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Abstract. We propose an algorithm for LTL model checking based on the classifi-
cation of the automata and on guided symbolic search. Like most current methods
for LTL model checking, our algorithm starts with a tableau construction and uses
a model checker for CTL with fairness constraints to prove the existence of fair
paths. However, we classify the tableaux according to their structure, and use effi-
cient decision procedures for each class. Guided search applies hints to constrain
the transition relation during fixpoint computations. Each fixpoint is thus trans-
lated into a sequence of fixpoints that are often much easier to compute than the
original one. Our preliminary experimental results suggest that the new algorithm
for LTL is quite efficient. In fact, for properties that can be expressed in both CTL
and LTL, the algorithm is competitive with the CTL model checking algorithm.

1 Introduction

Successful application of model checking requires strategies to bridge the gap between
the size of the models and the capacity of the model checkers. Abstraction closes the gap
from above by eliminating unnecessary detail from the models and decomposing com-
plex proofs into sequences of simpler ones. Abstraction is fundamental to the practical
use of model checking. It is important, however, to close the gap also from below—by
increasing the capacity of the model checkers. Indeed, too much reliance on abstraction
inevitably means too much reliance on manual intervention, which in turns entails low
productivity and exposure to errors.

The symbolic approach to model checking (BDD-based [4,26] and, more recently,
SAT-based [2]) addresses the complexity issue by representing models, sets of states,
and paths as solutions to equations. Though not uniformly superior to the approach based
on the explicit representation of states, symbolic model checking can deal with many
more states and transitions. On the other hand, it has proved hard to predict whether a
model will exceed the memory and time limits imposed on a given experiment: Whereas
models with as many as 5000 state variables have been analyzed successfully without any
abstraction, other models with 30 state variables turn out to be intractable. In this paper
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we propose techniques that improve the performance and robustness of BDD-based
model checking algorithms for linear time properties [24,34].

Model checking for Linear Time Logic (LTL) is usually based on converting the
property into a Büchi automaton (or tableau), composing the automaton and the model,
and finally checking for emptiness of the language of the composed system. The last step
can be performed by CTL model checking with fairness constraints [6]. In the context
of this general strategy, our contribution is twofold: First, we propose a classification
of the automata obtained by translation of the properties; our classification refines the
one proposed in [20] to three types: general, weak, and terminal automata. We show
that applying a specific decision procedure to each class results in an algorithm that is
superior to the standard one both in theory and in practice. Different tableau constructions
produce automata that may differ according to our classification. We adopt the procedure
of [15] because it tends to produce automata that are amenable to more efficient decision
procedures.

Converting properties into automata and applying specialized decision procedures
based on the structure of the automaton tends to reduce the number of fixpoints that must
be computed by the model checker. If the number of fixpoints is reduced to one, on-the-
fly model checking can be easily applied [1]. In Section 5 we show that this sometimes
produces substantial savings in memory and CPU time, even when comparing to CTL
model checking. In general, our experiments confirm and strengthen the observation of
[20] about the efficiency of LTL model checking.

Our second contribution is the extension of guided symbolic search from reachability
analysis [32] to LTL model checking. Guided symbolic search applies constraints to the
transition relation of the model to make the computation of fixpoints more efficient. The
constraints are eventually lifted, so that the result of the computation does not differ
from the the one of the conventional approach. However, by exploring the state space
not in strict breadth-first fashion, guided search can be substantially more efficient than
conventional fixpoint computations. The constraints can be seen as hints on the order in
which transitions should be explored. Effective hints can be derived with only a limited
understanding of the behavior of the model subjected to verification. In this paper we
show how to apply hints to both least and greatest fixpoint computations. The asymmetry
in the two computations is another reason for reducing the number of fixpoints when
translating LTL properties.

The rest of this paper is organized as follows. Section 2 reviews the background ma-
terial. Section 3 discusses the classification of the automata derived from LTL properties
and the decision procedures for each class, while Section 4 deals with the application of
guided symbolic search to model checking. Section 5 presents our preliminary experi-
mental results, and Section 6 summarizes, outlines future work, and concludes.

