
A Pure Graph-Based Solution
to the SCG-1 Initiative

J.F. Baget, D. Genest, and M.L. Mugnier

LIRMM (CNRS and Universite Montpellier II)
161, rue Ada, 34392 Montpellier - Prance

{baget, genest, mugnier}Slirnim.fr

Abstract. This paper answers the SCG-1 initiative. The room allocation
problem provided has been solved in a generic and automatic way. The
solution is based on a totally declarative formal model. Basic constructs
are simple graphs and the fundamental operation for doing reasonings is
the graph morphism known as projection. The other formal constructs
are rules and constraints defined in terms of simple graphs. The modeling
framework built upon the formal model allows one to describe a problem
with asserted facts, rules representing implicit knowledge about the do­
main, validity constraints and rules transforming the world. A prototype
implementing this framework has been built upon the tool CoGITaNT.
It has been used to test our modelization of the room allocation problem.

1 Introduction

Since 1991, our team has been working on CGs along a specific approach [4]. We
study CGs as a graphical knowledge representation model, where "graphical" is
used in the sense of [14], i.e. a model that "uses graph-theoretic notions in an
essential and nontrivial way". Indeed, not only CGs are displayed as graphs but
also reasonings are based on graph operations. The formal bases of our work are
the following. Basic objects are simple CGs, i.e. labeled graphs. The fundamental
operation for doing reasonings is the projection, which is a morphism between
simple CGs. Reasonings are logically founded, since projection is sound and
complete w.r.t. deduction in first order logic. We built extensions of this kernel
— namely CG rules [13] and nested CGs [5] — keeping its basic properties.
We also developed the software CoGITo [11,3] (and its extension CoGITaNT
[10]), a workbench for building knowledge-based applications, where every piece
of knowledge is described by CGs. The theoretical framework ajid CoGITo have
been used in several applications (see [2] and [9] for the applications we are
currently involved in).

The Sisyphus-I problem, is a resource allocation task, therefore basically a
constraint satisfaction problem. In our previous applications, reasonings were
mainly based on deduction (given a knowledge base and a request, find whether
the request can be deduced from the knowledge base). Therefore, at least super­
ficially, i.e. in its formulation, the Sisyphus problem is not of same nature as the
problems we are used to solve in our framework.

356

When studying the SCG-1 problem, two immediate questions arose :

— How much could the problem be solved within our framework ? More specif­
ically, how could we represent constraints in our graph-based approach ?

- What additional programming upon CoGITaNT was required ?

The initial requirement for us was to build a solution which operates as much
as possible with the existing theoretical framework. The first decision was to keep
a completely declarative model.

Another decision was to build a generic solution, general enough to include
at least the family of the "resource allocation task" problems.

A third axchitectural decision was to design a system able to solve the problem
in an entirely automatic way. The reason for this choice was not that we did not
attach importajice to human involvement in the problem solving process. On
the contrary, we find it is unrealistic in many constraint satisfaction problems
to hope to find a solution satisfying the user without offering him the possibility
to add, remove and reformulate constraints during the solving process. But our
main goal was to prove that our formal tools were able to solve the problem.
Cooperation with the user should come later.

Finally, it seemed important to empirically test our theoretical construction.
For that purpose we built a prototype upon CoGITaNT. It is not - yet - a usable
tool.

The first section is devoted to the theoretical framework. We then propose a
modelization of the Sisyphus problem within this framework. In the last section,
we present the prototype and the obtained experimental results.

2 The Formal Model

In order that the paper is self-contained, we will recall all definitions and results
needed to understand the modelization, except for the very basic notions (namely
basic CGs and their logical translation by the semantics #) . For more details
about the simple graph model see [5]. For rules, see [13,12]. The notion of a
constraint is similar to that of [8] and the notion of a constrained derivation is
new. Let us specify that all objects and sets considered here are finite.

2.1 Simple Graphs and Projection

Support The basic ontology is encoded in a structure we traditionally call a
support. We consider here a simplified version of a support, containing:

— Tc, a partially ordered set of concept types whose greatest element is T;
- TR, a partially ordered set of relation types. For this problem, we only use

binary relations. Each relation type has a signature, which gives the greatest
possible concept type for each argument. The partial ordering on relation
types may decrease the signature (the more specific a relation type, the
more restrictive its signature);

357

- I, a. countably infinite set of individual markers. The following partial order
is defined on the set / U {*}, where * is the generic marker: * is the greatest
element and elements of / are pair wise non-comparable.

Simple Graphs Basic CGs, without negation or nesting, are the basic con­
structs. They are used as such to represent asserted facts. They are also the
basic structure for more complex constructs such as rules and constraints.

Simple graphs may have co-reference links and difference (or non-co-reference)
links. A co-reference link between two nodes says these two nodes represent the
same entity. On the contrary, a difference link between two nodes says these
nodes represent distinct entities.

Individual concept nodes with the same marker implicitly represent the same
entity. Formally we say that two nodes are "co-identical" if either they are related
with a CO-reference link or they have the same individual marker. Co-identity is
an equivalence relation on the set of concept nodes of a graph (see [5]). We say
that two nodes are "non-co-identical" if either they are related with a difference
link or they have different individual markers.

A simple graph is said to be valid if the intersection between the co-identity
relation and the non-co-identity relation is empty. In other words, they are no
nodes being both co-identical and non-co-identicaJ, nor one node non-co-identical
with itself.

