
Automated Verification
of a Parametric Real-Time Program:

The ABR Conformance Protocol

Béatrice Bérard and Laurent Fribourg ?

LSV – Ecole Normale Supérieure de Cachan & CNRS
61 av. Pdt. Wilson - 94235 Cachan - France

email: {berard,fribourg}@lsv.ens-cachan.fr

Abstract. The ABR conformance protocol is a real-time program deve-
loped at France Telecom, that controls dataflow rates on ATM networks.
A crucial part of this protocol is the dynamical computation of the ex-
pected rate of data cell emission. We present here a modelization of the
corresponding program, using parametric timed automata. In this fra-
mework, a fundamental property of the service provided by the protocol
to the user is expressed as a reachability problem. The tool HyTech is
then used for computing the set of reachable states of the model, and
automatically proving the property. This case study gives additional evi-
dence of the importance of the model of parametric timed automata and
the practical usefulness of symbolic analysis tools.

1 Introduction

Over the last few years, an extensive amount of research has been devoted to
the formal verification of real-time concurrent systems. Among the various ap-
proaches to the analysis of timed models, one of the most successful is based on
timed automata. Since its first introduction in [3], this model was extended with
many different features, leading to the general notion of hybrid automata [1,2,
15]. Although hybrid automata have an infinite number of states, the fixpoint
computation of reachable states often terminates in practice, thus allowing the
verification of “safety” properties. This explains the increasing success of the
development of tools for the analysis of real-time systems [5,8,12], as well as
the numerous industrial case studies which have already been presented. In this
paper, we propose an automated verification of correctness for the Available Bit
Rate (ABR) conformance protocol, developed by France Telecom at CNET (Cen-
tre National d’Etudes des Télécommunications, Lannion, France) in the context
of network communications with Asynchronous Transfer Mode (ATM).

The ABR conformance protocol. ATM is a flexible packet-switching net-
work architecture, where several communications can be multiplexed over a
? Supported by Action FORMA (Programme DSP-STTC/CNRS/MENRT)

N. Halbwachs and D. Peled (Eds.): CAV’99, LNCS 1633, pp. 96–107, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Automated Verification of a Parametric Real-Time Program 97

same physical link, thus providing better performances than traditional circuit-
switching networks. Different types of ATM connections are possible at the same
time, according to the dataflow rate asked (and paid) for by the service user [9].
A contract with ABR connection makes it possible for a source to emit at any
time with a rate depending on the load of the network: according to the avai-
lable bandwidth, the ABR protocol dynamically computes the highest possible
dataflow rate and sends this information, via so called Resource Management
(RM) cells, to the user, who has to adapt his transfer rate of data (D) cells.

The service provider has to control the conformance of emission with respect
to the currently allowed rate, and filter out D cells emitted at an excessive rate.
This is achieved by a program located at an interface between the user and the
network, which receives RM cells on their way to the user as well as D cells from
the user to the network (see Figure 1). This program has two parts: the easy task

USER NETWORKInterface

D cells

D cells
in conformance

RM cellsRM cells

Fig. 1. Schematic view of cells traffic

is to compare the emission rate of D cells with the rate value currently allowed,
while the difficult problem is to dynamically compute (or update) the rate values
expected for future D cells. The program must take into account the delays
introduced by the transit of cells from the interface to the user and back, but
the exact value of this delay is not known: only lower and upper bounds, denoted
a and b, are given. A simple algorithm called I computes, from a sequence of
rate values carried by previously arrived RM cells, the ideal (expected) rate Et
for emission of D cells which will arrive at future time t. However, since the
value of t is not known in advance, an implementation of I would require to
store a huge number of rate values. A more realistic algorithm, called B′, due to
C. Rabadan, has been adopted by CNET. It stores only two RM cell rates, and
dynamically updates an estimated value A of ideal rate Et.

Correctness of program B′. Before being accepted as an international stan-
dard (norm ITU I-371.1), this protocol had to be proved correct: it was necessary
to ensure that the flow control of D cells by comparison with A rather than Et
is never disadvantageous to the user. This means that when some D cell arrives
at time t, A is an upper approximation of Et. In other words, A ≥ Et when

98 B. Bérard and L. Fribourg

current time reaches t. This property U was proved by hand by Monin and Klay,
using a classical method of invariants [14]. However, since this proof was quite
difficult to obtain, CNET felt the need for using formal methods and tools to
verify B′ in a more mechanical way, as well as future versions of B′ currently
under development.

