
Model Checking of Safety Properties

Orna Kupferman1? and Moshe Y. Vardi2??

1 Hebrew University, The institute of Computer Science, Jerusalem 91904, Israel
Email: orna@cs.huji.ac.il, URL: http://www.cs.huji.ac.il/∼orna

2 Rice University, Department of Computer Science, Houston, TX 77251-1892, U.S.A.
Email: vardi@cs.rice.edu, URL: http://www.cs.rice.edu/∼vardi

Abstract. Of special interest in formal verification are safety properties, which
assert that the system always stays within some allowed region. A computation that
violates a general linear property reaches a bad cycle, which witnesses the violation
of the property. Accordingly, current methods and tools for model checking of
linear properties are based on a search for bad cycles. A symbolic implementation
of such a search involves the calculation of a nested fixed-point expression over
the system’s state space, and is often very difficult. Every computation that violates
a safety property has a finite prefix along which the property is violated. We use
this fact in order to base model checking of safety properties on a search for finite
bad prefixes. Such a search can be performed using a simple forward or backward
symbolic reachability check. A naive methodology that is based on such a search
involves a construction of an automaton (or a tableau) that is doubly exponential in
the property. We present an analysis of safety properties that enables us to prevent
the doubly-exponential blow up and to use the same automaton used for model
checking of general properties, replacing the search for bad cycles by a search for
bad prefixes.

1 Introduction

Today’s rapid development of complex and safety-critical systems requires reliable veri-
fication methods. In formal verification, we verify that a system meets a desired property
by checking that a mathematical model of the system meets a formal specification that
describes the property. Of special interest are properties asserting that observed behavior
of the system always stays within some allowed set of finite behaviors, in which nothing
“bad” happens. For example, we may want to assert that every message received was
previously sent. Such properties of systems are called safety properties. Intuitively, a pro-
perty ψ is a safety property if every violation of ψ occurs after a finite execution of the
system. In our example, if in a computation of the system a message is received without
previously being sent, this occurs after some finite execution of the system.

In order to define safety properties formally, we refer to computations of a nontermi-
nating system as infinite words over an alphabetΣ. Typically,Σ = 2AP , whereAP is the
set of the system’s atomic propositions. Consider a language L of infinite words over Σ.
A finite word x over Σ is a bad prefix for L iff for all infinite words y over Σ, the conca-
tenation x · y of x and y is not in L. Thus, a bad prefix for L is a finite word that cannot be
? Part of this work was done when this author was visiting Cadence Berkeley Laboratories.
?? Supported in part by the NSF grants CCR-9628400 and CCR-9700061, and by a grant from the

Intel Corporation. Part of this work was done when this author was a Varon Visiting Professor at
the Weizmann Institute of Science.

N. Halbwachs and D. Peled (Eds.): CAV’99, LNCS 1633, pp. 172–183, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Model Checking of Safety Properties 173

extended to an infinite word inL. A languageL is a safety language if every word not inL
has a finite bad prefix. For example, L = {0ω, 1ω} ⊆ {0, 1}ω is a safety language: every
word not in L contains 01 or 10, and a prefix that ends in one of these sequences cannot
be extended to a word in L. The definition of safety we consider here is given in [AS85],
it coincides with the definition of limit closure defined in [Eme83], and is different from
the definition in [Lam85], which also refers to the property being closed under stuttering.

Linear properties of nonterminating systems are often specified using Büchi automata
on infinite words or linear temporal logic (LTL) formulas. We say that an automaton A
is a safety automaton if it recognizes a safety language. Similarly, an LTL formula is
a safety formula if the set of computations that satisfy it form a safety language. Sistla
shows that the problem of determining whether a nondeterministic Büchi automaton or an
LTL formula are safety is PSPACE-complete [Sis94] (see also [AS87]). From the results
in [KV97], it follows that the problem is in PSPACE even when the Büchi automaton is
alternating. On the other hand, when the Büchi automaton is deterministic, the problem can
be solved in linear time [MP92]. Sistla also describes sufficient syntactic requirements
for safe LTL formulas. For example, a formula (in positive normal form) whose only
temporal operators areG (always) andX (next), is a safety formula [Sis94]. Suppose that
we want to verify the correctness of a system with respect to a safety property. Can we
use the fact that the property is known to be a safety property in order to improve general
verification methods? The positive answer to this question is the subject of this paper.

Much previous work on verification of safety properties follow the proof-based ap-
proach to verification [Fra92]. In the proof-based approach, the system is annotated with
assertions and proof rules are used to verify the assertions. In particular, Manna and Pnu-
eli consider verification of reactive systems with respect to safety properties in [MP92,
MP95]. The definition of safety formulas considered in [MP92,MP95] is syntactic: a safety
formula is a formula of the formGϕwhere ϕ is a past formula. The syntactic definition is
equivalent to the definition discussed here [MP92]. While proof-rules approaches are less
sensitive to the size of the state space of the system, they require a heavy user support.
Our work here considers the state-exploration approach to verification, where automatic
model checking [CE81,QS81] is performed in order to verify the correctness of a system
with respect to a specification. Previous work in this subject considers special cases of
safety properties such as invariance checking [GW91,McM92,Val93,MR97], or assume
that a general safety property is given by the set of its bad prefixes [GW91].

