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Abstract. In this paper we extend one of the main tools used in verifi-
cation of discrete systems, namely Binary Decision Diagrams (BDD), to
treat probabilistic transition systems. We show how probabilistic vectors
and matrices can be represented canonically and succinctly using proba-
bilistic trees and graphs, and how simulation of large-scale probabilistic
systems can be performed. We consider this work as an important con-
tribution of the verification community to numerous domains which need
to manipulate very large matrices.

1 Introduction

Many problems in discrete verification can be reduced to the the following one:
given a non-deterministic finite-state automaton A = (Q, δ) and a set P ⊆ Q of
states, find the set P ∗ of all the states reachable from P . One common way to
do this calculation is to let P 0 = P and P i+1 = δ(P i) until P i is included in
the union P 0 ∪ . . . ∪ P i−1. Here P i is the set of states reachable from P after
exactly i steps.

This method can be formulated using Boolean state-vectors and transition
matrices. Each subset P of an n-element set of states can be written as an
n-dimensional Boolean row vector p (a function from Q to {0, 1}) and any tran-
sition relation δ as an n × n Boolean matrix Aδ (a function from Q × Q to
{0, 1}). Thus, the calculation step P i+1 = δ(P i) is equivalent to the multipli-
cation of a vector by a matrix: pi+1 = pi · Aδ. For example, consider Figure 1
where a 5-state automaton is depicted along with its corresponding 5 × 5 ma-
trix Aδ. The reader can verify that calculating the states reachable in one step
from P = {1, 2} is done via the multiplication [1, 1, 0, 0, 0] · Aδ = [0, 1, 1, 0, 1]
where logical conjunction and disjunction replace multiplication and addition,
respectively.

Probabilistic transition systems, such as discrete Markov chains, operate in
a similar but different fashion. At any given stage of the system’s evolution the
state is given by a probability function p : Q → [0, 1] such that

∑
q∈Q p(q) = 1.

The transition structure is probabilistic as well and is represented by a function
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Fig. 1. A non-deterministic automaton and its transition matrix.

δ : Q × Q → [0, 1] where δ(q, q′) denotes the conditional probability of being
in q′ in the next-state given that the current state is q. The evolution from
one probabilistic state vector to another is captured by the vector by matrix
multiplication pi+1 = pi · Aδ, this time over the reals.

The state-explosion problem, also known as the curse of dimensionality, arises
when the system under consideration is composed of many sub-systems. The
size of the global state-space is exponential in the number of components and
verification by explicit enumeration of states and transitions becomes impossible.
Symbolic methods provide an alternative to explicit state enumeration. They are
based on the following observation: the global state-space of a composed system
can be encoded naturally using state-variables (a variable for the local state
of each component). The evolution of each variable usually depends on a small
subset of the other variables and the corresponding transition law can be written
concisely as a formula in some adequate formalism (e.g. propositional logic when
the variables are Boolean) and the global transition relation is a conjunction of
such formulae. Similarly, sets of states can be written down as formulae. With the
aid of appropriate data-structures, a symbolic version of the basic computation
P i+1 = δ(P i) can be performed, calculating a (hopefully concise) representation
of P i+1 from a representation of P i and δ.

In verification of systems modeled as automata this technique is called sym-
bolic model-checking [McM93,BCM+93] and it had a great success. In fact it can
be seen as one of the breakthroughs in verification, facilitating the analysis of
systems with hundreds of state variables, far beyond the capabilities of explicit
enumeration on current and future computers. The most popular representa-
tion scheme used in symbolic verification is the binary decision diagram (BDD),
which is a formalism for representing Boolean functions, admitting the following
properties [B86,MT98]:

1. It is canonic – given an ordering of the variables, a unique BDD corresponds
to every Boolean function.

2. There are relatively-efficient algorithms for manipulating BDDs, in particu-
lar for the operations needed to compute P i+1 = δ(P i).

3. It performs well in the analysis of many structured systems: the size of the
BDD remains small relative to the size of the state-space.