2 Preliminaries

2.1 Linear Time Model Checking

We adopt the positive normal form (a.k.a. negation normal form) for the specification of
LTL. Given a set of atomic propositions A, the standard boolean connectives, and the
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temporal operators X (next time), U (until) and R (releases), LTL formulae in positive
normal form are defined as follows:

– true, false, the atomic propositions, and their negations are formulae;
– if ϕ and ψ are formulae, then so are ϕ ∨ ψ, ϕ ∧ ψ, Xϕ, ϕ U ψ, and ϕ R ψ.

It is customary to define two additional operators: Fϕ abbreviates true U ϕ and Gϕ ab-
breviates false R ϕ. The boolean connectives → and ↔ are also defined as abbreviations
in the usual way.

We define the semantics of LTL with respect to a Kripke structure 〈S, T, S0, A, L〉,
where S is the set of states, T ⊆ S × S is the transition relation, S0 ⊆ S is the set
of initial states, A is the set of atomic propositions A, and L : S → 2A is the labeling
function. The transition relation is assumed to be complete; that is, every state has at
least one successor. An infinite path π in M is an infinite sequence s0, s1, . . . such that
(si, si+1) ∈ T for i ≥ 0. We denote by πi the suffix of π starting at si. The satisfaction
of an LTL formula along path π of M is defined as follows.

π |= true π 6|= false
π |= ϕ iff ϕ ∈ L(s0) for ϕ ∈ A π |= ¬ϕ iff ϕ 6∈ L(s0) for ϕ ∈ A
π |= ϕ ∨ ψ iff π |= ϕ or π |= ψ π |= ϕ ∧ ψ iff π |= ϕ and π |= ψ
π |= Xϕ iff π1 |= ϕ
π |= ϕ U ψ iff there exists i ≥ 0 such
that πi |= ψ, and for all j, 0 ≤ j < i,
πj |= ϕ

π |= ϕ R ψ iff for all i ≥ 0 πi |= ψ,
or there exists j, 0 ≤ j < i, such that
πj |= ϕ

A formula is satisfied in a Kripke structure M if it is satisfied along a path of M such
that s0 ∈ S0. A formula is valid in a Kripke structure M if it is satisfied along all paths
ofM such that s0 ∈ S0. Given an LTL formula in positive normal form, its negation can
be computed by recursively applying De Morgan’s Laws and the following identities:
¬Xϕ = X ¬ϕ, and ¬(ϕ U ψ) = ¬ϕ R ¬ψ. Writing the negation in positive normal
form does not change the length of the formula |ϕ|, if one assumes that for an atomic
proposition p, |p| = |¬p|.1 Therefore we can efficiently solve the validity problem for
ϕ by checking the satisfiability of ¬ϕ. This is the approach that we adopt in the sequel.

Model checking of linear time property ϕ is usually accomplished by constructing a
Büchi automaton B¬ϕ from the formula ¬ϕ. This automaton is often referred to as the
tableau of the formula; it accepts runs that visit sets of fair states infinitely often. The
product of the automaton B¬ϕ and the model M is then analyzed to see if it contains a
so-called fair cycle. A fair cycle reachable from the initial states signals satisfaction of
¬ϕ; hence, it is a counterexample to the validity of ϕ in M . When explicit enumeration
is used, the run time of the model checking algorithm is linear in the size of the model
and exponential in the length of the formula.

In the rest of this paper we shall have occasion to refer to logics other than LTL.
Computational Tree Logic (CTL) is a branching time logic. Temporal operators are
always preceded by universal or existential path quantifiers in CTL formulae. The ex-
pressiveness of CTL is not comparable to that of LTL: Properties like AG EF p have no
equivalent in LTL, while F G p (fairness) is not expressible in CTL. Model checkers for

1 This assumption is valid for BDD-based model checkers.
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CTL usually allow the user to specify fairness constraints separately from the property.
Both LTL and CTL are subsumed by CTL*, which is in turn subsumed by the Lµ2
fragment of the µ-calculus. The reader interested in the formal definition and a detailed
analysis of these logics is referred to [12].