General methods for model checking of linear properties are based on a construction
of a tableau or an automaton A¬ψ that accepts exactly all the infinite computations that
violate the property ψ [LP85,VW94]. Given a systemM and a property ψ, verification of
M with respect to ψ is reduced to checking the emptiness of the product of M and A¬ψ
[VW86]. This check can be performed on-the-fly and symbolically [CVWY92,GPVW95,
TBK95]. When ψ is an LTL formula, the size of Aψ is exponential in the length of
ψ, and the complexity of verification that follows is PSPACE, with a matching lower
bound [SC85].

Consider a safety propertyψ. Let pref(ψ) denote the set of all bad prefixes forψ. Recall
that every computation that violates ψ has a prefix in pref(ψ). We say that an automaton
on finite words is tight for a safety property ψ if it recognizes pref(ψ). Since every system
that violates ψ has a computation with a prefix in pref(ψ), an automaton tight for ψ is
practically more helpful than A¬ψ. Indeed, reasoning about automata on finite words is
easier than reasoning about automata on infinite words (cf. [HKSV97]). In particular,

174 O. Kupferman and M.Y. Vardi

when the words are finite, we can use backward or forward symbolic reachability analysis
[BCM+92,IN97]. In addition, using an automaton for bad prefixes, we can return to the
user a finite error trace, which is a bad prefix, and which is often more helpful than an
infinite error trace.

Given a safety property ψ, we construct an automaton tight for ψ. We show that the
construction involves an exponential blow-up in the case ψ is given as a nondeterministic
Büchi automaton, and involves a doubly-exponential blow-up in the caseψ is given in LTL.
These results are surprising, as they indicate that detection of bad prefixes with a nondeter-
ministic automaton has the flavor of determinization. The tight automata we construct are
indeed deterministic. Nevertheless, our construction avoids the difficult determinization
of the Büchi automaton for ψ (cf. [Saf88]) and just uses a subset construction.

Our construction of tight automata reduces the problem of verification of safety pro-
perties to the problem of invariance checking [Fra92,MP92], Indeed, once we take the
product of a tight automaton with the system, we only have to check that we never reach
an accepting state of the tight automaton. Invariance checking is amenable to both mo-
del checking techniques [BCM+92,IN97] and deductive verification techniques [BM83,
SOR93,MAB+94]. In practice, the verified systems are often very large, and even clever
symbolic methods cannot cope with the state-explosion problem that model checking
faces. The way we construct tight automata also enables, in case the BDDs constructed
during the symbolic reachability test get too large, an analysis of the intermediate data
that has been collected. The analysis can lead to a conclusion that the system does not
satisfy the property without further traversal of the system.

In view of the discouraging blow-ups described above, we release the requirement on
tight automata and seek, instead, an automaton that need not accept all the bad prefixes,
yet must accept at least one bad prefix of every computation that does not satisfy ψ.
We say that such an automaton is fine for ψ. For example, an automaton that recognizes
p∗ · (¬p) · (p ∨ ¬p) does not accept all the words in pref(Gp), yet is fine for Gp. In
practice, almost all the benefit that one obtain from a tight automaton can also be obtained
from a fine automaton. We show that for natural safety formulas ψ, the construction of an
automaton fine forψ is as easy as the construction of Aψ . In order to formalize the notion of
“natural safety formulas”, we partition safety properties into intentionally, accidentally,
and pathologically safe properties. While most safety properties are intentionally safe,
accidentally safe and especially pathologically safe properties contain some redundancy,
and we do not expect to see them often in practice. We show that the automaton A¬ψ ,
which accepts exactly all infinite computations that violate ψ, can easily (and with no
blow-up) be modified to an automaton Atrue

¬ψ on finite words, which is tight for ψ that is
intentionally safe, and is fine for ψ that is accidentally safe. We present a methodology for
model checking of safety properties that is based on the above classification, uses Atrue

¬ψ
instead of A¬ψ, and thus replaces the search for bad cycles by a search for bad prefixes.

2 Preliminaries

2.1 Safety Languages and Formulas

< Consider a language L ⊆ Σω of infinite words over the alphabet Σ. A finite word
x ∈ Σ∗ is a bad prefix for L iff for all y ∈ Σω, we have x · y 6∈ L. A language L is a
safety language iff everyw 6∈ L has a finite bad prefix. For a safety languageL, we denote
by pref(L) the set of all bad prefixes for L. We say that a set X ⊆ pref(L) is a trap for a

Model Checking of Safety Properties 175

safety language L iff every word w 6∈ L has at least one prefix in X . We denote all the
traps for L by trap(L).

For a language L ⊆ Σω, we use comp(L) to denote the complement of L; i.e.,
comp(L) = Σω \L. We say that a language L ⊆ Σω is a co-safety language iff comp(L)
is a safety language. (The term used in [MP92] is guarantee language.) Equivalently, L
is co-safety iff every w ∈ L has a good prefix x ∈ Σ∗ such that for all y ∈ Σω, we have
x · y ∈ L. For a co-safety language L, we denote by co-pref(L) the set of good prefixes
for L. Note that co-pref(L) = pref(comp(L)).