The goal of the paper is to apply this recipe to probabilistic systems, that
is, to define a representation formalism for probabilistic vectors and transition
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functions such that the operation pi+1 = pi · Aδ could be performed for systems
for which it is impossible to do so using currently existing methods. To this end
we define probabilistic decision graphs (PDG)1 , a data-structure for representing
probabilities over structured domains which enjoys the nice properties of BDDs.

The rest of the paper is organized as follows. In section 2 we present probabi-
listic decision trees and graphs and show they constitute a canonic representation
for probabilities. In section 3 we rephrase the basic definitions of Markov chains.
Section 4 is devoted to the representation of probabilistic transition functions by
conditional probabilistic graphs and sketch the PDG structure of some generic
classes of probabilistic systems. The calculation of next-state probabilities on
PDGs via the projection operation described in section 5 and some preliminary
experimental results are reported in section 6. Finally we discuss the signifi-
cance of this work and mention some of the previous relevant applications of
BDD technology outside the Boolean realm.

2 Probabilistic Decision Graphs

Let B = {0, 1}. We assume an underlying set Q = B
n, and a probability distribu-

tion on Q, i.e. a function p : Q → [0, 1] such that
∑

q∈Q p(q) = 1. Such a function
can be extended naturally to subsets of Q by letting p(Q′) =

∑
q∈Q′ p(q) for every

Q′ ⊆ Q. We will abuse strings from B
≤n (the set of binary strings of length not

greater than n) to denote certain subsets of B
n. A string u = x1x2 · · ·xn will

stand for the singleton {(x1, . . . , xn)} while a string x1x2 · · ·xi, i < n will stand
for the set {(x1, . . . , xi, xi+1, . . . , xn) : (xi+1, . . . , xn) ∈ B

n−i}. This can be de-
fined recursively by associating with u the union of the sets associated with u0
and u1. Note that the empty string ε denotes the whole B

n. To avoid additional
symbols we use the same notation for a string and for the set it denotes. The set
B

≤n has a binary tree structure and every level B
i corresponds to a partition of

B
n. The next definition is the essence of this paper.

Definition 1 (Probabilistic Decision Trees). A probabilistic decision tree
(PDT) of depth n is a tuple P = (S, 0, 1, v) where S = B

≤n, 0 and 1 are
respectively the left-successor and right-successor partial functions on S, and
v : S → [0, 1] is a function satisfying v(ε) = 1 and for every non-leaf node s,
v(s0) + v(s1) = 1.

Theorem 1 (Unique Representation). There is a one-to-one2 correspon-
dence between probabilities on B

n and PDTs.

Proof: First we assign probabilities to nodes by letting p(ε) = 1 and

p(sx) = p(s) · v(sx) x ∈ B (1)

It is not hard to see that all p values are in [0, 1] and that their sum at each level of
the tree is 1. Conversely, given a probability on the leaves, it is straightforward to
1 We say “graphs” instead of “diagrams” to avoid yet another xDD acronym.
2 In our definition there is an implicit ordering on the “variables”.
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calculate the probability of the sets associated with the upper nodes by letting
p(s) = p(s0) + p(s1) and then compute v via normalization, i.e. the inverse
of (1): v(sx) = p(sx)/p(s). In the case when p(s) = 0 we can put any number in
v(sx) = 0/0, and a convention such as 1/2 can be used.

PDTs are nothing but the presentation of probabilities using the so-called
“chain-rule”, the probabilistic analogue of Shannon factorization of Boolean fun-
ctions which underlies BDDs:

p(x1x2 · · ·xn) = p(x1) · p(x1x2|x1) · · · p(x1x2 · · ·xn|x1 · · ·xn−1)

where p(r|s) is the conditional probability of r given s. We will replace this
unfortunate (but very common) notation with ps(r) such that the above rule
will be written as

p(x1x2 · · ·xn) = p(x1) · px1(x1x2) · · · px1···xn−1(x1 · · ·xn).

Decision trees are exponential in the number of variables and, by themselves,
do not solve the state explosion problems. However, when there is some structure
in the objects they represent, different nodes may have identical sub-trees and
the tree can be represented concisely by a directed acyclic graph (DAG) carrying
the same information. The transformation of a tree into a DAG is a variation of
the classical procedure for minimizing automata, and can be phrased as follows.