CoGITaNT does not implement co-reference and difference links in simple
graphs, so we actually simulated these links with two relations types, "equal"
and "diff". "equal" is provided with rules saying that it is a reflexive, symmetric
and transitive relation [1]. "diff" is provided with one rule saying that it is a
symmetric relation. The validity of a graph is defined by means of a constraint,
which expresses that two entities cannot be "equal" and "diff" at the same time.

Projection Projection is the basic operation on simple graphs. Its definition
is recalled for completeness reasons. A projection 11 from G to i l is a mapping
(not necessarily one-to-one) from the nodes of G to the nodes of H which:

1. preserves the graph bipartition (it maps relation nodes to relation nodes and
concept nodes to concept nodes);

2. preserves adjacency and order on edges (if a concept node c is the i-th
neighbor of a relation node r then 11 (c) is the i-th. neighbor of 11 (r);

3. may decrease node labels (the order on relation types is that of TR; the order
on concept types is the product of the order on Tc and the order on JU {*}).

Note that the empty graph can be projected into any graph. Since we simulate
co-reference and difference links by first-class objects (relations, rules and con­
straints) previous definition does not take these links into account. Otherwise,
some conditions should have been added saying that projection has to preserve
co-identity and non-co-identity.

Let us recall that the following results hold when considering the classical
logical semantics ^ . Projection is sound with respect to deduction in FOL. It

358

is also complete when the graph H is in normal form, i.e. each node is co-
identical only to itself. A graph can be put in normal form by merging co-identical
nodes (nodes with the same individual markers or related by co-reference links)
provided that they have the same type [5].

2.2 Rules and Derivation

Simple Graphs Rules A rule "If Gi then G2" is a couple of simple graphs,
Gi and G2, respectively called hypothesis and conclusion of the rule, which
share some concept nodes. See [13] for precise definitions of a rule, its logical
translation, forward and backward chaining operations, and logical soundness
and completeness results about these operations. We will use here the notations
of [1], which provides a graphical visualization of the rules nicer to see.

In this framework, a rule is a simple graph provided with a coloring of its
nodes with two colors, say 0 and 1. In drawings, 0-colored nodes axe painted in
white, and the others in grey. To differentiate rules from the constraints defined
below, we mark their graphical representation with the symbol H. The subgraph
induced by the color 0 nodes must be a syntactically correct simple graph. Nodes
with color 0 axe the hypothesis nodes and make up the hypothesis of the rule.
Concept nodes of color 0 with at least one neighbor outside the hypothesis part
are the frontier nodes. Nodes with color 1 axe the conclusion nodes (when the
rule is applied to a graph in forward chaining, these nodes are added to the
graph) and, together with the frontier nodes, they make up the conclusion of
the rule.

A rule R is applicable to a simple graph G if there is a projection, say 11,
from the hypothesis of R to G. In this case, the result of the application of R
to G following n is the simple graph G' obtained from G and the conclusion
of R by restricting the label of each frontier node c in the conclusion to the
label of its image n{c) in G, then joining c to II{c). In this case, we say that
G' is immediately derived from {G,R). Let 7?. be a set of rules. G' is said to be
immediately derived from (GjTt) if there exists a rule R in TZ such that G' is
immediately derived from {G,R).

Derivation and Deduction A graph G' is said to be derived from {G,TZ)
if there exists G = Go,Gi,. ..,Gk = G' such that each Gj+i is immediately
derived from (Gi,1Z). A simple graph H is said deducible from (G,7?.) if there
exists a derivation from {G,TZ) to a graph G' such that H can be projected into
G'.

Note that when a rule is applicable to a graph following a projection, it can
be indefinitely applied to the resulting graph following the same projection, but
all graphs obtained are equivalent to the graph built by the first application. In
what follows a rule is applied only once to a graph following a given projection.
A graph G is said to be closed w.r.t. a set of rules TZ if all information that
can be added by a rule is already present in G (i.e. more formally, for each rule
R & TZ, each projection from the hypothesis of R into G can be extended to a

359

projection from i? as a whole into G). The problem of deciding whether a given
graph is deducible from a given knowledge base is a semi-decidable problem.
This problem becomes decidable for some specific sets of rules. In particular it is
the case when the set of rules is such that every graph can be closed by a finite
number of rule applications. In such a case the set of rules is said to be a finite
expansion set. A closure of a simple graph G by a finite expansion set of rules TZ
is a simple graph derived from (G, IZ), closed w.r.t. TZ. All closures are equivalent
with respect to projection, and the minimum element of this equivalence class is
called the closure of G w.r.t. 7^ and is denoted by G^. Fig. 1 presents a graph G

A simple graph G

1 Office: 01 1

1 1
(near)

^ Offics:

1 Office: 01 1

03

1 Office: 02

1̂
Qnear)

^

1 Office: 02 |

A rule R1

a

a

Office:"

A rule R2

A graph G1 immediately derived from (G, R2)

The closure of G wri {R1, R2)

Fig. 1. Applying a rule and closing a graph

expressing that the office # 1 is near the office # 3 which is itself near the office
#2, a rule -Ri expressing that the relation near is reflexive, a rule i?2 expressing
that the relation near is symmetrical, a graph Gi immediately derived from
{G,R2), and the closure Gr^^^^^, of G w.r.t, the rules i?i and R^.

For the Sisyphus problem, we use rules in which all concept nodes belong to
the hypothesis (in other words the application of a rule only add relation nodes,
including the "equal" and "diff" relations). Any set of such rules is obviously a
finite expansion set.