For an LTL formula ψ over a setAP of atomic propositions, let ‖ψ‖ denote the set of
computations in (2AP)ω that satisfyψ. We say thatψ is a safety formula iff ‖ψ‖ is a safety
language. Also, ψ is a co-safety formula iff ‖ψ‖ is a co-safety language or, equivalently,
‖¬ψ‖ is a safety language.

2.2 Word Automata

Given an alphabet Σ, an infinite word over Σ is an infinite sequence w = σ1 · σ2 · · · of
letters inΣ. We denote by wl the suffix σl ·σl+1 ·σl+2 · · · of w. An automaton on infinite
words is A = 〈Σ,Q, δ,Q0, F 〉, where Σ is the input alphabet, Q is a finite set of states,
δ is a transition function, Q0 ⊆ Q is a set of initial states, and F ⊆ Q is an acceptance
condition.When A is deterministic, the size ofQ0 is 1, and δ : Q×Σ → Qmaps each state
and letter to a single successor state. When A is nondeterministic, δ : Q×Σ → 2Q maps
each state and letter to a possible set of successor states. Since the choice of a successor
state is existential, we can regard a transition ρ(q, σ) = {q1, q2, q3} as a disjunction
q1 ∨ q2 ∨ q3. Transitions of alternating automata can be arbitrary positive formulas over
Q. We can have, for instance, a transition δ(q, σ) = (q1 ∧ q2) ∨ (q3 ∧ q4), meaning that
the automaton accepts from state q a suffixwl, starting by σ, ofw, if it acceptswl+1 from
both q1 and q2 or from both q3 and q4. Such a transition combines existential and universal
choices. Runs of an alternating automaton are infinite trees, where branches corresponds
to universal choices of the automaton. For example, if A is an automaton with an initial
state q0 and δ(qin, σ0) = (q1 ∨ q2) ∧ (q3 ∨ q4), then possible runs of A on w have a root
labeled qin, have one node in level 1 labeled q1 or q2, and have another node in level 1
labeled q3 or q4. When A is a Büchi automaton on infinite words, a run is accepting iff it
visits infinitely many states from F along each of its branches. The automaton A can also
run on finite words in Σ∗. Then, a run over a word in Σn is accepting if it visits states in
F in it all its nodes of level n. A word (either finite or infinite) is accepted by A iff there
exists an accepting run on it. The language of A, denoted L(A), is the set of words that
A accepts. Deterministic and nondeterministic automata can be viewed as special cases
of alternating automata. Formally, an alternating automaton is deterministic if for all q
and σ, we have δ(q, σ) ∈ Q ∪ {false}, and it is nondeterministic if δ(q, σ) is always a
disjunction. For a detailed definition of alternating automata see [Var96].

We define the size of an alternating automaton A = 〈Σ,Q, δ,Q0, F 〉 as the sum of |Q|
and |δ|, where |δ| is the sum of the lengths of the formulas in δ. We say that the automaton
A over infinite words is a safety (co-safety) automaton iff L(A) is a safety (co-safety)
language. We use pref(A), co-pref(A), trap(A), and comp(A) to abbreviate pref(L(A)),
co-pref(L(A)), trap(L(A)), and comp(L(A)), respectively. For an automaton A and a set
of states S, we denote by AS the automaton obtained from A by defining the set of initial
states to beS. We say that an automaton A over infinite words is universal iff L(A) = Σω.

176 O. Kupferman and M.Y. Vardi

When A runs on finite words, it is universal iff L(A) = Σ∗. An automaton is empty iff
L(A) = ∅. A set S of states is universal (resp., rejecting), when AS is universal (resp.,
empty). Note that the universality problem for nondeterministic automata is known to be
PSPACE-complete [MS72,Wol82].

3 Detecting Bad Prefixes

Linear properties of nonterminating systems are often specified using automata on infinite
words or linear temporal logic (LTL) formulas. Given an LTL formula ψ, one can build
a nondeterministic Büchi automaton Aψ that recognizes ‖ψ‖. The size of Aψ is, in the
worst case, exponential in ψ [GPVW95,VW94]. In practice, when given a property that
happens to be safe, what we want is a nondeterministic automaton on finite words that
detects bad prefixes. As we discuss in the introduction, such an automaton is easier to
reason about. In this section we construct, from a given safety property, an automaton for
its bad prefixes.

We first study the case where the property is given by a nondeterministic Büchi auto-
maton. When the given automaton A is deterministic, the construction of an automaton
A′ for pref(A) is straightforward. Indeed, we can obtain A′ from A by defining the set of
accepting states to be the set of states s for which As is empty. Theorem 1 below shows
that when A is a nondeterministic automaton, things are not that simple. While we can
avoid a difficult determinization of A [Saf88], we cannot avoid an exponential blow-up.

Theorem 1. Given a safety nondeterministic Büchi automaton A of size n, the size of an
automaton that recognizes pref(A) is 2Θ(n).