Definition 2 (Probabilistic Decision Graphs). Let P = (S, 0, 1, v) be a
PDT and let ∼ be a congruence relation3 on S defined as s ∼ s′ if v(s) = v(s′)
and both s0 ∼ s′0 and s1 ∼ s′1. The associated probabilistic decision graph
(PDG) is G = (S/ ∼, 0, 1, v).

In other words, the nodes of G are the equivalence classes of ∼. Graphically
speaking, the process starts from the bottom of the tree by merging leaves sx
and s′x′ which have identical v’s. Then the edge from s labeled by x and the
edge from s′ labeled by x′ are redirected toward the merged node and the process
continues recursively upward. Note that sx = ⊥ for a leaf s, hence s ∼ s′ only if
both belong to the same level of the tree.
Example: Consider the following probability function over B

3:

000 001 010 011 100 101 110 111

1
6 0 2
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4
15

1
15

1
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Figure 2-(a) shows the probabilities of all subsets in B
≤3. The PDT in Figure 2-

(b) is obtained via the normalization v(sx) = p(sx)/p(s). The reduction modulo
∼ into a PDG starts in Figure 2-(c) by merging identical leaves and terminates
in Figure 2-(d) by merging some of their parents.4 Like in BDDs, when there is
3 Congruence with respect to the 0 and 1 operations.
4 Unlike BDDs we do not go further and eliminate nodes whose left and right successors

are identical: we restrict ourselves to balanced DAGs where all paths from the root
to the leaves are of the same length, otherwise we cannot satisfy the requirement
that the sum of the leaves at every level is 1.
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a lot of independence between the variables, the size of the PDG is much smaller
than the size of Q. In the rest of the paper we describe algorithms in terms of
full trees, bearing in mind that the actual implementation reduces every tree
into its corresponding minimal DAG.
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Fig. 2. Transforming a probability function (a) into a PDT (b) and successively via
(c) into a PDG (d).

3 Markov Transition Functions

Having defined a canonical representation for probabilistic state vectors, we now
move to the representation of transition matrices. In a non-probabilistic setting
there is not much difference between sets (subsets of B

n) and relations (subsets
of B

2n) and both can be represented by BDDs of the same type. For probabilistic
systems, we must be more careful.

Definition 3 (Markov Transition Function). A Markov transition function
on Q is a function δ : Q → (Q → [0, 1]) such that for every q ∈ Q, δq : Q → [0, 1]
is a probability function on Q.
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In 20th century mathematics, such functions used to be written as |Q| × |Q|
matrices such as

Aδ =
δ1(1) δ1(2) . . . δ1(n)
δ2(1) δ2(2) . . . δ2(n)
. . . . . . . . . . . .
δn(1) δn(2) . . . δn(n)

where each line represents a particular δq. The action of δ on a probabilistic
state-vector p can be decomposed into two stages. The first can be viewed as
applying a function δ̂ : (Q → [0, 1]) → (Q × Q → [0, 1]) where p̂ = δ̂(p) if for
every q, q′ ∈ Q, p̂(q, q′) = p(q) · δq(q′). In other words, given that the current
state probability is p, δ̂(p) denotes the probability of any transition to happen.
Matrix-wise, when p is written as a vector [p1, . . . , pn], calculating δ̂(p) amounts
to multiplying every element of p by the elements of its corresponding row in δ
to obtain

Aδ̂(p) =
p1 · δ1(1) p1 · δ1(2) . . . p1 · δ1(n)
p2 · δ2(1) p2 · δ2(2) . . . p2 · δ2(n)
. . . . . . . . . . . .
pn · δn(1) pn · δn(2) . . . pn · δn(n)

Note that unlike δ, δ̂(p) is a probability function on Q × Q.
The probability of being in the next step at a state q′ is then the sum of the

probabilities of the form p̂(q, q′), i.e. those leading to q′. This can be captured by
a function: w : (Q×Q → [0, 1]) → (Q → [0, 1]) defined as w(δ̂) =

∑
i δ̂i. Matrixly

speaking, this is equivalent to summing up every column of Aδ̂(p) to obtain a

vector p′. Hence the composition w ◦ δ̂ : (Q → [0, 1]) → (Q → [0, 1]) gives the
evolution of the system as the action of a probabilistic transition matrix on a
probabilistic state vector.5

Next we define a data-structure for representing δ when Q = B
n and a natural

way to transform it, given a PDG-represented probability p, into a PDG of depth
2n for δ̂(p). After that we define the basic operation on PDGs, the projection
which is used in the calculation of w.