2.3 Adding Constraints to the Model

Positive and Negative Constraints We define two kinds of constraints: pos­
itive constraints (very similar to the ones presented in [8]) and negative con­
straints. In the same way as for rules, we will mark positive constraints by the

360

symbol E] and negative constraints by the symbol Q. The intuitive semantics
that can be attached to these constraints are respectively: "whenever we find the
information A in the graph, we must also find the information B", and "when­
ever we find the information A in the graph, we must not find the information
B". Though they have different semantics, their formal definition is identical. A
constraint is defined in the same way as a rule, as a simple graph provided with
a coloration of its nodes with the two colors 0 and 1. The subgraph generated
by nodes whose color is 0 is called the condition of the constraint. The condition
must be a valid simple graph. In particular, the condition can be an empty graph.

A positive constraint CI

A simple graph G

m

a

Person: *

i Office: • I C ^ r) 1 Office:

A negative constraint 02

Fig. 2. Example of positive and negative constraints

Let G be a simple graph, and C be a positive constraint. We say that G
satisfies C if every projection 11 of the condition of C into G can be extended
to a projection of C as a whole.

Let G be a simple graph, and C be a negative constraint. We say that G
satisfies C if no projection 11 of the condition of C into G can be extended to a
projection of C as a whole.

Validity of a Graph Let G be a simple graph, C be a set of positive and
negative constraints. The graph G is said to be valid with respect to C if G
satisfies every constraint of C

The positive constraint Ci in fig. 2 can be read as "if a boss is in an office and
a person is in an office, then these offices must be near". The negative constraint
G2 in the same figure can be read as "No office can host two different persons".
The graph G in the same figure violates the two constraints :

- For each of the two possible projections of the condition of Gi into G, we
cannot extend the projection to "a good orientation" of the relation near.

361

- The condition of the negative constraint C2 is the empty graph, which can be
projected into G. And this constraint is violated since it exists a projection
of C2 as a whole into G.

Validity of a Graph Given Implicit Knowledge Rules can be used to
factorize information, in this case we say that they represent implicit knowledge.
For the scG-1 problem, we will restrict these rules to finite expansion sets.

Let G be a simple graph, 7?. be a finite expansion set of rules representing
implicit knowledge, and C be a set of positive and negative constraints. We say
that the knowledge base (G,7?.) is valid with respect to C if and only if the
closure G^ of G is valid with respect to C.

As an example, let G be the graph defined in fig. 2, TZ be the set of rules
defined in fig. 1, and C be the set of constraints defined in fig. 2. {G,7i) is not
valid with respect to C since G^ violates the negative constraint C2. But also
note that G^ satisfies now the positive constraint Gi.

Constrained Derivation Consider that asserted facts (simple graphs) and
implicit knowledge rules describe a world. Constraints determine whether this
world is valid or not. Let us now introduce another set of rules, called transfor­
mation rules. These rules are used to generate new worlds, which may be valid
or not. Given a valid initial world (G,7?.), a set of constraints C and a set of
transformation rules T, answering a request H consists in building a sequence
of successive valid worlds issued from the initial one, such that the last one is an
answer to H.

Let us give a formal definition of such a derivation.
Let G be a simple graph, 7^ be a set of rules representing implicit knowledge,

C be a set of positive and negative constraints, and 7" be a set of transformation
rules. We say that a graph G' is a valid immediate transformation of G with
respect to (7^, C, T) if and only if:

- (G, 7?.) is valid with respect to C (i.e. G^ is valid in the case of IZ being a
finite expansion set).

- G' is immediately derived from {G^,T).
- {G',TZ) is valid with respect to C.

We say that a graph G' is a valid transformation of G with respect to
(7?.,C,T) if and only if there exists a sequence G = Go,Gi,... ,Gfc — G' of
graphs such that each Gj+i is a valid immediate transformation of G, with re­
spect to {TZ,C,T). We also say that this sequence is a constrained derivation
from G to G'.

We say that a simple graph H is deducible from (G, 72., C, T) iff there exists a
constrained derivation from G to a graph G' such that H can be projected into
G'.

By example, let G be the graph defined in fig. 3, It be the set of rules defined
in fig. 1, C be the constraints defined in fig. 2, T be the set of transformation
rules containing only the rule i? in fig. 3, expressing that we can assign an office

362

Odice: 02 Office: 03 OKico: 01

I Person: Bob [j Person: Sam | [Boss: Tom

rdifT

A simple graph G

Q |Peraon:' | (]ny-^-[m^

A rule R

Person: Bob |

A simple graph H

Boss: Tom

Fig. 3. A graph G, a transformation rule R, and a request H

to each person, and the request H be the graph defined in fig. 3. This request
expresses that we wajit every person to be placed into an ofRce. In order to solve
the problem, we first compute the closure of G w.r.t. 7?., which is a valid graph,
then apply the transformation rule once, say by placing Bob into the third office.
Now, we verify that this graph is valid, and try another assignment, until the
request is satisfied. Fig. 4 traces the applications of the transformation rules
leading to a correct answer.

