zero vector in \/, for every y E Kz. Thus t’he 
difference dist,ribution is very bad in this case, and G(y) is not an S-box with a 
UHODDT. 

The above discussions ca.n be extended to the general case where F is re- 
peated 2k times, k > 1. 

4.5 

Let a = ( ~ 1 , .  , . , a , )  E V,. Rewrite (Y as (Y = a1 $i azx 8 ’ .  . @ c~,.P-~. Thus liL 
and the set, of polynomials of degree at, most n, - 1 over G F ( 2 )  have a one-to-one 
correspondence. Let u(d:) be a primitive polynomial of degree s ( s  < 1 2 ) .  For any 
a E V,, we have 

a=hc7$cw 
where the degree of h is less than or equal t,o 11 - s - 1, the degree of cl. is less 
than s .  ‘l’hus we have defined a iinpping from r/, t,o V,: a 4 c. 

a vector in Vs. Let F ( c )  be a differentially 
2-uniform permutation on v,. Set G(<) = E’(t). This gives an n x s S-box. Note 
that  = $ @ 7. This means t,hat, the mapping from V, to V,, a -+ Z, is 
linear. Hence G(<) is not an S-box with a TJHODDT, although it is regular (see 
Subsection 5.1). 
- Now let @(<) be a differentlially 2-uniform permutatlion on V,. Set @([) = 
@(<). !P is an n x s S-box. A similar argument shows that  the difference dist,ri- 
bution table of @.(I) is not unifornily half-occupied. 

EIilarging Inputs or Reducing Outputs by Modulo Operations 

Now let ( be a vector in V, and 

5 Hadamard Matrices Embodied in Difference 
Distribution Table 

In this section we reveal a very important combinatorial property of differen- 
tially 2-uniform quadrat.ic permutat,ions, namely, every differentially 2-uniform 
quadratic permutation is associated wit8h a Sylvester-Hadamard matrix. AS a,n 
application of the result, we show tmhat8 chopping a differentially 2-uniform quadrat’ic 
permutatioii results in an S-box whose difference distribution table is nearly flat. 
Such an S-box is very weak t o  the differential atta.ck. 

5.1 

Let F = ( f l ,  . . . , fn) be a differentially 2-uniform quadratic permutation on V,, 
namely, a. quadratic permutation wit#h a UHODDT or uniformly half-occupied 
difference dist,ribution table. Let Wa be the set of vectors F ( z )  @ F ( x  a) runs 
through when x runs through V,, namely, 

Difference Distribution Tables arid Incidence Functions 

w, = ( F ( 2 )  13;1 F ( z  @ ..)I. E V,} (5) 
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Obviously if a = 0 then W,  = (0) Since each fJ IS quddrat ic  f,(.~) (3 fJ ( T  CE c r )  
is an affine function 

W r i t e f , t f ? f 3 ( S i i i a ) = r 1 3 ~ l ~  + c , , , r , , + d l , j  = 1, , n  Spt C ' , = ( c z J ) >  
(7, = ( d l ,  , d n )  Thus F(E)C f iF (L t f?U)  = ZC',@CT, alld b$\ = { F ( X ) @ F ( T ( I  
N ) I Z  E Vn} = {SC, 43 om\2 E X I }  

Now let a # 0 Since F IS a permutation, F ( z ) @ F ( . c + u )  # 0 for m y  P E 
Hence 0 @ W, Since F ( 0 )  tB F ( N )  = rm, we have 
of a UHODDT, I147,xl = Y-' and hence ranlc(C,) = I I  - 1 Thu5 we have 

# 0 A n d  by the definition 

Lemma 11. Let F be a d i f f e r e n t z a l l y  2-uiizforin quadratic permiitotaon 011 vn 
I f a  # 0 t h e n  

( a )  0 @ W,, (11) u0 # 0, (222) IW,l = Y - l ,  a n d  (LO) rank((: , )  = 11 - 1. 