Proof. We start with the upper bound. Let A = 〈Σ,Q, δ,Q0, F 〉. Recall that pref(L(A))
contains exactly all prefixes x ∈ Σ∗ such that for all y ∈ Σω, we have x · y 6∈ L(A).
Accordingly, the automaton for pref(A) accepts a prefix x iff the set of states that A
could be in after reading x is rejecting. Formally, we define the (deterministic) automaton
A′ = 〈Σ, 2Q, δ′, {Q0}, F ′〉, where F ′ contains all the rejecting sets of A, and δ′ follows
the subset construction induced by δ; that is, for every S ∈ 2Q and σ ∈ Σ, we have
δ′(S, σ) =

∨
s∈S δ(s, σ).

We now turn to the lower bound. Essentially, it follows from the fact that pref(A) refers
to words that are not accepted by A, and hence, it has the flavor of complementation. Com-
plementing a nondeterministic automaton on finite words involves an exponential blow-up
[MF71]. In fact, one can construct a nondeterministic automaton A = 〈Σ,Q, δ,Q0, Q〉,
in which all states are accepting, such that the smallest nondeterministic automaton that
recognizes comp(A) has 2Θ(|Q|) states. (To see this, consider the language Ln consisting
all all words w such that either |w| < 2n or w = uvz, where |u| = |v| = n and u 6= v.)
Given A as above, let A′ be A when regarded as a Büchi automaton on infinite words. It
is not hard to see that pref(A′) = comp(A).

The lower bound in Theorem 1 is not surprising, as complementation of nondetermini-
stic automata involves an exponential blow-up, and, as we demonstrate in the lower-bound
proof, there is a tight relation between pref(A) and comp(A). We could hope, therefore,
that when properties are specified in a negative form (that is, they describe the forbidden
behaviors of the system) or are given in LTL, whose formulas can be negated, detection
of bad prefixes would not be harder than detection of bad computations. In Theorems 2
and 3 we refute this hope.

Model Checking of Safety Properties 177

Theorem 2. Given a co-safety nondeterministic Büchi automaton A of size n, the size of
an automaton that recognizes co-pref(L(A)) is 2Θ(n).

Proof. The upper bound is similar to the one in Theorem 1, only that now we define the
set of accepting states in A′ as the set of all the universal sets of A. We prove a matching
lower bound. For n ≥ 1, let Σn = {1, . . . , n,&}. We define Ln as the language of
all words w ∈ Σω

n such that w contains at least one & and the letter after the first &
is either & or it has already appeared somewhere before the first &. The language Ln
is a co-safety language. Indeed, each word in Ln has a good prefix (e.g., the one that
contains the first & and its successor). We can recognize Ln with a nondeterministic
Büchi automaton withO(n) states (the automaton guesses the letter that appears after the
first &). Obvious good prefixes for Ln are 12&&, 123&2, etc. We can recognize these
prefixes with a nondeterministic automaton with O(n) states. But Ln also has some less
obvious good prefixes, like 1234 · · ·n& (a permutation of 1 . . . n followed by &). These
prefixes are indeed good, as every suffix we concatenate to them would start in either
& or a letter in {1, . . . , n} that has appeared before the &. To recognize these prefixes,
a nondeterministic automaton needs to keep track of subsets of {1, . . . , n}, for which it
needs 2n states. Consequently, a nondeterministic automaton for co-pref(Ln) must have
at least 2n states.

We now extend the proof of Theorem 2 to get a doubly-exponential lower bound for
going from a safety LTL formula to a nondeterministic automaton for its bad prefixes. The
idea is similar: while the proof in Theorem 2 uses the exponential lower bound for going
from nondeterministic to deterministic Büchi automata, the proof for this case is a variant
of the doubly exponential lower bound for going from LTL formulas to deterministic
Büchi automata [KV98].

Theorem 3. Given a safety LTL formula, the size of a nondeterministic Büchi automaton
for pref(ψ) is doubly exponential in the length of ψ.

In order to get the upper bound in Theorem 3, we apply the exponential construction in
Theorem 1 to the exponential Büchi automaton Aψ for ‖ψ‖. The construction in Theorem 1
is based on a subset construction for Aψ , and it requires a check for the universality of
sets of states Q of Aψ . Such a check corresponds to a validity check for a DNF formula
in which each disjunct corresponds to a state in Q. While the size of the formula can be
exponential in |ψ|, the number of distinct literals in the formula is at most linear in |ψ|,
implying that the the universality of Q can be checked using space polynomial in |ψ|.

Given a safety formula ψ, we say that a nondeterministic automaton A over finite
words is tight for ψ iff L(A) = pref(‖ψ‖). In view of the lower bounds proven above,
a construction of tight automata may be too expensive. We say that a nondeterministic
automaton A over finite words is fine for ψ iff there exists X ∈ trap(‖ψ‖) such that
L(A) = X . Thus, a fine automaton need not accept all the bad prefixes, yet it must accept
at least one bad prefix of every computation that does not satisfy ψ. In practice, almost
all the benefit that one obtain from a tight automaton can also be obtained from a fine
automaton (we will get back to this point in Section 6). It is an open question whether
there are feasible constructions of fine automata for general safety formulas. In Section 5
we show that for natural safety formulas ψ, the construction of an automaton fine for ψ
is as easy as the construction of an automaton for ψ.