This paper presents a modelization of algorithms I and B′ as parametric
timed automata [4], and an automated proof of property U (viewed as a reach-
ability problem) via tool HyTech [12].

Plan of the paper. Section 2 presents the model of parametric timed automata.
Section 3 describes algorithms I and B′, and correctness property U within this
framework. Section 4 gives the experimental results obtained with HyTech and
a comparison with previous work. Section 5 concludes with final remarks.

2 Parametric Timed Automata

We use here a model of parametric timed automata, called p-automata for short,
which are extensions of timed automata [3] with parameters. A minor difference
with the classical parametric model of Alur-Henzinger-Vardi [4] is that we have
only one clock variable S and several “discrete” variables w1, ..., wn while, in [4],
there are several clocks and no discrete variable. One can retrieve (a close variant
of) Alur-Henzinger-Vardi parametric timed automata by changing our discrete
variable wi into S − wi (see [10]). Alternatively, our parametric automata can
simply be viewed as particular cases of linear hybrid automata [1,2,15].

P-automata. In addition to a finite set of locations, p-automata have a finite
set P of parameters, a finite set W of discrete variables and a universal clock S.
These are all real-valued variables which differ only in the way they evolve when
time increases. Parameter values are fixed by an initial constraint and never
evolve later on. Discrete variables values do not evolve either, but they may be
changed through instantaneous updates. A universal clock is a variable whose
value increases uniformly with time (without reset).

Formally, a parametric term is an expression of the form w +
∑k
i=1 pi + c,

S +
∑k
i=1 pi + c or

∑k
i=1 pi + c, where w ∈ W , pi ∈ P and c ∈ N. (As usual,

by convention, a term without parameter corresponds to the case where k = 0.)
An atomic constraint is an expression term1#term2, where term1, term2 are
parametric terms and # ∈ {<,≤, =,≥, >}. A constraint is a conjunction of
atomic constraints. The formulas used in p-automata are location invariants,
guards and update relations. A location invariant is a conjunction of atomic
constraints. A guard is a conjunction of atomic constraints with possibly the
special expression asap. An update relation is a conjunction of formulas of the
form w′#term where w′ belongs to a primed copy of W , term is a parametric
term and # ∈ {<,≤, =,≥, >}. As usual w′ = w is implicit if w′ does not appear

Automated Verification of a Parametric Real-Time Program 99

in the update relation.
A p-automaton A is a tuple 〈L, `init, P, W, S, I, Σ, T 〉, where
- L is a finite set of locations, with initial location `init ∈ L,
- P and W are respectively the sets of parameters and discrete variables, S is
the universal clock,
- I is a mapping that labels each location ` in L with some location invariant,
simply written I` instead of I(`) in the following,
- Σ is a finite set of labels partitioned into synchronization labels and internal
labels,
- T is a set of action transitions of the form 〈`, ϕ, σ, θ, `′〉, where ` and `′ belong
to L, ϕ is a guard, σ ∈ Σ is a label and θ an update relation. The transition is
urgent if its guard ϕ contains the symbol asap.

Semantics of p-automata. We briefly and informally recall the semantics of
timed automata (see [4] for details), described in terms of transition systems.
For a p-automaton A, the (global) state space of the transition system is the
set QA = L × R

P × R
W × R of tuples (`, γ, v, s), where ` is a location of A,

γ : P 7→ R is a parameter valuation, v : W 7→ R is a data valuation and
s is a real value of the clock S. A region is a subset of states of the form
{(`, γ, v, s) | ϕ holds for (γ, v, s)}, for some location ` and some constraint ϕ,
written ` × ϕ.

The set Qinit of initial states is the region `init × ϕinit, for some constraint
ϕinit: the automaton starts in its initial location, with some given initial con-
straint. (From this point on, the parameter values are not modified.)

A state q = (`, γ, v, s) is urgent if there exists some action transition e, with
source location ` and a guard of the form ϕ∧asap, such that ϕ holds for (γ, v, s):
some urgent transition is enabled. From a non urgent state q = (`, γ, v, s), the
automaton can spend some time ε ≥ 0 in a location `, providing the invariant I`
remains true. This delay move results in state q′ = (`, γ, v, s + ε) (nothing else
is changed during this time). Since location invariants are convex formulas, if I`
is satisfied for s and s + ε, then it is also satisfied for any α, 0 ≤ α ≤ ε.