Tom

Tom

Sam —y 1 Violation: two in the same office
Sam —f 2 Violation: far from boss
Sam -+ 3

Bob —> 1 Violation: two in the same office
Bob -+ 2 Violation: far from boss
Bob —>• 3 Violation: two in the same office

Tom

Sam ->
Sam —>
Sam —>

3
Sam —V

1 Violation: far from boss
2 Violation: two in the same office
3
Bob —y 1 Violation: far from boss
Bob —V 2 Violation: two in the same
Bob —f 3 Violation: two in the same

1
Bob -¥ 1 Violation: two in the same
Bob —> 2 S o l u t i o n found

office
office

office

Fig. 4. A trace of the backtrack leading to the solution

3 Representing the Problem

In this section, we present the support, fact graphs, implicit knowledge rules,
constraints, transformations rules ajid the request we used to model and solve
the Sisyphus-I problem.

363

3.1 The Support

The support defined in fig. 5 and 6 represents all types used in our modelization.
Relation types "equal" and "diff" represent co-identity and its negation. Each
relation type in fig. 6 is provided with its signature.

Entity

Local

Organization

Project Group

Researcher Manager Secretary Office

I
Head__Project

Head^Group

Project_Attribute

Smoker Non_Smoker Hacker NonHacker Big Small Central System_Orient0d Large

Fig. 5. Hieraxchy of concept types

T
(T,T)

organization_relation
(Organizaiion, Organizaiion)

p©rson_caracl9ristic
(Person, Person_AtlrJbu1e)

project_caracteristic
(Project, Projecl_Attribute)

organization role
(Person, Organizaiion)

I
membership

(Person, Organizaiion)

geographicai_relation

(Enlrly, Local)

in / tOUCh"^
(Enlily, Local) /(Local, Local)'^

depends
(Project, Group)

local_caract6ristic
(Local, LocaJ_Allribule)

management leadership
(Manager, Group) (Head__Projecl, Organizaiion)

near i n j r o n t „ o f
(Local, Local) (Local, Local)

Fig. 6. Hierarchy of relation types

3.2 Fact Graphs

The initial graph is obtained by making the disjoint union of the graphs rep­
resented in figs. 7, 8, 9 and 10. These graphs have been separated for better
readability. To ensure completeness of our computation, we had the choice be­
tween using the rules assigned to the equal relation, or to compute the normal
form of the resulting graph, by merging concept nodes having the same individ­
ual marker. The latest solution was chosen for a performance purpose. To present
more readable graphs, we did not represent diff relations in these graphs. In the

364

graph of fig. 7, all pairs of concept nodes typed Office and having different in­
dividual markers are linked by a relation node typed diff. The same assumption
is done for the concept nodes typed Project in graph of fig. 8, and for concept
nodes whose type is more specific than Person in graph of fig. 10.

Fig. 7. Geographical information for the first floor of the chateau of HNE

Project: Aserti [Cftro[ect_caracteristic_

j Project: Kriton j | Project: Ajtonomoussystems | [Project: Babylon

Cprojectcaracteristi^

I Systsm_oriented

Project: Tutor2000

Fig. 8. Organizational structure of the YQT group

365

Head_Group: Thomas D. | j Researcher: Jurgen L. [Researcher: Harry C. Researcher: Marc M.

I Project: MIt 1

^.Jeadershig^

H6ad_project; Katharlna N.

j ProjeclTutorZOOO

Researcher: Andy L.

Fig. 9. Teajn members of the YQT group

Non_Hacker j Cperson caracteristic^

NonHacker |—C^reon^caracterist ic^

NonJjackerJ—CfiersQn_caracteristic.

Researcher: Andy L, | Cfigreon_caracteristic^ Smoker

Researcher: Angi W. |—CRerson_caraclerisijcIr^—| NonSmoker |

Manager: Eva I. —C^gon_caracter is t ie_

Head_Project: Hans W. |—Ccereoruoaracteristic,

Researcher: Harry C.

Head_Project: Joachim I.

Researcher: Jurgen L. |—Ccirson^caracler ist ic^I^—| Non_Smoker|

oerson caracteristic. HeadProject: Katharina Nf-

Researcher: MarcM. | c5ereoiT_caracteristiol:5 1 Non_Smokei

Researcher: Michael T.

Secretary: Monika X. | CBegQn_caracleristie

1 1 ^ — • —

Head_Group: Thomas D. |—C4J6rson_caracteristic,

Secretary: Ulrike U.

Researcher: Uwe T,

Researcher: Werner L.

Fig. 10. Personal data about members of the YQT group

3.3 Implicit Knowledge — the Set of Rules 72.

The five rules represented in fig. 11 express that:

A. The relation near is symmetrical.
B . Two locals that touch the same one are considered near.
C. The relation touch is symmetrical.

3 6 6

D. Two locals that touch each other are considered near.
E. The same for locals being in-front-of each other.

Note that the two last rules could be replaced by expressing that in-front-of
and touch are two relation types more specific than near. We did not represent,
but use the rules expressing that iri-front-of and diff axe symmetrical.

A.
Local I—QieaT])—[Local

Q

B.

Local I—QouchJ)—| Local |—QouclT)—| Local

I 1 ' ^ - ' " ^ 2 I 1 I 1 1^— .2 I 1 I 1 1,„ ^ ^ 2 I
I Local I—QoLJch^J—| Local | | Local |—C.Jouch__^)—| Local | | Local |—QnJronLof ,^)—| Local

Fig. 11 . Rules representing implicit knowledge

3.4 Constraints - the Set C

The constraints related to possible assignments can be either positive or nega­
tive. We also sorted these constraints in three categories of decreasing priority:
absolute, strong and weak. It is not possible to violate an absolute constraint.
Strong constraints are to be satisfied by any solution, but, if the problem is
over-constrained, the user may accept to reformulate it by modifying this set of
constraints. Weak constraints represent preferences.