178 O. Kupferman and M.Y. Vardi

4 Symbolic Verification of Safety Properties

Our construction of tight automata reduces the problem of verification of safety properties
to the problem of invariance checking, which is amenable to a large variety of techniques.
In particular, backward and forward symbolic reachability analysis have proven to be
effective techniques for checking invariant properties on systems with large state spaces
[BCM+92,IN97]. In practice, however, the verified systems are often very large, and
even clever symbolic methods cannot cope with the state-explosion problem that model
checking faces. In this section we describe how the the way we construct tight automata
enables, in case the BDDs constructed during the symbolic reachability test get too big, an
analysis of the intermediate data that has been collected. The analysis solves the model-
checking problem without further traversal of the system.

Consider a systemM = 〈AP,W,R,W0, L〉, whereW is the set of states,R ⊆ W×W
is a transition relation, W0 is a set of initial states, and L : W → 2AP maps each state to
the sets of atomic propositions that hold in it. Let fin(M) be an automaton that accepts all
finite computations ofM . Given ψ, let A¬ψ be the nondeterministic co-safety automaton
for ¬ψ, thus L(A¬ψ) = ‖¬ψ‖. In the proof of Theorem 2, we construct an automaton A′

such that L(A′) = pref(ψ) by following the subset construction of A¬ψ and defining the
set of accepting states to be the set of universal sets in A¬ψ. Then, one needs to verify
the invariance that the product fin(M) × A′ never reaches an accepting state of A′. In
addition to forward and backward symbolic reachability analysis, one could use a variety
of recent techniques for doing semi-exhaustive reachability analysis [RS95,YSAA97],
including standard simulation techniques [LWA98]. Note, however, that if A′ is doubly
exponential in |ψ|, the BDD representation of A′ will use exponentially (in |ψ|) many
Boolean variables.

Another approach is to apply forward reachability analysis to the product M × A¬ψ
of the system M and the automaton A¬ψ. Formally, let A¬ψ = 〈2AP , Q, δ,Q0, F 〉, and
let M be as above. The product M × A¬ψ has state space W × Q, and the successors
of a state 〈w, q〉 are all pairs 〈w′, q′〉 such that R(w,w′) and q′ ∈ δ(q, L(w)). Forward
symbolic methods use the predicate post(S), which, given a set of S of states (represented
symbolically) returns the successor set of S, that is, the set of all states t such that there
is a transition from some state in S to t. Starting from the initial set S0 = W0 × Q0,
forward symbolic methods iteratively construct, for i ≥ 0, the set Si+1 = post(Si). The
calculation the Si’s proceeds symbolically, and they are represented by BDDs. Doing so,
forward symbolic methods actually follow the subset construction of M × A¬ψ. Indeed,
for each w ∈ W the set Qwi = {q : 〈w, q〉 ∈ Si} is the set of states that A¬ψ that can be
reached via a path of length i in M from a state in W0 to the state w. Note that this set
can be exponentially (in |ψ|) large resulting possibly in a large BDD; on the other hand,
the number of Boolean variables used to represent A¬ψ is linear in |ψ|.

The discussion above suggests the following technique for the case we encounter
space problems. Suppose that at some point the BDD for Si gets too big. We then check
whether there is a state w such that the setQwi is universal. As discussed in Section 3, we
can check the universality of Qwi in space polynomial in |ψ|. Note that we do not need to
enumerate all statesw and then checkQwi . We can enumerate directly the setsQwi , whose
number is at most doubly exponential in |ψ|. It can be shown thatM × A¬ψ is nonempty
iffQwi is universal for somew ∈ W and i > 0, thus this check solves the model-checking
problem without further traversal of the system.

Model Checking of Safety Properties 179

Note that it is possible to use semi-exhaustive reachability techniques also when
analyzing M × A¬ψ . That is, instead of taking Si+1 to be post(Si) we can take it to
be a subset S′

i+1 of post(Si) [RS95,YSAA97]. We have to ensure, however, that S′
i+1 is

saturated with respect to states of A¬ψ [LWA98]. Informally, we are allowed to drop states
ofM from Si+1, but we are not allowed to drop states of A¬ψ. Formally, if 〈w, q〉 ∈ S′

i+1
and 〈w, q′〉 ∈ Si+1, then 〈w, q′〉 ∈ S′

i+1. This ensures that if the semi-exhaustive analysis
follows a bad prefix of length i in M , then Q′w

i = {q : 〈w, q〉 ∈ S′
i} will be universal. In

the extreme case, we follow only one trace of M , i.e., we simulate M . In that case, we
have that S′

i+1 = {w} ×Q′w
i . For a related approach see [CES97].

5 Classification of Safety Properties

Consider the safety LTL formulaGp. A bad prefix x forGpmust contain a state in which
p does not hold. If the user gets x as an error trace, he can immediately understand why
Gp is violated. Consider now the LTL formula ψ = G(p ∨ (Xq ∧X¬q)). The formula
ψ is equivalent to Gp and is therefore a safety formula. Moreover, the set of bad prefixes
for ψ and Gp coincide. Nevertheless, a minimal bad prefix for ψ (e.g., a single state in
which p does not hold) does not tell the whole story about the violation of ψ. Indeed,
the latter depends on the fact that Xq ∧X¬q is unsatisfiable, which (especially in more
complicated examples), may not be trivially noticed by the user. This intuition, of a prefix
that “tells the whole story”, is the base for a classification of safety properties into three
distinct safety levels. We first formalize this intuition in terms of informative prefixes. We
assume that LTL formulas are given in positive normal form, where negation is applied
only to propositions (when we write ¬ψ, we refer to its positive normal form). In the
positive normal form, we use the operator V as dual to the operator U , and use cl(ψ) to
denote the closure of ψ, namely, the set of ψ’s subformulas.