From a state q = (`, γ, v, s), the automaton can also apply some action tran-
sition 〈`, ϕ, σ, θ, `′〉, providing guard ϕ is true for the current valuations (γ, v, s).
In an instantaneous action move, the valuation of discrete variables is modified
from v to v′ according to update relation θ and the automaton switches to target
location `′, resulting in state q′ = (`′, γ, v′, s).

A successor of a state q is a state obtained either by a delay or an action
move. For a subset Q of states, Post∗(Q) is the set of iterated successors of the
states in Q. Similarly, the notions of predecessor and set Pre∗(Q) can be defined.

Synchronized product of p-automata. Let A1 and A2 be two p-automata
with a common universal clock S. The synchronized product (or parallel compo-
sition, see e.g. [12]) A1 × A2 is a p-automaton with S as universal clock and the
union of sets of parameters (resp. discrete variables) of A1 and A2 as sets of pa-
rameters (resp. discrete variables). Locations of the product are pairs (`1, `2) of

100 B. Bérard and L. Fribourg

locations from A1 and A2 respectively. Constraints associated with locations (in-
variants, initial constraint) are obtained by the conjunction of the components
constraints. The automata move independently, except when transitions from
A1 and A2 have a common synchronization label. In this case, both automata
perform a synchronous action move, the associated guard (resp. update relation)
being the conjunction of both guards (resp. update relations). For simplicity we
suppose here that synchronized transitions are non urgent.

Parametric verification. For a given automaton, Post∗(Qinit) represents the
set of reachable states. For p-automata, we have the following closure property:
if Q is a finite union of regions, also called zone, then the successor of Q is also
a zone. Hence, the output of the computation of Post∗(Qinit) (if it terminates)
is a zone. Consider now some property U , such that the set of states violating
U can be characterized by a zone Q¬U . Proving that U holds for the system
reduces to prove the emptiness of zone Post∗(Qinit) ∩ Q¬U . Alternatively it
suffices to prove: Pre∗(Q¬U) ∩ Qinit = ∅. Note that we are interested here in
proving that property U holds for all the valuations of parameters satisfying the
initial constraint. The problem is known to be undecidable in general [4]: there
is no guarantee of termination for the computation of Post∗ (or Pre∗).

3 Description and Modelization of the System

Recall that algorithms I and B′ use rate values carried by RM cells to dyna-
mically compute the rate expected by the network for the conformance test of
future D cells. In order to verify the correctness of B′ with respect to I, we
introduce a snapshot action taking place at an arbitrary time t, which will be a
parameter of the model. For our purpose of verification, it is enough to consider
the snapshot as a final action of the system.

We first give p-automata as models for the environment and algorithms I
and B′. Then, in the complete system obtained as a synchronized product of
the three automata, we explain how to check the correctness property. All these
p-automata share a universal clock S, the value of which is the current time s.
Without loss of understanding (context will make it clear), we will often use S
instead of s.

3.1 A Model of Environment and Observation

The p-automaton Aenv modeling environment (see Figure 2) involves the para-
meter t (snapshot time) and a discrete variable R representing the rate value
carried by the last received RM cell. In the initial location Wait, a loop with
label newRM simulates the reception of a new RM cell: the rate R is updated
to a non deterministic value (R’ > 0). The snapshot action has S=t as a guard,
and location Wait is assigned invariant S ≤ t in order to “force” the switch to
location EndE.

Automated Verification of a Parametric Real-Time Program 101

Wait

S ≤ t

newRM

R′ > 0

EndE

snapshot

S = t

Fig. 2. Automaton Aenv modeling arrivals of RM cells and snapshot

3.2 Algorithm I
Definition of Ideal Rate. As already mentioned, transmissions are not in-
stantaneous and parameters a and b represent respectively a lower and an upper
bound of the delay. Recall that s is the current time and t the date of the snaps-
hot. An RM cell received from the network is relevant to the computation of the
“ideal rate” only if it has been received before s and (1) either it is the last recei-
ved before or at time t−b, or (2) it arrived inside the time interval]t−b, t−a]. The
ideal rate Et(s), estimated at current time s for time t, is the highest value among
these RM cells. In other words, if n ≥ 0 and r0, r1, . . . , rn are the successive arri-
val times (before s) of RM cells, such that r0 ≤ t−b < r1 ≤ r2 ≤ · · · ≤ rn ≤ t−a,
and if R0, R1, . . . , Rn are the corresponding rate values, then the expected rate
is Et(s) = Max{Ri, 0 ≤ i ≤ n}. The case where n = 0 is obtained when no new
RM cell arrived between t − b and t − a. Note that in [14], RM cell arrival times
r1, r2, . . . , rn are additionally assumed to form a strictly increasing sequence (see
section 4.2).