Every constraint used is described below, but whenever we have very similar
constraints, only one of them is represented.

a
Fig. 12. Ubiquity ?

The graph represented in fig. 12 is a negative constraint. It expresses that a
person cannot be into two different places at the same time. This is an absolute
constraint.

a
Fig. 13. Number of persons in small offices

367

The graph represented in fig. 13 is a negative constraint. It expresses that a
small office cannot host more than one person. This is a strong constraint.

E l C^£^ ĵ ™ '̂̂ ^^^^ pengoit F-C3CM cfe-g"V<S50Bmgt^rifei>^ m I

Pswott

Fig. 14. Number of persons in big offices

The graph represented in fig. 14 is a negative constraint. It expresses that a
big office cannot host more than two persons. This is a strong constraint.

Fig. 15. Smoker - Non-Smoker antagonism

The graph represented in fig. 15 is a negative constraint. It expresses that no
office can host a Smoker and a NonSmoker. This is a strong constraint.

1 +] I Head_Group|—C]jnJ^>—| Office | — < ^ — | Ceaifrai \

Fig. 16. Head of group accessibility

The graph represented in fig. 16 is a positive constraint. It expresses that the
head of group needs a central office (if the head of group is in an office, then this
office has to be a central one). This is a strong constraint. In the same way, the
manager would be pleased to have a central office, but we consider this as only
a weak constraint.

Fig. 17. Privileges of the head of group (1)

The graph represented in fig. 17 is a negative constraint. It expresses that
the head of group needs to be alone in his office. This is a strong constraint. In
the same way, the manager as well as heads of large projects would be pleased
to be alone in their office, but we consider this as only weak constraints. We also
added a positive constraint expressing that the head of a large project should

368

be in a small office. This weak constraint is a consequence of the others, and is
present for optimization purposes.

Office I < i ^ 1 Office | (7^^—| Office

a
iHeadjaroup I Manager

2 ^ — — ,

Fig. 18. Manager's neighborhood

The graph represented in fig. 18 is a positive constraint. It expresses that the
manager needs to be near the head of group as well as the secretariat. This is
a strong constraint. In the same way, heads of large projects should be close to
the head of group as well as the secretariat, but we only consider this as only a
weak constraint.

Fig. 19. Secretariat holds secretaries

The graph represented in fig. 19 is a negative constraint. It expresses that no
two secretaries can be in different offices. Note that this constraint can be satis­
fied since there are only two secretaries. Otherwise, should we want "secretaries-
only" offices, we could express it by a positive constraint: "if a person is in the
same office as a secretary, this person must also be a secretary". This is a weak
constraint.

[-F1 I Head_GfQup" [—C7" i r r^ Office] — C ^ — | 6ia |

Fig. 20. Privileges of the head of group (2)

The graph represented in fig. 20 is a positive constraint. It expresses that the
head of group would like to have a big office. This is a weak constraint.

p p) j Head_Groyp j—C^\n^—| Office | — (| | g | |) — | Office | — C j n J) — | Secretary |

Fig. 21 . Secretariat's accessibility

The graph represented in fig. 21 is a positive constraint. It expresses that the
secretaries' office should be located close to the office of the head of group. This
is a weak constraint.

369

F - | [^rQjfe^

it^£>--—^S«ssar«hef H C to

df&i*

i«ft|te>-—^fisisatehftf \—C !R

Fig. 22. Synergy

The graph represented in fig. 22 is a negative constraint. It expresses that
members of a same project should not share offices. This is a weak constraint.

3.5 Transformations — the Set of Rules 7'

There is only one rule adding information to the base graph, it is the rule rep­
resented in fig. 23 which tries to assign a given person into a given office.

Q I p«'^°" i-^<iiiiii^ Office

Fig. 23. Placing a person into an office

3.6 The Request

The graph we want to deduce is the solution to the SCG-1 problem: we want
every person being placed into an office. This graph is represented in fig. 24.

I Researcher: Andy L, | — Q j n J) — | Office

I Researcher: Angi W. |—C1|£L--'—I Office

I Manager: Eva I. |—Cjn_J)—| Office

I Head_Projed: Hans W. ~ [— (j r T ^) — | Office

I Researcher: Harry C. |—C^JnJ)—| Office

Head_Project: Joachim I. |—C[jnJ)—| Office

I Researcher: Jurgen L. |—Q in J)—| Office

I Head_Projecl: KatharinaN. [— C j l L ^ — | Office

I Researcher: Marc M. j—Cj[]__J)—| Office

I Researcher: Michael T. [—Cj^V^^—| Office

I Secretary: Monika X. |—CjnJ])—| Office

I Head_Group: Thomas D. |—O^L,^—[Office

I Secretary: Ulrike U. | — C j n ^ — | Office

I Researcher: Uwe T. [— \ J ^ l ^ — | Office

j Researcher: Werner L. | — C j n ^ — | Office

Fig. 24. The request

4 The Evaluation Process

This section first presents some considerations about the computational com­
plexity of the solving process. A deeper study of this complexity is yet to be
done. We then present the implementation of the Constrained Derivation En­
gine on top of CoGITaNT and results of the computation.

370

4.1 Combinatorial Considerations

The existence of a projection is a NP-complete problem [6]. The existence of a
deduction from a simple graph G and a set of rules 7?. is a semi-decidable problem
[7] (by analogy with TGDs). In case of a finite expansion set of rules, the problem
is obviously decidable. In particular, when the rules only have relation nodes in
their conclusion, the problem is NP-complete.