For an LTL formula ψ and a finite computation π = σ1 · σ2 · · ·σn, with σi ∈ 2AP ,
we say that π is informative for ψ iff there exists a mapping L : {1, . . . , n+ 1} → 2cl(ψ)

such that the following hold: (1) ¬ψ ∈ L(1). (2) L(n+ 1) is empty. (3) For all 1 ≤ i ≤ n
and ϕ ∈ L(i), the following hold.

– If ϕ is a propositional assertion, it is satisfied by σi.
– If ϕ = ϕ1 ∨ ϕ2 then ϕ1 ∈ L(i) or ϕ2 ∈ L(i).
– If ϕ = ϕ1 ∧ ϕ2 then ϕ1 ∈ L(i) and ϕ2 ∈ L(i).
– If ϕ = Xϕ1, then ϕ1 ∈ L(i+ 1).
– If ϕ = ϕ1Uϕ2, then ϕ2 ∈ L(i) or [ϕ1 ∈ L(i) and ϕ1Uϕ2 ∈ L(i+ 1)].
– If ϕ = ϕ1V ϕ2, then ϕ2 ∈ L(i) and [ϕ1 ∈ L(i) or ϕ1V ϕ2 ∈ L(i+ 1)].

Note that the emptiness of L(n+ 1) guarantees that all the requirements imposed by
¬ψ are fulfilled along π. For example, while the finite computation {p} · ∅ is informative
for Gp (with L(1) = {F¬p},L(2) = {F¬p,¬p}, and L(3) = ∅), it is not informative
for ψ = G(p ∨ (Xq ∧X¬q)). Indeed, as ¬ψ = F (¬p ∧ (X¬q ∨Xq)), an informative
prefix for ψ must contain at least one state after the first state in which ¬p holds.

We distinguish between three types of safety formulas.

– A safety formula ψ is intentionally safe iff all the bad prefixes for ψ are informative.
For example, the formula Gp is intentionally safe.

180 O. Kupferman and M.Y. Vardi

– A safety formulaψ is accidentally safe iff not all the bad prefixes forψ are informative,
but every computation that violates ψ has an informative bad prefix. For example, the
formulas G(q ∨XGp) ∧ G(r ∨XG¬p) and G(p ∨ (Xq ∧X¬q)) are accidentally
safe.

– A safety formula ψ is pathologically safe if there is a computation that violates ψ
and has no informative bad prefix. For example, the formula [G(q ∨GFp) ∧G(r ∨
GF¬p)] ∨Gq ∨Gr is pathologically safe.

Sistla has shown that all temporal formulas in positive normal form constructed with
the temporal connectives X and V are safety formulas [Sis94]. We call such formulas
syntactically safe. The following strengthens Sistla’s result.

Theorem 4. If ψ is syntactically safe, then ψ is intentionally or accidentally safe.

Given an LTL formula ψ in positive normal form, one can build an alternating Büchi
automaton Aψ = 〈2AP , Q, δ,Q0, F 〉 such that L(Aψ) = ‖ψ‖. Essentially, each state
of L(Aψ) corresponds to a subformula of ψ, and its transitions follow the semantics of
LTL [Var96]. We define the alternating Büchi automaton Atrue

ψ = 〈2AP , Q, δ,Q0, ∅〉 by
redefining the set of accepting states to be the empty set. So, while in Aψ a copy of the
automaton may accept by either reaching a state from which it proceed to true or visiting
states of the form ϕ1V ϕ2 infinitely often, in Atrue

ψ all copies must reach a state from
which they proceed to true. Accordingly, Atrue

ψ accepts exactly these computations that
have a finite prefix that is informative for ψ. To see this, note that such computations
can be accepted by a run of Aψ in which all the copies eventually reach a state that is
associated with propositional assertions that are satisfied. Now, let fin(Atrue

ψ) be Atrue
ψ

when regarded as an automaton on finite words.

Theorem 5. For every safety formula ψ, the automaton fin(Atrue
¬ψ) accepts exactly all the

prefixes that are informative for ψ.

Corollary 1. Consider a safety formula ψ. If ψ is intentionally safe, then fin(Atrue
¬ψ) is

tight for ψ. Also, if ψ is accidentally safe, then fin(Atrue
¬ψ) is fine for ψ.

Theorem 6. Deciding whether a given formula is pathologically safe is PSPACE-complete.

Proof. Consider a formulaψ. Recall that the automaton Atrue
ψ accepts exactly these com-

putations that have a finite prefix that is informative for ψ. Hence, ψ is not pathologically
safe iff every computation that does not satisfy ψ is accepted by Atrue

¬ψ . Accordingly,
checking whether ψ is pathologically safe can be reduced to checking the containment of
L(A¬ψ) in L(Atrue

¬ψ). Since the size of Aψ is linear in the length ofψ and containment for
alternating Büchi automata can be checked in polynomial space [KV97], we are done. For
the lower bound, we do a reduction from the problem of deciding whether a given formula
is a safety formula. Consider a formula ψ, and let p, q, and r be atomic propositions not
in ψ. The formula ϕ = [G(q ∨GFp) ∧G(r ∨GF¬p)] ∨Gq ∨Gr is pathologically safe.
It can be shown that ψ is a safety formula iff ψ ∧ ϕ is pathologically safe.