2.2 Symbolic Model Checking

The main difficulty to model checking comes from the size of the state space S. This
is typically true also of LTL model checking, in spite of the exponential dependence of
the runtime on the length of the formula, because the formulae of interest are usually
short. Symbolic model checking [6,26,2] addresses this concern by representing sets of
states implicitly via their characteristic functions. In this paper we consider BDD-based
symbolic model checking, in which Binary Decision Diagrams [4] are used to represent
the characteristic functions. Although almost all boolean functions have exponentially
sized BDDs [27], symbolic model checkers have been successful on problems that
vastly exceed the capacity of explicit enumeration algorithms. BDDs can be manipulated
efficiently; in particular, algorithms have been devised for the computation of all the
successors (image computation) or predecessors (pre-image computation) of a set of
states according to a given transition relation [10,5,14,31].

Symbolic model checking algorithms for various logics are based on the computation
of fixpoints by repeated image or pre-image computations. In the relational µ-calculus
(see, for instance, [26]), the computation of the states reachable from S0 is expressed by
the formulae

EY p = λy.∃x.T (x, y) ∧ p(x)
RchS0 = µZ.S0 ∨ EYZ ,

which prescribe a sequence of image computations. Symbolic LTL model checking, on
the other hand, is normally based on the algorithm of Emerson and Lei [13] for the Lµ2
fragment of µ-calculus. If the acceptance condition of the automaton is described by a
set of fair states,C, the set of states from which a fair cycle can be reached, Fair, is given
by:

EX p = λx.∃y.T (x, y) ∧ p(y)
Ep U q = µZ.q ∨ (p ∧ EXZ)

Fair = νZ.EX E(Z U (Z ∧ C)) .

If Fair ∩ S0 6= ∅ for M × B¬ϕ, then there is a fair path, and the LTL formula ϕ is not
valid inM . The observation that Fair is the set of states that satisfy the CTL [9] formula
EG true under the fairness constraint C has led to the use of symbolic model checkers
for fair CTL in LTL model checking [6,8].

Many fixpoint computations used in symbolic model checking, including the two just
mentioned, can be formulated both in terms of image computations (forward traversal of
the state space) and in terms of pre-image computations (backward traversal). In recent
times considerable attention has been devoted to the relative efficiency of the alternative
formulations [19,18,17,28].
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Besides the direction of traversal of the state space, an important factor affecting the
efficiency of symbolic model checking algorithms is the presence of multiple fixpoints,
especially if nested. Thus, the computation of fair states is intrinsically more difficult
than the computation of reachable states.

3 Classification of Tableaux

As outlined in Section 2.1, a linear time property can be checked by converting its
negation into a Büchi automaton called the tableau of the property, composing the tableau
with the model, and checking language emptiness. The last step of this procedure involves
the computation of nested fixpoints and is therefore potentially expensive. The question
naturally arises as to whether LTL model checkers can compete with CTL model checkers
for those properties that can be expressed in both logics. Kupferman and Vardi [20,21]
call these properties branchable and observe that many of them translate into tableaux
with special structure. They claim that an appropriate variant of the LTL model checking
algorithm can then achieve efficiency comparable to that of CTL model checkers. In this
section we recall the classification of [20] and refine it in a natural yet effective way.

Different tableau construction procedures have been proposed in the literature [24,
34,6,8,15]. Even though the automata produced by these procedures for a given formula
obviously accept the same language, they have different structures, and therefore are not
equivalent from the point of view of the classification we propose. We discuss this issue
at the end of this section.

A Büchi automaton is a quintuple 〈Σ,Q,Q0, δ, F 〉, where Σ is the input alphabet,
Q is the finite set of states, Q0 ⊆ Q is the set of initial states, δ : Q × Σ → 2Q is the
transition function, and F ⊆ Q is the acceptance condition. An input word is accepted
iff there is a run of the automaton on that word that visits F infinitely often. We assume
that the transition function is complete, that is δ(q, σ) 6= ∅ for all q ∈ Q and σ ∈ Σ.

A Büchi automaton is weak [20,29] iff there exists a partition of Q into Q1, . . . , Qn
such that each Qi is either contained in F or disjoint from it; in addition, the blocks of
the partition are partially ordered so that the transitions of the automaton never move
from Qi to Qj unless Qi ≤ Qj .

Theorem 1. The language of a weak Büchi automaton A is empty iff A |= ¬EFEGF .

