Lecture Notes in Artificial Intelligence 1640

Subseries of Lecture Notes in Computer Science Edited by J. G. Carbonell and J. Siekmann

Lecture Notes in Computer Science Edited by G. Goos, J. Hartmanis and J. van Leeuwen

Springer

Berlin Heidelberg New York Barcelona Hong Kong London Milan Paris Singapore Tokyo

Conceptual Structures: Standards and Practices

7th International Conference on Conceptual Structures, ICCS'99 Blacksburg, VA, USA, July 12-15, 1999 Proceedings

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

intelligence)

ISBN 3-540-66223-5

William M. Tepfenhart Software Engineering Department, Monmouth University West Long Branch, NJ 07764-1898, USA E-mail: btepfenh@moncol.monmouth.edu

Walling Cyre Virginia Tech, Automatic Design Research Group The Bradley Department of Electrical and Computer Engineering Blacksburg, VA 24061, USA E-mail: cyre@vt.edu

Cataloging-in-Publication data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Conceptual structures : standards and practices ; proceedings / 7th International Conference on Conceptual Structures, ICCS '99, Blacksburg, VA, USA, July 12 - 15, 1999. William M. Tepfenhart ; Walling Cyre (ed.). - Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London ; Milan ; Paris ; Singapore ; Tokyo : Springer, 1999 (Lecture notes in computer science ; Vol. 1640 : Lecture notes in artificial

CR Subject Classification (1998): I.2, G.2.2, F.4.1, F.2

ISBN 3-540-66223-5 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1999 Printed in Germany

Typesetting: Camera-ready by author SPIN 10703464 06/3142 - 5 4 3 2 1 0 Printed on acid-free paper

Preface

With all of the news about the Internet and the Y2K problem, it is easy to forget that other areas of computer science still exist. Reading the newspaper or watching the television conveys a very warped view of what is happening in computer science. This conference illustrates how a maturing subdiscipline of computer science can continue to grow and integrate within it both old and new approaches despite (or perhaps due to) a lack of public awareness.

The conceptual graph community has basically existed since the 1984 publication of John Sowa's book, "Conceptual Structures: Information Processing In Mind and Machine." In this book, John Sowa laid the foundations for a knowledge representation model called conceptual graphs based on semantic networks and the existential graphs of C.S. Peirce. Conceptual graphs constitutes a very powerful and expressive knowledge representation scheme, inheriting the benefits of logic and the mathematics of graphs.

The expressiveness and formal underpinnings of conceptual graph theory have attracted a large international community of researchers and scholars. The International Conferences on Conceptual Structures, and this is the seventh in the series, is the primary forum for these researchers to report their progress and activities. As in the past, the doors were open to admit alternate representation models and approaches.

These proceedings include papers that illustrate the adaptivity of the conceptual graph community and the degree to which this area has matured. First, John Sowa has consented to have a proposed draft standard for conceptual graphs made part of these proceedings. The adoption of a standard within the community is a major landmark in maturity by which a community has reviewed and agreed upon a core set of concepts and practices. Second, there are a number of papers in which conceptual graph based systems compete against other technical approaches to solve the same kind of problem. The ability of this community to provide more than one application is a significant accomplishment. Third, one will notice a number of papers describing applications for very different kinds of problem domains that are based upon this technology. The presence of these papers provides a certain credibility that what has been a research area is now producing systems that can actually be used. Finally, the theory papers, which have long been a standard at this conference, are still present. In our opinion this indicates that researchers still find this to be a fertile field and a valuable approach for investigating tough computational problems.

These proceedings contain 34 papers and are organized into seven major sections: Conceptual Graph Modeling; Natural Language; Applications; SISYPHUS-I; Contexts, Logic, and CGs; Logic; and Position Papers. A new feature was introduced in this conference, position papers, which allow investigators entering into the field to present the basic direction in which their laboratory is heading without having to present the results of what may be rather immature work. In addition, a special track was incorporated into the program this year. The SISYPHUS-I track reports the work of conceptual graph researchers as measured against a standardized testbed application – a resource allocation problem.

We would like to thank the authors, editorial board members, and program committee members for helping to making this conference possible. Without the help

of Bheemeswara Reddy Dwarampudi and Dwyna M. Macdonald, these proceedings wouldn't have been produced. In addition, we would like to thank Bob Bekefi for his help in setting up the computer accounts for this effort.

Finally, on behalf of the organizing committee, we would like to thank the organizations that have sponsored this conference: The Bradley Department of Electrical and Computer Engineering at Virginia Tech, the Division of Continuing Education at Virginia Tech, and Monmouth University. This conference has been held in cooperation with the American Association for Artificial Intelligence.