Incremental algorithm I. The following algorithm I proceeds in an incre-
mental way, by updating a variable E at each reception of an RM cell, until
current time s becomes equal to t. It is easy to see that, at this time, the value
of E is equal to the ideal rate Et(s) defined above. More precisely, algorithm I
involves variable R and parameter t (in common with Aenv) and, in addition:
- the two parameters a and b (representing the lower and upper bounds of the
transit time from the interface to the user and back),
- the specific variable E (which will be equal to the ideal rate Et(s) when the
value of the universal clock S reaches t).
Initially, E and R are equal. Algorithm I reacts to each arrival of a new RM cell
with rate value R by updating E. There are three cases, according to the position
of its arrival time S with respect to t-b and t-a:

1. If S ≤ t-b (case n = 0 above), E is updated to the new value of R:
[I1] if t >= S+b then E’= R

2. If t-b < S ≤ t-a, the new ideal rate becomes E’=Max(E,R) (from the
definition and the associativity of Max). To avoid using function Max, this
computation is split into two subcases:

102 B. Bérard and L. Fribourg

[I2a] if S+a <= t < S+b and E < R then E’= R
[I2b] if S+a <= t < S+b and E >= R then E’= E

3. If S > t-a, the rate E is left unchanged:
[I3] if t < S+a then E’= E

Algorithm I terminates when the snapshot takes place (S=t).

Remark. A program of conformance control based on I would need to store at
each instant s all the rate values of the RM cells received during interval]s−b, s],
which may be in huge number on an ATM network with large bandwidth.

IdleUpdE EndI
snapshot

newRM

t<S+a ∧ asap

[I3]

S+a≤t<S+b ∧ E≥R ∧ asap

[I2b]

S+a≤t<S+b ∧E<R ∧asap

[I2a]

E′=R

S+b≤t ∧ asap

[I1]

E′=R

Fig. 3. Automaton AI

Automaton AI . Algorithm I is naturally modeled as p-automaton AI (see
Figure 3). Initial location is Idle, with initial constraint E = R. The reception
of an RM cell is modeled as a transition newRM from location Idle to location
UpdE. This transition is followed by an urgent (asap) transition from UpdE
back to Idle, which updates E depending on the position of S w.r.t. t-b and
t-a, as explained above. Without loss of understanding, transitions from UpdE
to Idle are labeled [I1],[I2a],[I2b],[I3] as the corresponding operations.
Observation of the value E corresponds to the transition snapshot from Idle to
final location EndI.

Automated Verification of a Parametric Real-Time Program 103

3.3 Algorithm B′: Computation of an Approximation

Like I, algorithm B′ involves parameters a and b (but not t), and variable R. In
addition, it has six specific variables:
- tfi and tla, which play the role of fi-rst and la-st deadline respectively,
- ACR, for “Approximate Current Rate” , which corresponds to A(s),
- FR, for “First Rate”, which is the value taken by ACR when current time S
reaches tfi,
- LR, for “Last Rate”, which is the value taken by ACR when current time S
reaches tla. It stores the rate value R carried by the last received RM cell.
- Emx is just a convenient additional variable, intended to be equal to Max(FR,
LR).

Initially, S=tfi=tla, and the other variables are all equal. Algorithm B′ reacts
to two types of events: “receiving an RM cell” and “reaching tfi”.

Receiving an RM cell. When, at current time S, a new RM cell with value R
arrives, the variables are updated according to the relative positions of S+a
and S+b with respect to tfi and tla, and those of R with respect to Emx
and ACR. Among the eight cases (from [1] to [8]), we omit operations [1]
to [5] for lack of space, but they are similar to [6]:

[6] if S < tfi and Emx > R and R >= LR then
LR’ = R, FR’ = Emx.

[7] if S >= tfi and ACR <= R then
LR’ = R, FR’ = R, Emx’= R, tfi’= S+a, tla’= S+a.