4 Conditional Probabilistic Decision Graphs

The basic idea is to extend PDTs such that nodes at certain levels of the tree
are empty (with v undefined) to denote undetermined variables.6 To this end we
will use somewhat more elaborate notations.

Let X = {1x, 2x, . . . , nx} and Y = {1y, 2y, . . . , ny} be two copies of {1, . . . , n}.
An order relation ≺ on X ∪ Y can be written as a bijection J : {1, 2, . . . , 2n} →
5 For those familiar with BDDs, we mention that these operations resemble the non-

probabilistic ones: δ̂(q, q′) = p(q) ∧ δ(q, q′) and w(q′) = ∃q δ̂(q, q′) =
∨
q δ̂(q, q′).

6 In fact we could have started the paper by defining data-structures for conditional
probability functions, with a partition of variables into two types. This way we
could obtain probability functions as the special case where all the variables are
determined, and Markov transition functions as a special case where the sizes of the
two sets of variables are the same and certain restrictions are imposed on variable
dependencies. However, we prefer clarity over generality.
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X ∪ Y . Without loss of generality we assume that ≺ is compatible with the na-
tural ordering of X and of Y , i.e. 1x ≺ 2x ≺ . . . ≺ nx. Given J , any binary string
s ∈ B

≤2n can be mapped into a pair of strings Jx(s) and Jy(s) from B
≤n. For ex-

ample, if J = 1x ≺ 2x ≺ 1y ≺ 3x ≺ 2y ≺ 3y then for a string s = x1x2y1x3y2y3,
Jx(s) = x1x2x3 and Jy(s) = y1y2. We also extend our string notation for sets:
a string of the form xi1xi1 · · ·xim with 0 < i1 < i2 < . . . < im ≤ n will denote
a subset of B

n with the obvious meaning, i.e. the set of n-tuples such that the
value of every ij-coordinate is xij .

A Markov transition function over B
n is a function δ : B

n → (Bn → [0, 1])
whose instances are written as δx1···xn(y1 · · · yn). For every x1 · · ·xn, δx1···xn is
a probability function which can be written using the chain rule just as as any
other probability:

δx1···xn(y1 · · · yn) = δx1···xn(y1) · δx1···xny1(y1y2) · · · δx1···xny1···yn−1(y1 · · · yn).

We restrict our attention to Markov chains in which every coordinate of the
state-space behaves causally, i.e. it depends only on the previous values of the
state variables.7 This means that for every x1 . . . xn and every yi, yj we have
δx1···xnyi(yj) = δx1···xn(yj). Hence δ can be written as:

δx1···xn(y1 · · · yn) = δx1···xn(y1) · δx1···xn(y2) · · · δx1···xn(yn). (2)

We say that jy is independent of ix if for every x1, . . . , xi−1, xi+1, . . . xn,

δx1···xi−10xi+1···xn(yj) = δx1···xi−11xi+1···xn(yj).

In this case we can use the notation δx1···xi−1xi+1···xn(yj). When this is not the
case we say that ix influences jy and denote it by ix ⇁ jy.

An order relation ≺ on X∪Y is compatible with a Markov transition function
δ iff for every ix ∈ X, jy ∈ Y , ix ⇁ jy implies ix ≺ jy. The default ordering
1x ≺ . . . ≺ nx ≺ 1y ≺ . . . ≺ ny is compatible with any δ and is the only one
compatible with a δ for which every jy depends on all X.

Definition 4 (Conditional PDT and PDG). A conditional probabilistic
decision tree (CPDT) of depth n is a tuple P = (S, 0, 1, J, v) where S = B

≤2n, 0
and 1 are as in a PDT, J is the ordering bijection and v : S → [0, 1] is a partial
function, defined only on nodes s such that J(|s|) ∈ Y , satisfying v(ε) = 1
and for every node s, v(s0) + v(s1) = 1 whenever it is defined. A conditional
probabilistic decision graph (CPDG) is G = (S/ ∼, 0, 1, J, v) where ∼ is the
congruence relation of Definition 2.