Proof. A run of a weak Büchi automaton that leaves a block Qi of the partition cannot
enter it again. Hence, the only way for a run to visit a fair state infinitely often is
to eventually be confined inside one Qi ⊆ F . Such a run therefore is a witness for
EFEGF . Conversely, if A, s0 |= EFEGF for some s0 ∈ S0, then there is a fair run in
A and its language is not empty. ut

A Büchi automaton is terminal iff it is weak and the blocks of the partition contained in
F are maximal elements of the partial order.

Theorem 2. The language of a terminal Büchi automaton A is empty iff A |= ¬EFF .
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Proof. An accepting run in a terminal Büchi automaton must reach a maximal block
Qi of the partition, otherwise no fair state is visited. Conversely, a run that reaches a
maximal block can always be extended to a fair run, because δ is complete. It is therefore
necessary and sufficient for a fair run to reach a fair state. ut

Theorems 1 and 2 provide the foundation for our model checking strategy. The CTL
model checker is used to prove ¬EG true under the fairness constraint F , ¬EFEGF ,
or ¬EF ¬F , depending on the classification of the automaton. Correctness follows from
the fact that the composition of the model and a terminal Büchi automaton is a terminal
Büchi automaton, and the composition of the model and a weak Büchi automaton is
weak. Checking whether an automaton is weak or terminal can be done in polynomial
time. The checking of the properties can be carried out by either backward or forward
analysis. Forward analysis applied to terminal automata corresponds to reachability
analysis.

As pointed out in [16], the Emerson-Lei algorithm, which is quadratic in the size
of the state space, is often much slower in practice than reachability analysis and CTL
model checking, which are linear. Our classification has the desirable effect of using the
more efficient algorithms when possible.

Several variants of the tableau construction have been proposed in the literature. All
are based on the identity ϕ U ψ = ψ ∨ (ϕ ∧ X (ϕ U ψ)), but they differ in the details.
Figure 1 shows the tableaux produced by the procedures of [8] (left) and [15] (center)
for the formula f = p U q. It also shows a variant of the tableau of [15] (right) that has
labels on the arcs instead of the states and a complete transition function.

p q
Xf

p q
Xf

p q
Xf

p q
Xf

p q
Xf

p q
Xf

p q
Xf

p q
Xf

p

qq

Xf

q

p

Fig. 1. Tableaux for p U q. Fair states are indicated by double circles, initial states have an extra
incoming arrow, and negation is indicated by an overbar.

The construction of [8] identifies the elementary subformulae of the given formula f
(p, q, and X f in our example) and creates one state in the tableau for each combination
of elementary subformulae of f . It then adds a transition (s, s′) if, for all elementary
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subformulae g, either X g holds in s and g holds in s′, or X g does not hold in s and g
does not hold in s′.

The procedure of [15] creates states of the tableau on the fly, starting with a node that
represents f and adding nodes according to the syntactic structure of the the formula.

The disparity in number of states is the most visible difference between the results of
the two constructions, but it is of little consequence on the efficiency of symbolic model
checking. In fact, since every atomic proposition appearing in f also appears—possibly
negated—in the label of each state, the left tableau shares the state variables for p and
q with the model and only requires one additional bit for X f . The other two automata
need two extra bits.

Another difference between the two constructions is of greater import for the effi-
ciency of the model checker. The automaton on the left of Fig. 1 is not weak, unlike the
other two (which are indeed terminal). The approach of adding all possible transitions
to the automaton at once, instead of adding them as they become needed tends to create
more paths in the tableau; hence, it tends to prevent the partial ordering of the states
required for weakness.

Therefore, we use the construction of [15] modified to yield automata with labels
on the arcs and complete transition functions as in [20]. These modifications allow us to
easily express the automata in Verilog that we use as input language for our experiments.
It should be noted that our choice is not optimal from the point of view of the number
of state variables and transitions of the composition of the model and the property
automaton.

4 Guided Search in Model Checking

4.1 Guided Search for the Computation of Least Fixpoints

In [32] it is shown that symbolic reachability analysis, and hence invariant checking,
can be substantially sped up by applying hints. The hints are predicates on the inputs or
state variables of the model. Their effect is to inhibit some transitions; it is obtained by
conjoining the hints and the transition relation. Several hints may be applied in sequence.
Therefore the computation of the reachable states is decomposed in the computation of
a sequence of fixpoints—one for each hint.