Note that the lower bound in Theorem 6 implies that the reverse direction of Theorem 4
does not hold.

Model Checking of Safety Properties 181

6 A Methodology

In Section 5, we partitioned safety formulas into three safety levels and showed that for
some formulas, we can circumvent the blow-up involved in constructing a tight automaton
for the bad prefixes. In particular, we showed that the automaton fin(Atrue

¬ψ), which is
linear in the length of ψ, is tight for ψ that is intentionally safe and is fine for ψ that is
accidentally safe. In this section we describe a methodology for efficient verification of
safety properties that is based on these observations. Consider a system M and a safety
LTL formula ψ. Let fin(M) be a nondeterministic automaton on finite words that accepts
the prefixes of computations of M , and let U true¬ψ be the nondeterministic automaton
on finite words equivalent to the alternating automaton fin(Atrue

¬ψ) [CKS81]. The size of
U true¬ψ is exponential in the size of fin(Atrue

¬ψ), hence it is exponential in the length of ψ.
Given M and ψ, we suggest to proceed as follows (see the figure below).

Y

M is correct Consult user

fin(M) × U true¬ψ
?= ∅

M is incorrect

N

YN

Return error trace Is ψ pathologically safe?

Instead of checking the emptiness ofM×A¬ψ, verification starts by checking fin(M)
with respect to U true¬ψ . Since both automata refer to finite words, this can be done using
finite forward reachability analysis. If the product fin(M)× U true¬ψ is not empty, we return
a word w in the intersection, namely, a bad prefix for ψ that is generated by M 1. If the
product fin(M)× U true¬ψ is empty, then, as U true¬ψ is fine for intentionally and accidentally
safe formulas, there may be two reasons for this. One, is thatM satisfiesψ, and the second
is thatψ is pathologically safe. Therefore, we next check whetherψ is pathologically safe.
(Note that for syntactically safe formulas this check is unnecessary, by Theorem 4.) If it is
not pathologically safe, we conclude thatM satisfiesψ. Otherwise, we tell the user that his
formula is pathologically safe, indicating that his specification is needlessly complicated
(accidentally and pathologically safe formulas contain redundancy). At this point, the user
would probably be surprised that his formula was a safety formula (if he had known it is
safety, he would have simplified it to an intentionally safe formula – a feasible automatic
simplification of such formulas is an open problem). If the user wishes to continue with
this formula, we give up using the fact that ψ is safety and proceed with usual LTL model
checking, thus we check the emptiness ofM ×A¬ψ. (Recall that the symbolic algorithm
for emptiness of Büchi automata is in the worst case quadratic [HKSV97,TBK95].) Note
that at this point, the error trace that the user gets if M does not satisfy ψ consists of a
prefix and a cycle, yet since the user does not want to change his formula, he probably
has no idea why it is a safety formula and a finite non-informative error trace would not

1 Note that since ψ may not be intentionally safe, the automaton U true¬ψ may not be tight for ψ,
thus while w is a minimal informative bad prefix, it may not be a minimal bad prefix.

182 O. Kupferman and M.Y. Vardi

help him). If the user prefers, or if M is very large (making the discovery of bad cycles
infeasible), we can build an automaton for pref(ψ), hoping that by learning it, the user
would understand how to simplify his formula or that, in spite of the potential blow-up in
ψ, finite forward reachability would work better.

Acknowledgement. The second author is grateful to Avner Landver for stimulating dis-
cussions.

References
[AS85] B. Alpern and F.B. Schneider. Defining liveness. Information processing letters,

21:181–185, 1985.
[AS87] B.Alpern and F.B. Schneider. Recognizing safety and liveness. Distributed computing,

2:117–126, 1987.
[BCM+92] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model

checking: 1020 states and beyond. Information and Computation, 98(2):142–170,
June 1992.

[BM83] R.S. Boyer and J.S. Moore. Proof-checking, theorem-proving and program verifica-
tion. Technical Report 35, Institute for Computing Science and ComputerApplications,
University of Texas at Austin, January 1983.

[CE81] E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. In Proc. Workshop on Logic of Programs, LNCS
131, pp. 52–71, 1981.

[CES97] W. Canfield, E.A. Emerson, and A. Saha. Checking formal specifications under simu-
lation. In Proc. International Conference on Computer Design, pp. 455–460, 1997.

[CKS81] A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation. Journal of the Asso-
ciation for Computing Machinery, 28(1):114–133, January 1981.

[CVWY92] C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory efficient algo-
rithms for the verification of temporal properties. Formal Methods in System Design,
1:275–288, 1992.

[Eme83] E.A. Emerson. Alternative semantics for temporal logics. Theoretical Computer
Science, 26:121–130, 1983.

[Fra92] N. Francez. Program verification. International Computer Science. Addison-Weflay,
1992.