The problem of knowing if a graph is valid with respect to a set of constraints
is a co-NP-complete problem (as we need to exhibit two projections in order to
prove that a constraint is violated).

If the set of rules 72. representing implicit knowledge is a finite expansion set,
then the problem of deduction with constrained derivation is semi-decidable. If
the set of rules T representing the possible transformations of the world is also
a finite expansion set, then the problem is decidable. This is the case in our
modeling of the Sisyphus-I problem.

We consider now the tree representing the possible applications of the trans­
formation rule. For each step, we have to choose between # of persons x #
of offices = 150 possible assignments of a person in an office. There are # of
persons = 15 such steps, and this lead us to the study of the validity of 150̂ ^
different worlds. Even if we consider that violations of the constraints will prune
many branches of this tree, this is not reasonable.

So we have chosen, for this problem only, to force a particular person to be
assigned at each step, and this choice leads to only 10̂ ® possible worlds. We
also forced these assignments to follow a specific order, which is more or less
the one suggested by the wizard Siggi D. These restrictions, however incomplete
in a general case, are well-founded in the case of our modelization of the SCG-1
problem. We are currently studying the possibility of using heuristics to compute
automatically the best order with respect to the rules and constraints involved.

4.2 Implementation of the Constrained Derivation engine

We developed constrained derivation on top of the CoGITaNT platform [10].
Our work is yet a prototype library and not a definitive tool. CoGITaNT can
be seen as a tool for manipulating graphs, computing projections and applying
rules, all graphs involved being read in the BCGCT format [11]. As can be seen
in fig. 25, our work is based upon a client-server architecture. A graphical editor
has been designed, which communicates with the Editor Server built on top of
CoGITaNT. This tool allows the user to edit and modify simple graphs, rules
and constraints which form the knowledge base located on a distant server.

We have also added on top of CoGITaNT a constrained derivation engine,
which is not yet provided with the necessary optimizations. This engine is in­
tended to communicate with a user-friendly Problem Manager client, which will
enable the user to select rules and constraints that he/she needs for a particular
problem solving and visualize a step by step evolution of the base graphs by
interacting with the graph editor. This Problem Manager is not yet ready, and

I 371

f
I we had to hard-code the SCG-1 problem on top of the constrained derivation

engine.

BCGCT,

files

5!g;gp3
QsHliisn'

•'Edftcir'
Secver

CoGITaNT

Problem Manager
. J ,

Sraph Editor

Server Client

Fig. 25. System architecture

In order to develop a generic constrained derivation engine, we defined several
new classes built on top of the the C-l—1- classes of the CoGITaNT library. These
new classes are a straightforward implementation of the model presented in
section 2, and no particular work has yet been done to optimize the research
process.

- The class ru l e , which provides methods such as the application of a rule on
a graph given a projection, has been updated to compute the closure of a
graph with respect to a single rule. The class set_of j ru les mainly provides
a calculus of the closure of a graph by a (finite expajision) set of rules.

- The class cons t r a in t represents positive and negative constraints and a
method of this class verifies whether a given graph satisfies the constraint.
The class se t_of-const ra in ts determines whether a given graph is valid
with respect to this set of constraints.

These classes are used to define the core of the engine. The class cd_problem
allows the user to add to the problem the BCGCT files containing the fact
graph^, rules representing implicit knowledge, constraints, transformation rules
and the request. Each graph is added to the problem in the same way, we just
have to indicate the nature of the graph contained in the file such as "negative
weak constraint" or "transformation rule". Once these graphs have been loaded,
the method execute can be called and computes one or every solution.

Of course, this engine can be easily used on the modeling described in sec­
tion 3. The scgl-problem class, inheriting from cd_problein benefits from the
optimization presented in section 4.1.

To take into account the different priorities assigned to constraints, we used
the following algorithm. We sorted all constraints used along a total order such

^ A single graph or several graphs can be loaded. In the latter case, the fact graph is
automatically computed a.s the normal form of the disjoint sum of these graphs.

372

that we have weak constraints first, then strong constraints, then absolute con­
straints. If we find a solution satisfying every constraint, then we return this
solution. Otherwise, we remove the weakest constraint from C and try to find
a solution to this modified problem. If we can find a solution by removing only
weak constraints, we answer "yes, there is a solution if we remove the following
constraints . . . " . If the only solution is obtained by removing at least one strong
constraint, then we answer: "no, there is no solution unless you ax:cept to remove
the following constraints . . . " . If there is still no solution after having removed
all weak and strong constraints, then we answer "there is no solution to the
problem".

4.3 Solutions Found

The research engine found 2880 solutions to the SCG-1 problem. These solutions
satisfy all constraints excepted a weak one which expresses that heads of large
projects should be next to the secretariat and the head of group. Obviously, this
constraint cannot be satisfied. Given our modeling, the number of solutions can
be explained as follows:

— The head of group can only be in the office 117 or 119 (2 solutions)
— The manager can only be placed in a small central office, i.e. the office 116.