Theorem 3. Given a sequence of monotonic functionals τ1, τ2, . . . , τk such that τi ≤ τk
for 0 < i < k, the sequence ρ0, ρ1, . . . , ρk of least fixpoints defined by

ρ0 = 0
ρi = µX.ρi−1 ∨ τi(X), 0 < i ≤ k

monotonically converges to ρ = µX.τk(X); that is, ρ0 ≤ ρ1 ≤ · · · ≤ ρk = ρ.

Proof. We prove by induction thatρi ≤ ρ. The basis is trivially established (ρ0 = 0 ≤ ρ).
For the inductive step we have:

ρi = µX.ρi−1 ∨ τi(X) ≤ µX.ρi−1 ∨ τk(X) = µX.τk(X) ,
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where the last equality follows from the inductive hypothesis and the properties of
fixpoints. The sequence is clearly monotonic, and for i = k the inductive step shows
that ρk = ρ. ut

Decomposing the computation of a least fixpoint may have two main advantages; both
are based on the fact that an appropriately chosen τi (i.e., a properly chosen hint) may
make the computation of ρi orders of magnitude faster than the direct computation of
ρ [32]. The first advantage is that one may not need to compute the whole sequence
of fixpoints. For instance, a state that violates an invariant may be contained in ρ1, in
which case the rest of the computation can be avoided. The second advantage applies
also to cases in which the computation of ρ must be carried to completion. Indeed, it
may be much more efficient to compute ρ from ρk−1 than to compute it directly. In this
latter respect symbolic guided search differs from explicit guided search [35], in which
guidance is only used to accelerate the detection of states where invariants do not hold.

In [32] evidence is presented in support of the claim that finding good hints requires
understanding of the system to be verified at a level comparable to that required to write
functional tests for it. In this paper we extend the use of hints from invariant checking
to LTL.

4.2 Guided Search for the Computation of Greatest Fixpoints

The method presented in [32] applies to the computation of least fixpoints. Least fix-
points suffice to check invariants, but not for the properties of more expressive logics.
In this section we therefore describe the extension of guided symbolic search to the
computation of greatest fixpoints. Hints produce underapproximations of the transition
relation; therefore, guided symbolic search can complement known methods [22,25,7,
23], when both lower bounds and upper bounds are required [30].

The main objective of the works just cited is to prove the desired property of the
system on a simplified model. Our objective is complementary: We want to speed up
the computation of the fixpoints for a given model, by addressing the computational
bottlenecks; for instance, image computations that are too slow and memory consuming
because of poor quantification schedule [14,31].

Another possible reason for using underapproximations in greatest fixpoints is to
deal with nested fixpoints. If a greatest fixpoint is nested in a least fixpoint, or vice versa,
then by using underapproximations for both computations, one obtains an underappro-
ximation of the result if either computation is restricted to a prefix of the sequence. (For
instance, ρ0, . . . , ρj for j < k in the case of a least fixpoint.)

Theorem 4. Given a sequence of monotonic functionals τ1, τ2, . . . , τk such that τi ≤ τk
for 0 < i < k, the sequence η0, η1, . . . , ηk defined by

η0 = 0
ηi = νX.ηi−1 ∨ τi(X), 0 < i ≤ k

monotonically converges to η = νX.τk(X); that is, η0 ≤ η1 ≤ · · · ≤ ηk = η.
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Fig. 2. Greatest fixpoint computation illustrating ηi > ηi−1 ∨ νX.τi(X).

The proof is along the lines of the proof of Theorem 3. It should be observed that
ηi ≥ ηi−1 ∨ νX.τi(X), and that the inequality can be strict, as shown in the example
of Fig. 2. In the example k = 3. The rightmost graph can be though of as the original
system, and the other two graphs as the systems obtained by applying hints. Let EXiX
compute the predecessors of the states in X in the graph shown in Part i of Fig. 2. Let
τi = λX.p∧EXiX . With these definitions, η is the set of states along infinite paths where
p always holds. One can verify that η2 = {S1, S2, S3} = η > {S2} = η1 ∨νX.τ2(X).

Theorem 4 can speed up model checking in two ways. If the greatest fixpoint being
computed is the outermost fixpoint, as in EG true, then we may not have to compute
all k fixpoints in the sequence if there is indeed a fair cycle. In these cases, a procedure
that yields a large subset of the fixpoint at a small fraction of the computational cost
is desirable. This application of Theorem 4 is complementary to the approach of [16],
which works best when there are no fair cycles.