Theorem 2 (CPDT=Markov Transition Function). There is a one-to-one
correspondence between Markov transition functions and CPDTs.
7 Note that one can write Markov transition functions over Q which do not admit

such a causal decomposition, and this observation might be a source of interesting
investigations in the theory of stochastic processes. In fact, the above implies that
every m-state Markov chain which admits a causal decomposition can be represented
in space O(m log m) instead of O(m2).
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Sketch of Proof: Similar to that of Theorem 1. We assume a fixed ordering
bijection J compatible with δ. For every Y -node syi of the CPDT we associate
v(syi) with the conditional probability δJx(s)(yi), for example v(x1x2y1x3y2) =
δx1x2x3(y2). To reconstruct δ from a tree we go down the tree until we calculate
δ for the lowest Y -nodes. To build a CPDT from δ we climb-up starting from
the Y -leaves and construct the tree.

(a) (b) (c)

Fig. 3. Schematic CPDGs for Markov transition function which consist of: (a) Inde-
pendent Bernoulli trials (b) Independent Markov chains (c) A cascade with k = 2. The
dark nodes indicate Y -nodes.

Fig. 4. A schematic CPDG for an arbitrary (but causal) Markov transition function.

We mention some classes of probabilistic transition systems such that the
pattern of interaction between their components alone suffices for giving an
upper-bound on the size of their CPDGs. Consider first the degenerate case
of n independent Bernoulli trials. It can be modeled as a direct product of n
memory-less automata, for which the probability of the next state is independent
of the current state. Thus, δx1...xn(y1 . . . yn) can be written as δ(y1) · · · δ(yn) and
represented by a CPDG without empty nodes, which is in fact a PDG, like in
Figure 3-(a).

As a slightly less trivial example consider a direct product of n independent
2-state Markov chains. In this case each iy depends only on ix and the transi-
tion function can be represented by the CPDG of Figure 3-(b). More generally,
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consider a cascade A1, . . . ,An of probabilistic automata where the transition
probabilities of each automaton Ai depends on the states of its k predecessors
(including itself) Ai−k+1, . . . ,Ai−1,Ai. Such systems will have a CPDG of size
O(n2k) similar to the one appearing in Figure 3-c for k = 2.

When there are no such constraints on variable dependencies, the default
order needs to be used and no a-priori lower-bound better than n2n can be
stated (although some independencies might make the corresponding CPDG
smaller). We repeat that even this bound is better than the 22n size implied
by a straightforward encoding of the transition matrix. The general structure of
such a CPDG is depicted in Figure 4.

Going from p and δ to δ̂(p) is straightforward: take v(s) from the PDT for p
and put it in any nodes s′ of the CPDT of δ such that Jx(s′) = s. This way the
whole tree becomes full and represents the probability δ̂(p) over B

2n.

5 Projection

The basic operation on probabilities (and PDGs) is the probabilistic analogue of
the elimination of a quantified variable in Boolean functions (and BDDs). This
is what is needed to transform δ̂(p) into δ(p).

Definition 5 (Projection). Let p : B
n → [0, 1] be a probability. The k-projec-

tion of p, is a function p↓k : B
n−1 → [0, 1] defined as

p↓k(x1 · · ·xk−1xk+1 · · ·xn) =
p(x1 · · ·xk−10xk+1 · · ·xn)

+
p(x1 · · ·xk−11xk+1 · · ·xn)

(3)

Using conditional probabilities, (3) can be rewritten as

p(x1 . . . xk−1) ·



px1···xk−1(0xk+1 · · ·xn)
+

px1···xk−1(1xk+1 . . . xn)




and further as

p(x1 · · ·xk−1) ·



v(x1 · · ·xk−10) · px1···xk−10(xk+1 · · ·xn)
+

v(x1 · · ·xk−11) · px1···xk−11(xk+1 · · ·xn)