(1 solution)
— The positions of the head group and manager determine the position of the

secretariat (the office which has not been assigned to the head of group) (1
solution)

— There are only three small offices left, and they must be assigned to the three
heads of large projects, which should be alone in their office (6 solutions)

— The two smokers must be together and have the choice between the 4 big
offices left (4 solutions)

— There are 15 possible sets of couples for the 6 researchers left, of them 5 are
impossible (they are in the same project). There are 6 possible assignments
for these couples in the 3 last big oflfices (60 solutions)

Finally, we have the 2 x 1 x 1 x 6 x 4 x 6 0 = 2880 different solutions exhibited by
our research engine. Two of the computed solutions axe presented in fig. 26. The
first solution we find is the solution A in fig. 26. The beginning of the research
tree used to find this solution is presented in fig. 27. We can see there one
backtrack, as the first secretary is assigned a small office (no explicit constraint
forbids it), and problems arise only when we try to assign the same small office
to the second secretary. We explored 85 different worlds before generating the
first valid solution (so we had 70 backtracks), and we must remind here that
each of these worlds required to solve the problem of its validity, which is a
co-NP-complete problem. However, the length of the computation is counted in
seconds.

373

Office Solution A
113
114
115
116
117
119
120
121
122
123

Hans W. (Head of Large Project)
Katharina N. (Head of Lajge Project)
Joachim I. (Head of Large Project)
Eva L (Manager)
Thomas D. (Head of group)
Monika X. Ulrike U. (Secretaries)
Andy L. Uwe T. (Reseaichers, smokers)
Michael T. Mark M. (Researchers, non smokers)
Jurgen L. Werner L. (Researchers, non smokers)
Angi W. Harry C. (Researchers, non smokers)

Office S o l u t i o n B

113
114
115
116
117
119
120
121
122
123

Katharina N. (Head of Large Project)
Hans W. (Head of Laxge Project)
Joachim L (Head of Large Project)
Eva L (Mcinager)
Monika X. Ulrike U. (Secretaries)
Thomas D. (Head of group)
Angi W. Mark M. (Researchers, non smokers)
Harry C. Werner L. (Researchers, non smokers)
Jurgen L. Michael T. (Researchers, non smokers)
Andy L. Uwe T. (Researchers, smokers)

Fig. 26. Two solutions to the SCG-1 problem

Thomas D. -> 113 Violation: Not Central
Thomas D. -y 114 Violation: Not Central
Thomas D. -••115 Violation: Not Central
Thomas D. - f 116 Violation: Small Office
T h o m a s D . -> 117

Eva I. -+ 113 Violation; Not Central
Eva I. ->• 114 Violation: Not Central
Eva I. ->• 115 Violation: Not Central
E v a I . - f 116

Monika X. —> 113 Violation: Far from Manager
Monika X. —¥ 114 Violation: Far from Manager
M o n i k a X. -(• 1 1 5

Ulrike U. —> 113 Violation: Far from Manager
Ulrike U. -+ 114 Violation: Not with other Secretary
Ulrike U. —> 115 Violation: Two persons in a small office
Ulrike U. —> 116 Violation: Two persons in a small office
Ulrike U. -+ 117 Violation: Head of group must be alone
Ulrike U. -¥ 119 Violation: Not with other Secretary
[. . .] (120, 121, 122, 123) Violation: Not with other Secretary

Monika X. —> 116 Violation: Two persons in a small office
Monika X. —>• 117 Violation: Head of group must be alone
M o n i k a X . -y 119

Ulrike U. —> 113 Violation: Far from Manager
Ulrike U. -> 114 Violation: Not with other Secretary
Ulrike U. —> 115 Violation: Not with other Secretary
Ulrike U. —> 116 Violation: Two persons in a small office
Ulrike U. -> 117 Violation: Head of group must be alone
Ulr ike U . ^ 119

Hans W. -> . . .

F i g . 2 7 . A trace of the backtrack leading to the solution A

374

4.4 Coping wi th Changes in D a t a

In order to cope with the slightly modified data set, we only have to modify the
base graph and the request for our problem.

— The graph represented in fig. 9 (team membership) is modified by removing
[HeadJProject:Katharina N.]—^(leadership)—>^ [Project :Mlt] , replac­
ing it by [Researcher :Chris t ian I.]—^(membership)->[Project:Mlt]

— The graph represented in fig. 10 (personal information) is modified by remov­
ing the connected component containing the concept node whose marker is
Katharina N. and replacing it by: [Hacker]-^—Cperson-CELracteristic) <—
[Researcher: Christicin I .] —>• (persoi i_caracter is t ic) -+ [Smoker] .

— The request presented in fig. 24 is modified in such a way that the con­
cept node [Head_Project:Katharina N.] is replaced by the concept node
[Researcher :Chris t ian I .] .

As we have less constraints about Christian I. than about Katharina N.,
there are now 8640 different solutions to the problem (once again, according to
our modelization). As in the first problem, the last weak constraint cannot be
satisfied.

If the objective is to modify as few as possible the existing solution, one can
proceed in the following way. Weak constraints can be added, expressing the fact
that everybody (or some persons) would like to stay at the same place. This is
done by transforming each or some of the previous assignments in a negative
constraint, such as the one represented in fig. 28. These constraints express that
a person should not be in an office different from the one he/she has already
been assigned to.

Q I Researcher: Jurgen L. l—C^jTr^-Tofflce | (^ ^ — | Office: C 5 J ^ ~ |

Fig. 28. Minimum displacement constraint (case of Jurgen L.)

By introducing all such constraints in our problem (nobody want to change),
it is not surprising that the only one solution found replaces Katharina N. by
Christian I.