[8] if S >= tfi and ACR > R then
LR’ = R, FR’ = R, Emx’ = R, tfi’ = S+b, tla’ = S+b.

Reaching tfi. When the current time S becomes equal to tfi, the approxi-
mate current rate ACR is updated to FR while FR is updated to LR. Moreover,
tfi is updated to tla. There are two cases depending on whether tfi was
previously equal to tla (operation [9a]) or not (operation [9b]). In the
first case, current time S will go beyond tfi (= tla), while in the second
case, S will stay beneath the updated value tla of tfi. We have:

[9a] if tfi = tla then
ACR’ = FR, FR’ = LR, Emx’ = LR.

[9b] if tfi < tla then
ACR’ = FR, tfi’ = tla, FR’ = LR, Emx’ = LR.

When the events “reaching tfi” (S=tfi) and “receiving an RM cell” si-
multaneously occur, operation [9a] (case tfi=tla) or [9b] (case tfi<tla)
must be performed before operation [1],...,[8] (accounting for the RM
cell reception).

Like I, algorithm B′ terminates at snapshot time (S=t). If the snapshot occurs
simultaneously with reaching tfi, operation [9a] or [9b] must be performed
before termination of B′.

104 B. Bérard and L. Fribourg

Automaton AB′ . Algorithm B′ is modeled as p-automaton AB′ , represented in
Figure 4 with only the most significant guards and no update information. Like
before, the same labels are used for automaton transitions and corresponding
program operations.

Less

S≤tfi

Greater

UpdAL

UpdAG

EndB

S=tfi<tla

[9b]

S<tfi

snapshot

snapshot

S=tfi=tla

[9a]

newRM

asap

[7] or [8]

S<tfi

newRM

asap

[1] or [2] or ... or [6]

Fig. 4. Approximation automaton AB′

Event “reaching tfi” (S=tfi) is simulated by introducing two locations Less
and Greater in AB′ . Initially AB′ is in Greater, with constraint: S=tfi=tla
∧ ACR=FR=LR=Emx=R. Location Less has S≤tfi as an invariant, in order to
force execution of transition [9b] (if tfi<tla) or [9a] (if tfi=tla) when S
reaches tfi. From Less, transition [9b] goes back to Less (since, after update,
S<tfi=tla) while transition [9a] switches to Greater (since S≥tfi=tla as time
increases).

The reception of an RM cell corresponds to a transition newRM . There
are two cases depending on whether the source location is Less or Greater.
From Less (resp. Greater), transition newRM goes to location UpdAL (resp.
UpdAG). This transition is followed by an urgent transition from UpdAL (resp.
UpdAG) back to Less, which updates the discrete variables according to ope-
rations [1],...,[6] (resp. [7],[8]), as explained above. Note that transition
newRM from Less to UpdAL has an additional guard S<tfi in order to prevent
an execution of newRM before [9a] or [9b] when S=tfi (which is forbidden
when “reaching tfi” and newRM occur simultaneously).

Like before, observation is modeled as a transition snapshot from location
Less or Greater to EndB. Also note that transition snapshot from Less to
EndB has guard S<tfi in order to prevent its execution before [9a] or [9b]

Automated Verification of a Parametric Real-Time Program 105

when S=tfi (which is forbidden when “reaching tfi” and the snapshot occur
simultaneously).

3.4 Synchronized Product and Property U

The complete system is obtained by the product automaton T = Aenv × AI ×
AB′ of the three p-automata above, synchronized by the labels newRM and
snapshot. In order to mechanically prove property U , we have to compute Post∗

for the product automaton T , starting from its initial region
Qinit = (Wait, Idle, Greater) × ϕinit,

where ϕinit is the constraint S=tfi=tla ∧ R=E=ACR=FR=LR=Emx ∧ 0<a<b.
We then have to check that Post∗(Qinit) does not contain any state where the
property U is violated. Recall that property U expresses in terms of the ideal
rate Et(s) computed by I, and the approximate value A(s) computed by B′,
by: For all t, when s reaches t, A(s) ≥ Et(s). In our model T , E corresponds
to Et(s), ACR to A(s) and snapshot (at S=t) makes the automaton switch to its
final state, hence property U translates as:

when T is in location (EndE, EndI, EndB), ACR ≥ E.
The set of states where U does not hold is therefore the region

Q¬U = (EndE, EndI, EndB) × ACR<E.
As explained in Section 2, we have to check Post∗(Qinit) ∩ Q¬U = ∅ or, alter-
natively, Pre∗(Q¬U) ∩ Qinit = ∅.