In cases where convergence must be proved, Theorem 4 can still speed up compu-
tation if R+ and η+ are given upper bounds on the reachable states and the greatest
fixpoint, and ηi ≥ R+ ∧ η+ for i < k. This case occurs in the example of Fig. 2, in
which η2 equals the trivial upper bound on η given by S itself; hence, η3 needs not be
computed. Finally, if R+ ∧ η+ > ηi for all i < k, it may still be that ηk−1 = η. In this
case, the last iteration of the computation of ηk can be skipped because ηi−1 is a lower
bound on ηi.

Comparing Theorems 3 and 4, the following observations are in order. First of all,
Theorem 3 can be extended by not insisting on the convergence of all the fixpoints except
the last. This is possible because the j-th iterate of the computation of ρi contains ρi−1
and is contained in ρi. However, this is not the case of the greatest fixpoint computation.
Another important difference is that knowledge of ρk−1 helps the computation of ρk
more than knowledge of ηk−1 helps the computation of ηk. In practice, application of
Theorem 3 tends to be more effective than application of Theorem 4 when convergence
must be reached.
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5 Experimental Results

In this section we present preliminary experimental results that we have obtained with
VIS 1.3 [3], extended to accept hints. CPU times are measured on an IBM Intellistation
running Linux with an Intel Pentium II 400 MHz CPU and 1 GB of RAM.

We consider properties that can be expressed in both LTL and CTL. This gives us
a means to contrast our decision procedure against the CTL decision procedure. The
results can be found in Table 1. The leftmost column gives the model and the type of
property. Soap is a model of a token-passing algorithm for distributed mutual exclusion
[11]. The token is passed along a spanning tree of a network of processors. For this
model we checked a liveness property of the form G (p → F q) and two safety properties
of the form G (p → X (q R r)) expressing the requirement that access to the resource is
not granted to a processor unless the processor has requested it. The first of these two
properties fails (error in the specification), while the second passes. Gcd is a model of
a circuit computing the greatest common divisor of two integers; Pcell is a model of a
production cell; Palu is a three-stage pipeline with an ALU and a register file; Fpmult is
a floating point multiplier; finally, NullModem is a circuit to check the correctness of a
simple UART and of the handshaking between the UART and a processor.

We ran all the applicable algorithms for each formula and compared CPU time and
memory requirements. The table also reports the number of pre-images (EX) and images
(EY) computed by each approach. These numbers indicate whether model checking
used pure forward analysis (0 pre-images), pure backward analysis (0 images) or a
combination of the two: reachability analysis followed by backward model checking.
For each formula we checked, one of these three methods was clearly superior to the
other two. Results are reported for that method. Some of the results could have been
improved by using forward CTL [19], but for uniformity all experiments have been
conducted using backward CTL only.

The importance of choosing the right algorithm is underlined by the results of Table 1,
which were obtained with the same fixed variable order for all the runs of a given model
and without hints. They confirm the observation of [20] about the comparable efficiency
of CTL and LTL model checkers when the right algorithms are used for the latter.
Notice, however, that experiments performed with dynamic variable reordering enabled
may yield quite different results, simply because the orders end up being different. For
formulae that fail, the ability to check the property on-the-fly may result in a substantial
advantage to our algorithm.

Nullmodem is a special case. The property G F p ∨ F G q is not expressible in CTL
without using fairness constraints. All three approaches used for that example use a
fairness constraint and compute nested fixpoints. The example is included to show that
there are cases in which the LTL model checking algorithm that uses an extra automaton
is faster than the standard fair CTL algorithm.

We next examine the effects of applying hints. Results for invariant checking are
reported in [32]; hence here we only consider properties of other types. Our current
implementation only supports hints for properties that translate into terminal automata.
Therefore Table 2 has results only for a subset of the experiments shown in Table 1.