William Tepfenhart and Walling Cyre

Organizing Committee

Honorary Chair	
John Sowa	SUNY at Binghamton, USA
General Chair	
Walling Cyre	Virginia Polytechnic Inst. & State Univ, USA
Program Chair	
William Tepfenhart	Monmouth University, USA
Editorial Board	
Michel Chein	LIRMM, Université Montpellier II, France
Harry S. Delugach John Esch	Lockheed Martin USA
Fritz Lehmann	Cycorp, USA
Dickson Lukose	University of New England, Australia
Guy Mineau	Université Laval, Canada
Marie-Laure Mugnier	IRMM, Université Montpellier II, France
Rudolf Wille	Technische Universität Darmstadt, Germany
Program Committee	

Harmen Van Den Berg	Telematics Research Centre, The Netherlands
Jan Chomicki	Monmouth University, New Jersey, USA
Judy Dick	ActE, Toronto, Canada
Rose Dieng	INRIA Sophia Antipolis, France
Bruno Emond	Université du Québec à Hull, Canada
Norman Foo	University of New South Wales, Australia
Brian Garner	Deakin University, Australia
Michel Habib	LIRMM, Université Montpellier II, France
Roger Hartley	New Mexico State University, Las Cruces, USA
Mary Keeler	University of Washington, USA
Robert Kremer	University of Calgary, Canada

Michel Leclère Graham A. Mann Philippe Martin Rokia Missaoui Jens-Uwe Moeller Bernard Moulin Maurice Pagnucco Mike P. Papazoglou Heather Pfeiffer Anne-Marie Rassinoux Daniel Rochowiak Eric Salvat Leroy Searle Gerd Stumme Eric Tsui Mark Willems Vilas Wuwongse

IRIN, Université Nantes, France University of New South Wales, Australia Griffith University, Australia Université du Québec à Montréal, Canada University of Hamburg, Germany Université Laval, Canada Macquarie University, Australia University of Tilburg, The Netherlands New Mexico State University, Las Cruces, USA Geneva Hospital, Geneva, Switzerland University of Alabama in Huntsville, USA I.N.A.P.G., Paris, France University of Washington, USA Technische Universität Darmstadt, Germany CSC Financial Services, Australia Cycorp, USA Asian Institute of Technology, Thailand

Table of Contents

Invited Talk

Conceptual C	Graphs: Draft Propose	d American National	Standard	1
John Sowa				

CG Modeling

Constraints on Processes: Essential Elements for the Validation and Execution of Processes
User Modeling as an Application of Actors
Spatial Universals as the Human Spatial Notion
Knowledge Engineering with Semantic and Transfer Links
Understanding Natural Language
A Peircean Framework of Syntactic Structure
A CG-Based Behavior Extraction System
Extending the Conceptual Graph Approach to Represent Evaluative Attitudes in Discourse
Implementing a Semantic Lexicon 154 Sait Dogru, James R. Slagle
Analysis of Task-Oriented Conversations into Conceptual Graph Structures
bernara moulin, monumea Goulaa, Sylvain Deliste

Using Conceptual Graphs as a Common Representation for Data and	
Configuration in an Active Image Processing System	176
J. Racky, M. Pandit	

Applications

A Software System for Learning Peircean Graphs
Synergy: A Conceptual Graph Activation-Based Language
On Developing Case-Based Tutorial Systems with Conceptual Graphs
Embedding Knowledge in Web Documents: CGs Versus XML-based Metadata Languages
Synergy as an Hybrid Object-Oriented Conceptual Graph Language
NOTIO - A Java API for Developing CG Tools
SISYPHUS-I
Multiperspective Analysis of the Sisyphus-I Room Allocation Task Modeled in a CG Meta-Representation Language
Using Conceptual Graphs to Solve a Resource Allocation Task
WebKB and the Sisyphus-I Problem
Constraints and Goals under the Conceptual Graph Formalism: One Way to Solve SCG-1 Problem
A Pure Graph-Based Solution to the SCG-1 Initiative

Context, Logic, and CGs

Contextual Attribute Logic
Algorithms for Creating Relational Power Context Families from Conceptual Graphs
The Lattice of Concept Graphs of a Relationally Scaled Context
Contexts in Information Systems Development
Conceptual Structures Represented by Conceptual Graphs and Formal Concept Analysis
Logic
A Simulation of Co-identity with Rules in Simple and Nested Graphs
Conceptual Graphs as Algebras - With an Application to Analogical Reasoning
Torben Bräuner, Jørgen Fischer Nilsson, Anne Rasmussen
Unification over Constraints in Conceptual Structures
Tractable and Decidable Fragments of Conceptual Graphs
Dynamic Semantics for Conceptual Graphs494 Gwen Kerdiles
Position Papers
A Case for Variable-Arity Relations: Definitions and Domains
Graph Structures in Parametric Spaces for Representation of Verbs
PORT: Peirce Online Resource Testbed511 Mary Keeler, William Tepfenhart

Assuring Computer Agent Communications	
William Tepfenhart, Mark Holder	
15	
Author Index	