4 Verification of Correctness

4.1 Verification with HyTech

Automata Aenv, AI and AB′ can be directly implemented into HyTech [12],
which automatically computes the synchronization product T . The forward com-
putation of Post∗(Qinit) requires 23 iteration steps and its intersection with Q¬U
is checked to be empty. This takes 487 sec. on a SUN station ULTRA-1 with
64 Megabytes of RAM memory. Alternatively, the backward computation of
Pre∗(Q¬U) requires 15 iteration steps and its intersection with Qinit is checked
to be empty in 90 sec. The automated proof of correctness of B′ is thus achie-
ved. Recall that these automata (with 3 parameters a, b and t) belong to an
undecidable class [4], so termination was not guaranteed a priori.

4.2 Comparison with Previous Work

Verification at CNET. Ideal rate algorithm I and correctness property U
(S=t⇒ E≤ ACR) have been formalized by J.-F. Monin and F. Klay at CNET.
In [14], they give the first manual proof of U , using the classical method of in-
variants. They first split U into a conjunction of two properties:
U1 : tfi ≤ S ≤ t ⇒ E ≤ ACR and U2 : S ≤ t < tfi ⇒ E ≤ ACR.
The proof of U1∧U2 is then done in two steps. First, U1∧U2 is in turn strengthe-
ned into V ≡ U1 ∧U2 ∧U3 ∧ · · · ∧U10, where U3, . . . , U10 are nontrivial auxiliary

106 B. Bérard and L. Fribourg

properties of B′. Second, V is proved to be an invariant (true initially and remai-
ning true after each event). The invariance proof for V has been mechanically
checked with the proof assistant COQ [13]. The auxiliary properties U3, . . . , U10
can be seen as “lemmas” necessary to achieve the proof of U1 ∧ U2 by (fixpoint)
induction.

With respect to our approach, property V can be seen as a fixpoint of Post
and, as such, is an overall approximation of Post∗ (since Post∗ is the least
fixpoint). The main advantage of our approach, is that no auxiliary property
(“lemma”) such as U3, · · · , U10 has to be manually discovered: U is mechanically
verified in its original form. Note that one of the Ui (tfi= tla ⇒ FR=LR) is not
true in our model but should be replaced by tfi= tla ⇒ FR ≥ LR. This is a
consequence of the slightly more general hypothesis r1 ≤ r2 ≤ · · · ≤ rn instead
of r1 < r2 < · · · < rn. Another advantage here is that Post∗ characterizes all the
properties of the system, and not only U . Therefore Post∗ can be immediately
reused for proving any other property P of the system by testing that Post∗

does not contain any state violating P . Finally our modelization is likely to be
reusable for modeling and verifying enhanced versions of B′, which are currently
under development at CNET.

Verification with GAP. In [10], we achieved a first mechanical proof of U by
encoding the successor relation of the system as a logic program with arithmetical
constraints, and computing a fixed-point of the program through the bottom-up
evaluation procedure of Revesz [16]. The encoding required an approximation
of the successor relation, so that only an upper approximation of Post∗ was
generated. Nevertheless this approximation was sufficient to prove U , because it
did not contain any state violating U .

With respect to that approach, we used here HyTech [12], a sophisticated
and widely spread analysis tool for hybrid systems [2], rather than GAP, a spe-
cific prototype implementation of Revesz’s procedure [11]. Therefore our results
are now easily reproducible. Besides, with respect to GAP, we reach an exact
fixed-point rather than an approximation, and the execution time is much (ab-
out 10 times) faster. On the other hand, termination of fixpoint computation
was guaranteed with GAP by Revesz’s decidability result.

5 Final Remarks

Our modelization is a direct translation without any simplification of the real
algorithm B′ described in the international norm ITU I-371. We automatically
proved the basic correctness property U of algorithm B′ using HyTech [12] (the
full HyTech code is given in [6]). The proof is parametric in the sense that U
holds for all values of the two parameters a and b (with 0 < a < b) involved
by B′. A third parameter t was used for specifying property U itself. Such a
proof is a priori impossible to do with other analysis tools of real-time systems
such as UPPAAL [5] or KRONOS [8] due to this use of parameters. Our ana-
lysis contributes to improve the comprehension of the correctness proof for the

Automated Verification of a Parametric Real-Time Program 107

ABR conformance protocol, in particular in relaxing some unnecessary assump-
tions. It paves the way for the verification of enhanced versions of B′ currently
under development at CNET. This case study gives additional evidence of the
importance of (variants of) parametric timed automata [4] as a means for mode-
ling and analysing real industrial applications. Other successful verifications of
parametric concurrent systems using HyTech can be found in [7].