As one can see, performing a k-projection on the PDT representation of p consists
of copying the first k − 1 levels of the tree and then plugging at each branch
x1 · · ·xk−1 a sub-tree which encodes the weighted sum of the functions px1···xk−10
and px1···xk−11. This is the main computational burden in the manipulation of
PDGs. The transformation of a PDT P = (S, 0, 1, v) for p with S = B

n into a
PDT P↓k = (S↓k, 0, 1, v↓k) for p↓k with S↓k = B

n−1 is performed as follows. For
any node s ∈ B

≤k−1 we have p↓k(s) = p(s). For the other nodes we have

p↓k(x1 · · ·xk−1s) = p(x1 · · ·xk−10s) + p(x1 · · ·xk−11s)
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These values are calculated from the top down and every calculation of p↓k(sx)
is followed by calculating v↓k(sx) as v↓k(sx) = p↓k(sx)/p↓k(s), which in the first
k − 1 levels reduces simply to v↓k(s) = v(s). Aplying this procedure n times8

we transform a probability on B
2n to a probability on B

n and complete the
computation of p′ = p · Aδ. While working with PDGs, one can avoid part of
the computation whenever there is an equivalence of the form ps0 = ps1. In that
case the weighted sum r · ps0 + (1 − r)ps1 is equal to both.

6 Implementation and Experimental Results

The treatment of the mathematical real numbers by computer involves an addi-
tional dimension of problematics absent from traditional applications of verifi-
cation methodology. The continuum is approximated by a very large (but finite)
subset of the rationals, the floating point numbers. Practitioners seem to be sa-
tisfied with this approximation. It turns out that for exploiting the advantages
of PDGs we had to go further and round node values to multiples of 2−m (for m
ranging between 3 to 10), otherwise the size of non-trivial PDGs becomes expo-
nential after few iterations because of the low probability of two nodes having
exactly the same floating-point value. With this discretization, systems with li-
mited interaction among variables usually converge to vectors with a small PDG
description. As for the semantic price of the approximation, if we reflect a bit on
the empirical source of probability estimations in models, we realize that these
numbers are not sacred and an initial “imprecision” of 2−m does not make any
difference.

We have implemented these data-structures and algorithms and tested their
performance on some generic examples. The implementation is preliminary and
does not yet employ all the optimizations one can find in BDD packages. Let us
first mention the trivial cases. For n randomly-generated mutually-independent
Markov chains we can treat almost any n. This is, of course, not so impressive if
one realizes that each chain could be simulated separately. Yet someone unaware
of BDDs will be rather surprised to see how fast you can multiply a 215 × 215

transition matrix void of any apparent structure or sparseness (see table 1). A
slightly less trivial example is a chain of noisy communication channels where
each component copies the value of its predecessor with probability 1 − ε. Such
a chain converges to a uniform probability vector where p(q) = 1/2n for every
state. Here again we could iterate for very large n with a linear growth in the
size of the PDGs.

Next, we have tested randomly-generated cascades of communication depth
2, which using the previously mentioned discretization, usually converge to vec-
tors with small PDGs, although exponential ones are, of course, still possible.
We demonstrate the time and space behavior of the algorithm on a family con-
sisting of a cascade of noisy AND gates such that each component becomes the
conjunction of its previous value and that of its predecessors (Figure 5) with
8 Like in BDDS, this procedure can be extended naturally to a procedure that elimi-

nates several variables in a single pass.
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0.000564 0.000093 0.000412 0.000068 0.000094 0.000015 0.000068 0.000011 0.000727 0.000120 . . .
0.000653 0.000003 0.000477 0.000002 0.000108 0.000001 0.000079 0.000000 0.000842 0.000004 . . .
0.000823 0.000135 0.000153 0.000025 0.000137 0.000022 0.000025 0.000004 0.001061 0.000175 . . .
0.000953 0.000005 0.000177 0.000001 0.000158 0.000001 0.000029 0.000000 0.001229 0.000006 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1. An initial fragment of a 215 × 215 matrix which can be iterated until conver-
gence within less than a second.

probability 0.9. The performance results are depicted in Figure 6 and although
space behaves nicely, computation time still grows exponentially, reaching almost
4 hours for n = 54. The reason lies in the fundamental difference between BDDs
and PDGs: in the former, when an algorithms encounters a node, it does not
need to remember via which branch the node is reached, and thus the hashing
mechanism prevents duplicate calls. On the other hand, in PDGs, each time the
projection procedure is called with a node, it has, as an additional parameter,
the probability associated with its parent. Hence procedure calls with identical
arguments are rather rare and the current implementation needs to do exponen-
tial work on linear-sized PDGs. We are currently investigating improvements of
the implementation.