Conclusion

The fundamental objective of the Corali project [3] is to develop conceptual
graphs as a graphical knowledge representation model (in the sense given in
the introduction of this paper). The research works are based on a four-stroke
experimental methodology: build a theoretical formal model, build software tools
implementing the formal model, use the two preceding points to build real-world
applications, then evaluate the systems built, and loop through this four-step
process.

375

This paper presents a generic way of solving the Sisyphus-I room allocation
problem, in the sense that the modeling frajnework introduced is general enough
to enable the representation of ajiy resource allocation problem. This framework
is based on a graphical formal model. Basic constructs are simple conceptual
graphs and the basic operation for doing reasonings is projection. Two more
complex constructs are defined in terms of simple graphs: rules and constraints.
They are processed by operations based on projection. To summarize the differ­
ent kinds of knowledge represented by these constructs, we can say that :

- asserted facts provided with implicit knowledge about the domain define
worlds;

- constraints express conditions for a world to be considered as valid;
- transformation rules define possible changes in worlds;
- the request represents a question.

Answering a request consists in finding a constrained derivation from the initial
world to one satisfying the request.

Using the modeling constructs to produce a modelization of the given prob­
lem is done in a rather "natural" way: simple graphs assert facts using an initial
vocabulary limited to primitive types (concepts and relations) and individuals,
rules represent implicit knowledge resulting from the asserted facts, constraints
translate obligations and interdictions for possible solutions of the problem in a
rather straightforward way, and transformation rules describe the way solutions
are constructed.

Let us add that all CG applications we were involved in seem to confirm
that the formal constructs are really understandable and usable by an end-user.
Graphs in their graphical form are easy to read and operations are not difficult
to understand because they are "matching" operations and can be graphically
represented.

Dealing with the modified set of data was straightforward: we only had to
slightly modify asserted facts and the request. Using constraints we were also able
to specify which existing room assignments should be kept in the new solutions.

A prototype implementing this framework has been built upon CoGITaNT.
It has been used to test our modelization of the Sisyphus-I problem. Constraints
have been classified into three clusters of different priority, allowing more fiex-
ibility in the answers given by the system. This prototype is not yet a really
usable tool. Further developments are needed in order to enable communication
with the user in a friendly way, give the user the possibility to intervene at sev­
eral stages of the solving process, and improve computational complexity of the
solving process.

376

References

1. J.-F. Baget. A simulation of co-identity with rules in simple and nested graphs. In
Proceedings of the 7th ICCS, 1999.

2. C. Bos, B. Botella, and P. Vanheeghe. Modeling and simulating human behav­
iors with conceptual graphs. In Conceptual Structures: Fulfilling Peirce's Dream,
ICGS'97 Proc, LNAI1257, pages 275-289. Springer Verlag, 1997.

3. B. Carbonneill, M. Chein, 0 . Cogis, O. Guinaldo, O. Haemmerle, M.L. Mugnier,
and E. Salvat. The Conceptual gRAphs at LIrmm Project. In Proc. of the first
CGTOOLS workshop, pages 5-8, 1996.

4. M. Chein. The CORALI project: Prom conceptual graphs to conceptual graphs
via labelled graphs. In Conceptual Structures: Fulfilling Peirce's Dream, ICCS'97
Proc, LNAI 1257, pages 65-79. Springer Verlag, 1997.

5. M. Chein, M.-L. Mugnier, and G. Simonet. Nested Graphs: a Graph-based Knowl­
edge Representation Model with FOL semantics. In Proc. KR'98, pages 524-534.
Morgan Kaufmann, 1998.

6. M. Chein and M.L. Mugnier. Conceptual Graphs: Fundamental Notions. Revue
d'lntelligence Artificielle, 6(4):365-406, 1992.

7. S. Coulondre and E. Salvat. Piece Resolution: Towards Larger Perspec­
tives. In Conceptual Structures: Theory, Tools and Applications, ICCS'98
Proc, LNAI 1453, pages 179-193. Springer Verlag, 1998.

8. J. Dibie, O. Haemmerle, ajid S. Loiseau. A Semantic Validation of Conceptual
Graphs. In Conceptual Structures: Theory, Tools and Applications, ICCS'98
Proc, LNAI 1453, pages 80-93. Springer Verlag, 1998.

9. D. Genest and M. Chein. An experiment in Document Retrieval Using Con­
ceptual Graphs. In Conceptual Structures: Fulfilling Peirce's Dream, ICCS'97
Proc, LNAI 1257, pages 489-504. Springer Verlag, 1997.

10. D. Genest and E. Salvat. A Platform Allowing Typed Nested Graphs: How CoGITo
Became CoGITaNT. In Conceptual Structures: Theory, Tools and Applications,
ICCS'98 Proc, LNAI 1^53, pages 154-161. Springer Verlag, 1998.

11. O. Haemmerle. CoGITo : une plate-forme de developpement de logiciels sur les
graphes conceptuels. PhD thesis, Universite Montpellier II, 1995.

12. E. Salvat. Theorem proving using graph operations in the conceptual graph for­
malism. In Proceedings of the 13th European Conference on Artificial Intelligence
(ECArgS), Brighton, UK, 1998.

13. E. Salvat and M.L. Mugnier. Sound and complete forward and backward chainings
of graph rules. In Conceptual Structures: Knowledge Representation as Interlingua,
ICGS'96 Proc, LNAI 1115, pages 248-262. Springer, 1996.

14. L.K. Schubert. Semantic Networks are in the Eye of the Beholder. In J. F. Sowa,
editor, Principles of Semantic Networks, pages 95—108. Morgan Kaufmann, 1991.