References

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho, X. Nicollin, A.
Olivero, J. Sifakis and S. Yovine. “The Algorithmic Analysis of Hybrid Systems”.
Theoretical Computer Science 138:3, 1995, pp. 3–34.

[2] R. Alur, C. Courcoubetis, T.A. Henzinger and P.-H. Ho. “Hybrid Automata: An
Algorithmic Approach to the Specification and Verification of Hybrid Systems”.
Hybrid Systems I, LNCS 736, 1993, pp. 209–229.

[3] R. Alur and D. Dill. “Automata for Modeling Real-Time Systems”. Proc. 17th
ICALP, LNCS 443, 1990, pp. 322–335.

[4] R. Alur, T.A. Henzinger, M. Vardi. “Parametric real-time reasoning”. Proc. 25th
Annual ACM Symp. on Theory of Computing (STOC), 1993, pp. 592–601.

[5] J. Bengtsson, K.G. Larsen, F. Larsson, P. Pettersson and W. Yi. “UPPAAL – a
Tool Suite for Automatic Verification of Real-Time Systems”. Hybrid Systems III,
LNCS 1066, 1996, pp. 232-243.

[6] B. Bérard and L. Fribourg. “Automated verification of a parametric real-
time program: the ABR conformance protocol”. Technical Report LSV-98-12,
CNRS & Ecole Normale Supérieure de Cachan, Dec. 1998 (http://www.lsv.ens-
cachan.fr/Publis/).

[7] B. Bérard and L. Fribourg. “Reachability Analysis of (Timed) Petri Nets Using
Real Arithmetic”. Technical Report LSV-99-3, CNRS & Ecole Normale Supérieure
de Cachan, March 1999 (http://www.lsv.ens-cachan.fr/Publis/).

[8] C. Daws, A. Olivero, S. Tripakis and S. Yovine. “The Tool KRONOS”. Hybrid
Systems III, LNCS 1066, 1996, pp. 208-219.

[9] P. Felix et al.. “Compréhension de l’étude de cas ABR”. Internal Note, LaBRI,
University of Bordeaux, France, 1997.

[10] L. Fribourg. “A Closed-Form Evaluation for Extended Timed Automata”. Tech-
nical Report LSV-98-2, CNRS & Ecole Normale Supérieure de Cachan, March
1998. (http://www.lsv.ens-cachan.fr/Publis/)

[11] L. Fribourg and J. Richardson. “Symbolic Verification with Gap-Order Con-
straints”. Proc. 6th Intl. Workshop on Logic Program Synthesis and Transfor-
mation (LOPSTR), LNCS 1207, 1996, pp. 20–37.

[12] T. Henzinger, P.-H. Ho and H. Wong-Toi. “A User Guide to HYTECH”. Proc.
TACAS’95, LNCS 1019, 1995, pp. 41–71.

[13] J.F. Monin. “Proving a real time algorithm for ATM in Coq”. Types for Proofs
and Programs, LNCS 1512, 1998, pp. 277–293.

[14] J.-F. Monin and F. Klay. “Formal specification and correction of I.371.1 algorithm
for ABR conformance”. Internal Report NT DTL/MSV/003, CNET, 1997.

[15] X. Nicollin, A. Olivero, J. Sifakis and S. Yovine. “An Approach to the Description
and Analysis of Hybrid Systems”. Hybrid Systems I, LNCS 736, 1993, pp. 149–178.

[16] P.Z. Revesz. “A Closed-Form Evaluation for Datalog Queries with Integer (Gap)-
Order Constraints”, Theoretical Computer Science, 1993, vol. 116, pp. 117-149.

	Introduction
	Parametric Timed Automata
	Description and Modelization of the System
	A Model of Environment and Observation
	Algorithm I
	Algorithm B' : Computation of an Approximation
	Synchronized Product and Property U

	Verification of Correctness
	Verification with HyTech
	Comparison with Previous Work

	Final Remarks