The hint used in the two model checking experiments for the Soap model is to prevent
some of the processors from issuing requests. In the case of the property that fails, it is
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Table 1. Comparing model checking approaches for various LTL properties.

experiment procedure time (sec) EXs+ EYs memory (MB) peak BDD nodes
Soap (140 latches) CTL 580 55+45 635 19.4M
G (p→ F q) ¬EF EG fair 639 56+45 644 18.8M

¬EG fair true 9598 311+45 637 19.3M
Soap CTL 42 16+45 146 3.4M
G (p→ X (q R r)) ¬EF fair 8 0+13 43 0.8M
(failing) ¬EF EG fair 260 17+53 570 15.4M

¬EG fair true 288 32+53 571 15.4M
Soap CTL 29 4+45 99 2.1M
G (p→ X (q R r)) ¬EF fair 78 0+45 300 6.0M
(passing) ¬EF EG fair 80 3+45 233 6.0M

¬EG fair true 77 3+45 233 6.0M
Gcd (45 latches) CTL 1131 19+0 639 21.2M
G (p→ X F q) ¬EF EG fair 291 19+0 591 15.0M

¬EG fair true 8831 186+11 659 19.8M
Pcell (61 latches) CTL 3 47+66 23 120k
G (p→ p U q) ¬EF EG fair 4 45+80 25 195k

¬EG fair true 56 1252+80 73 973k
Palu (99 latches) CTL 2 5+0 23 228k
G (p→ F q) ¬EF EG fair 3 6+0 25 285k

¬EG fair true 3 12+0 26 394k
Fpmult (60 latches) CTL 0.2 5+0 14 12.0k
G (p→ X X X q) ¬EF fair 2.9 0+6 15 53.9k

¬EF EG fair 0.2 6+0 14 13.6k
¬EG fair true 0.2 10+0 14 13.7k

NullModem (53 latches) CTL 1143 28800+388 49 387k
G F p ∨ F G q ¬EF EG fair 1225 28623+388 42 310k

¬EG fair true 797 17250+388 91 1120k

Table 2. Effects of guided search. The lines without hints are taken from Table 1.

experiment procedure time (sec) EXs+ EYs memory (MB) peak BDD nodes
Soap G (p→ X (q R r)) no 7.5 0+13 43 773k
(failing) yes 1.0 0+13 17 39k
Soap G (p→ X (q R r)) no 78 0 + 45 300 6.0M
(passing) yes 27 0+60 90 2.0M
Fpmult G (p→ X X X q) no 2.9 0+6 15 53.9k

yes 1.9 0+15 15 53.6k
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indeed possible to generate a counterexample when requests from one processor only
are enabled. Considerable speed-up was obtained with a generic hint not specifically
targeted at the property. Conversely, the hint that is optimal for the property that fails
(only one processor is enabled) is not optimal for the property that passes, but still
improves runtime with respect to the standard algorithm. The time to devise the hint was
small compared to the time required to formulate the properties. Still, larger test cases
than those presented in Table 2 will be required to assess the practical impact of guided
search in symbolic model checking.

6 Conclusions and Future Work

In this paper we have presented an efficient algorithm for BDD-based LTL model
checking based on guided search and specialized decision procedures for classes of
automata. Our algorithm improves on the standard approach in both theory and practice:
The selection of the most appropriate decision procedure for an LTL property decreases
the asymptotic complexity of the model checking algorithm from quadratic in the size
of the state space to linear in many cases, while our preliminary experimental results
show that both classification of the automata and the use of hints can have large impacts
on the runtime and memory requirements.

Considerable work remains to be done besides the completion of the experimental
evaluation of our algorithm. We outline a few of the issues that we plan to explore.

Given an algorithm for CTL model checking with fairness constraints and a tableau
construction procedure, a model checker for CTL* is readily available. Also, given the
ability to compute least and greatest fixpoints, a µ-calculus model checker can be built.
Therefore, our guided search approach can be applied to the logics most commonly used
in model checking.

We have seen that LTL model checking may be faster than CTL model checking
for the same property, because of the reduction in the number and alternation depth of
fixpoints. The opposite may also occur, due to the additional state variables brought by
the automaton that may increase the sizes of the BDDs manipulated by the model checker.
Direct translation to µ-calculus [17] should therefore be considered as an alternative to
composition with the automaton.A better understanding of the relation between different
tableau construction procedures is also desirable.

The use of hints is not restricted to BDD-based approaches, but should apply to
SAT-based model checking as well [2]. Finally, partial automation of the extraction of
hints from the model and the property appears as a worthwhile research goal.
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