Now set LV: = { cC, 12 E V, } . Then we havr 

Lemma 12. Let F be a dz f lerent ia l ly  d-unzform qucidrulrc p e r m u t a t t o n  on 
If CY # 0 then  V, = IV,, u W: a n d  W, n IVji = 4 

Lemma 13. L e t  F be a dafferenttally 2-unzform q u a d r a f i r  prriniitaiaon on V, 
L e t  CY # 0 T h e n  t h r  followany s t a t e m c u t s  ho ld  

(8) If P, P' E W, then 6 CH P' E w,, 
(22) zf P E W,, P' E W: t h e n  B @ P' E W,,, 

( t a t )  a f  PI /3' E W: t h e n  /3 % 8' E Wz 

Let F be a differentially 2-uniform quadratic periiiut,ation on r/, and let W, 
be the  same as (5). For each cv E I/;, we define an incidence f u n d o n  p a  as 
follows: 

( O i f L u = O  

~ ~ ~ ( P )  = 1 if a # o and 13 E w,, i 0 if cy # 0 and 13 $! lWcy 

As is to he proved bclow, each pa IS 111 facl a linear furictiori on V,. 

Lemma 14. L e t  b1 be a daf lprent ia l ly  2-unzjorm qvndrafzc p e r m u t a t z o n  on V,. 
T h e n  ( p a ,  de f ined  t i t  (6),  as a lanear functaon on V,l f o r  m r y  w t o r  CY E Vn. 

Lemma 15. L e t  F be a dz f ferentzn l ly  2 - u n z f o r m  quarlrulzc permula t ion  o n  V,. 
If a # u', t h e n  (Pa # (Pa'. 

5.2 Hadamard Matrices in Difference Distribution Tables 

Lemma 14 states that  each row of t,he differential distribution table is associ- 
ated with a linear function on V,, while Lcinma 15 indicatcs tha t  these linear 
functions are all different. Hence we havc 
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Theorem 16. Lei E' be (I diflerentiully 2-unaform quadrutzc permutation on K.  
Then qn runs th,rouytb al l  lanear fun,ctions on V, uuhile a runs through. the vectors 
i.n V, . 

Recall that, cko, a ] , .  . . , N Z ~ ~ - ~  arc all the vectors in V,, with a0 = ( 0 , .  . . ,  o ) ,  
~ 1). Let A4 = (n4j ) be a (1  ~ -1)-matrix defined by 

m . .  13 - - ( - 1 ) V d G  (7 1 

M is called the dzfference traif rnairm of F .  Essentially, Ad is ;t mat8rix obtained 
from the  difference dist,ribution table of the S-box by replacing each zero entry 
by 1 and each nonzero eiit,ry by -1, wit,h an exceptioii that  t,he first entry in the 
first row is replaced by I .  

Theorem 17. Let F be a daflerentzally ,"-uniform quadratic permutation on V,. 
Then A d ,  the dif ference trait n1atri.c o f F %  zs (1 ,Sylvester-Hadamurd m.atrix if t h e  
row-order i s  ign.ored. 

Proof. From Theorem 16, the 2" rows o€ 1z.I comprise all the linear sequences of 
length 2". By Lemma 1 of [LF], each linear sequence of length 2" is a row of N,. 
Thus M can be changed to H ,  by re-orderink f its ' rows. 

Obviously, CV,, pa and M can be defined for any pcrrriutation on Vn) not 
rest8rict8cd t80 yua.dratic ones. 

Theorem 18. L e t  F be a di f lerenl iu l ly  2-uniform quudratic perm,utation 011 K 
an,d M bt. l h e  difference trait m a i r m  of F .  Then Ih,c anverse of E' is also a d i f -  
fe ren 1 i a1 ly 8- 11 n.a form p e  rni ut at i o n ,  iiih os c d z f f e  re n I'P trait mat riz is 1 he transpose 
of M. 