Fig. 5. A chain of noisy AND gates.
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Fig. 6. The PDG size and time until convergence as a function of the number of
variables, for discretizations of 1/1024 and 1/512.
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7 Discussion

We have introduced and implemented a new method for manipulating large
probabilistic transition systems. We hope that this technique will improve the
performance of probabilistic simulation tools. In addition, the investigation of the
structure of PDGs might contribute to a better understanding of the structure
of probabilistic functions. The application domains which might benefit from
such a technique are numerous and include performance and reliability analysis,
probabilistic verification, planning under uncertainty [P94,BDH99], calculation
of equilibria in economics, statistical mechanics and more.

This work is built on what we consider to be the main insight of the BDD
experience: in many situations the indices of rows and columns in matrices are
the outcome of “flattenning” of much more structured domains. This flattening,
which is unavoidable if one wants to draw a matrix on a two-dimensional sheet
of paper, hides the structure of the problem, or at least makes it very hard to
retrieve.9 BDDs and PDGs suggest a way of maintaining this structural infor-
mation and exploiting it in efficient computations.

Among previous extensions of BDD technology to represent functions from
B

n to N (motivated chiefly by arithmetical circuits), R and other domains we
mention the structure called Multi-terminal BDDs (MTBDD) in [CFM+93] and
Algebraic Decision Diagrams (ADD) in [BFG+93]. This is a straightforward ex-
tension of BDDs with leaves having values in non-Boolean domains. Algorithms
for performing matrix multiplications and other operations on these representa-
tions have been proposed and applied, for example, to probabilistic verification
[BCG+97]. The main drawback of MTBDDs/ADDs is that they yield a succint
representation only if the corresponding vectors and matrices have a lot of iden-
tical entries, e.g. sparse matrices having many zeros. In contrast many generic
examples of functions with no interaction between the variables will lead to ex-
ponential MTBDDs: for example it is not hard to create probabilities on B

n with
all variables mutually-independent, and yet no two elements will have the same
probability. In fact, the ability to represent functions concisely as decision graphs
without putting any information on the non-leaf nodes is a special property of
Boolean algebra.

The above observation has led some researchers in the hardware verification
community [VPL96,TP97] to consider extending BDD with values on their edges
(which is practically the same as putting values on the nodes, as we do here).
This structure is called Edge-valued BDD (EVBDD) and it has been used to
encode the so-called Pseudo-Boolean functions which are essentially functions
from {0, 1}n to N. EVBDDs contain both additive and multiplicative constants
and in some cases overcome the limitations of MTBDDs. However, since the
class of functions treated by EVBDDs is much less constrained than the class of

9 Just compare the non-intuitive definition of the Kronecker product (also known
as Tensor product) of two matrices with the straightforward Cartesian product of
automata.
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probabilistic functions, normalization and matrix multiplication are much more
complicated than the ones reported in this paper.

Finally, let us mention another formalism, related to PDGs, the Bayesian
Networks which are used extensively in AI [P88,J96]. Like PDGs, Bayesian net-
works consist of a graphical representation of variables and their probabilistic
dependencies. The comparison between the two formalisms is outside the scope
of this paper, but it seems that PDGs can be viewed as a constrained and well-
behaving sub-class of networks, with a special emphasis on the dynamic aspects
(next-state probabilities) which makes them, perhaps, more suitable for treating
large-scale Markov decision processes.
Acknowledgements: We are grateful to Moshe Tennenholz for raising the pos-
sibility of applying some verification techniques to AI problems of planning under
uncertainty. His visit in Grenoble, in fact, triggered this work. We thank Amir
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cular for the observations concerning causal Markov chains and weighted sum of
identical sub-trees. Eugene Asarin reminded us of certain facts concerning the
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