[GPVW95] R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple on-the-fly automatic verification
of linear temporal logic. In Protocol Specification, Testing, and Verification, pp. 3–18.
Chapman & Hall, August 1995.

[GW91] P. Godefroid and P. Wolper. Using partial orders for the efficient verification of de-
adlock freedom and safety properties. In Proc. 3rd CAV, LNCS 575, pp. 332–342,
1991.

[HKSV97] R.H. Hardin, R.P. Kurshan, S.K. Shukla, and M.Y. Vardi. A new heuristic for bad cycle
detection using BDDs. In Proc. 9th CAV, LNCS 1254, pp. 268–278, 1997.

[IN97] H. Iwashita and T. Nakata. Forward model checking techniques oriented to buggy
designs. In Proc. IEEE/ACM ICCAD, pp. 400–404, 1997.

[KV97] O. Kupferman and M.Y. Vardi. Weak alternating automata are not that weak. In Proc.
5th ISTCS, pp. 147–158. IEEE Computer Society Press, 1997.

[KV98] O. Kupferman and M.Y.Vardi. Freedom, weakness, and determinism: from linear-time
to branching-time. In Proc. 13th LICS, pp. 81–92, June 1998.

[Lam85] L. Lamport. Logical foundation. In Distributed systems - methods and tools for
specification, LNCS 190, 1985.

[LP85] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy
their linear specification. In Proc. 12th POPL, pp. 97–107, 1985.

Model Checking of Safety Properties 183

[LWA98] Y. Luo, T. Wongsonegoro, and A. Aziz. Hybrid techniques for fast functional simula-
tion. In Proc. 35th DAC. IEEE Computer Society, 1998.

[MAB+94] Z. Manna,A.Anuchitanukul, N. Bjorner,A. Browne, E. Chang, M. Colon, L. DeAlfaro,
H. Devarajan, H. Sipma, and T. Uribe. STeP: The Stanford Temporal Prover. Technical
Report STAN-CS-TR-94-1518, Dept. of Computer Science, Stanford University, 1994.

[McM92] K. McMillan. Using unfolding to avoid the state explosion problem in the verification
of asynchronous circuits. In Proc. 4th CAV, LNCS 663, pp. 164–174, 1992.

[MF71] A.R. Meyer and M.J. Fischer. Economy of description by automata, grammars, and
formal systems. In Proc. 12th IEEE Symp. on Switching and Automata Theory, pp.
188–191, 1971.

[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, Berlin, January 1992.

[MP95] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Safety. Springer-Verlag, New York, 1995.

[MR97] S. Melzer and S. Roemer. Deadlock checking using net unfoldings. In Proc. 9th CAV,
LNCS 1254, pp. 364–375, 1997.

[MS72] A.R. Meyer and L.J. Stockmeyer. The equivalence problem for regular expressions
with squaring requires exponential time. In Proc. 13th IEEE Symp. on Switching and
Automata Theory, pp. 125–129, 1972.

[QS81] J.P. Queille and J. Sifakis. Specification and verification of concurrent systems in
Cesar. In Proc. 5th International Symp. on Programming, LNCS 137, pp. 337–351,
1981.

[RS95] K. Ravi and F. Somenzi. High-density reachability analysis. In Proc. CAD, pp. 154–
158, 1995.

[Saf88] S. Safra. On the complexity of ω-automata. In Proc. 29th FOCS, pp. 319–327, White
Plains, 1988.

[SC85] A.P. Sistla and E.M. Clarke. The complexity of propositional linear temporal logic.
Journal ACM, 32:733–749, 1985.

[Sis94] A.P. Sistla. Satefy, liveness and fairness in temporal logic. Formal Aspects of Compu-
ting, 6:495–511, 1994.

[SOR93] R.E. Shankar, S. Owre, and J.M. Rushby. The PVS proof checker: A reference ma-
nual (beta release). Technical report, Computer Science laboratory, SRI International,
Menlo Park, California, March 1993.

[TBK95] H.J. Touati, R.K. Brayton, and R. Kurshan. Testing language containment for ω-
automata using BDD’s. Information and Computation, 118(1):101–109, April 1995.

[Val93] A. Valmari. On-the-fly verification with stubborn sets. In Proc. 5nd CAV, LNCS 697,
1993.

[Var96] M.Y. Vardi. An automata-theoretic approach to linear temporal logic. In F. Moller
and G. Birtwistle, editors, Logics for Concurrency: Structure versus Automata, LNCS
1043, pp. 238–266, 1996.

[VW86] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proc. 1st LICS, pp. 322–331, 1986.

[VW94] M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and
Computation, 115(1):1–37, November 1994.

[Wol82] P. Wolper. Synthesis of Communicating Processes from Temporal Logic Specifications.
PhD thesis, Stanford University, 1982.

[YSAA97] J. Yuan, J. Shen, J. Abraham, and A. Aziz. On combining formal and informal verifi-
cation. In Proc 9th CAV, LNCS 1254, pp. 376–387, 1997.

	Introduction
	Preliminaries
	Safety Languages and Formulas
	Word Automata

	Detecting Bad Prefixes
	Symbolic Verification of Safety Properties
	Classification of Safety Properties
	A Methodology