Note tha t  for a differentially 2-uniforni quadrat,ir permutation F based on a 
cubic polynoriiial on GF(2"), n odd, t,he algebraic degree of F-' is larger than  
( n  + 1)/2.  By Theorem 18, both the difference t,rait) matrix of F and that of F-' 
are Sylvcster-IIadamard mat,rices (subject, to re-ordering t,heir rows). 

5.3 Chopping Quadratic Permutations 

Let F = ( 1 1  1 fTL) be a differentially 2-uniform prrmutation on V,, Lct G be 
an S-box obtained by chopping a component function of F ,  say G = (fi, , f i l ) .  

Similarly to 1V,, p and A4 corresporiding to k' (see (5),  (6) and (7 ) ) ,  we can define 

rr, ,  = { G ( S )  \.I G ( s  .E ( t ) l .  E L i L } ,  

where a E 1 r 1 7  and thc Incidence funct ion 

0 ll ( V  = 0 

1 i f  a # 0 and /3 E [ J ,  
0 i f  (Y # 0 and f-1 @ U ,  

4/)m(t3) = 
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where d E Vn-l. 
. ~ / jzn-i-l  

tlie ordered vect>ors in vl-l. Ikf ine  a 2, x 2"-' (1. -1)-matrix, say N = (oij), 

Write M = [ M I  Ala ]  where each Ail, is of order 2" x 2"-l, M 1  = ( m i j ) ,  and 
Ma = (Tn i j+zn- l  ). It is easy t,o set: that  g U ( p )  = 1 if arid only if pu(O, = 1 or 
cp,(l, p )  = 1. In ot'lier words, n i j  = -1 if and  only if r u i j  = - I  or m;j+Zn-1 = -1. 

Since F is a differentially 2-uniform quadratic pwiiiutatmioii, by 'I'heoreni 17, 

. Write each row of M is a. row of H7>.  Now recall t.1ia.t H ,  = 

H ,  = ( h i j ) ,  i , j  = 1 , .  . . , Y .  We c m  see t,hat -hij  = liij+3n-l if i > Y- ' .  This 
implies t ha t  h i j  = -1 or m;jta7.-1 = -1, if i > 27L--]. Notme tha t  M aiid I I ,  have 
the  same set of rows. This proves t,hat, t,liere exists YL-' uonzero CY E b;b such 
that i,o is constant) 1 .  In this case G ( r )  q; C ( s  tfi a )  runs through every vector 
(including the  zero vector) in V,,-l, for sonic 2"-l nonzero vectors CY E I', and 
hence the  robustness of G is less t.han i. 

'Yo summarize the above discussions, t.hr difference distribution t,able of an 
S-box obtained by chopping a component function of a differentially 2-ilniform 
quadratic pcrmuta.Lion hns t-he followirig profile: it, can bc viewed as a folded 
(right to left) version of the uniformly half-occupied tahle of the original per- 
mutation, with half of t8he rows containing a. value 2 in all their entries, arid the 
remaining rows, not c o u n h g  tlie first, row, containing an  equal number of 0s 
and 4s. Similarly, chopping two component functions from a permutation result,s 
in an S-box whose difference distribution table is almost, fla,t: it can be viewed 
as a twice-folded (right to left) version of' thc uniformly half-occupied tahle of 
the original permutation, and t.hree quarters of the rows contain a value 4 in all 
their entries, while the remaining rows, not counting t,he first, row, have an  equa.1 
number of 0s and 8s. ' lhis observation can be extended lo the case when three 
or more comporient functions are chopped. 

In conclusion, S-boxes obtained by choppiiig differentially 2-uniform quadratic 
permutations have an  almost flat difference distribut,iori table, which renders a 
DES-like encrypt>ion algorithm t,hat cmploys such S-boxes very prone to the 
differential attack. 

Let a[) ,  m1> . . I c k 2 n - l  be t,he orderrd vectors in V,, and R c , ,  $1 ~ 

where n . .  - ( - 1 ) ~ ' @ , ~ ~ ~ ) .  
$.I - 

I [ H,-1 -IIn-l 
Hn-1  Hn-1 
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