
Elementary Microarchitecture Algebra

John Matthews and John Launchbury

Oregon Graduate Institute,
P.O. Box 91000, Portland OR 97291-1000, USA

{johnm,jl}@cse.ogi.edu
http://www.cse.ogi.edu/PacSoft/Hawk

Abstract. We describe a set of remarkably simple algebraic laws gover-
ning microarchitectural components. We apply these laws to incremen-
tally transform a pipeline containing forwarding, branch speculation and
hazard detection so that all pipeline stages and forwarding logic are re-
moved. The resulting unpipelined machine is much closer to the reference
architecture, and presumably easier to verify.

1 Introduction

Transformational laws are well known in digital hardware, and form the basis of
logic simplification and minimization, and of many retiming algorithms. Tradi-
tionally, these laws occur the gate level: de Morgan’s law being a classic example.
In this paper, we examine whether corresponding transformational laws hold at
the microarchitectural level.

A priori, there is no reason to think that large microarchitectural components
should satisfy any interesting algebraic laws, as they are constructed from thou-
sands of individual gates. Boundary cases could easily remove any uniformity
that has to exist for simple laws to be present. Yet we have found that when
microarchitectural units are presented in a particular way, many powerful laws
appear. Moreover, as we demonstrate in this paper, these laws by themselves are
powerful enough to allow us to show equivalence of pipelined and non-pipelined
microarchitectures.

We have used this algebraic approach to simplify a pipelined microarchitec-
ture that uses forwarding, branch speculation and pipeline stalling for hazards.
The resulting pipeline is very similar to the reference machine specification (i.e.
no forwarding logic), while still retaining cycle-accurate behavior with the origi-
nal implementation pipeline. The top-level transformation proof is simple enough
to be carried out on paper, but we have mechanized enough of the theory in the
Isabelle theorem prover [20] to have verified it semi-automatically, using Isa-
belle’s powerful rewriting engine.

Interestingly, both circuits and laws can be expressed diagrammatically. A
paper proof (transformation using equivalence laws) proceeds as a series of micro-
architecture block diagrams, each an incrementally transformed version of the
last. The laws often have a geometric flavor to them, such as laws to swap two

N. Halbwachs and D. Peled (Eds.): CAV’99, LNCS 1633, pp. 288–300, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



Elementary Microarchitecture Algebra 289

components with each other, or laws to absorb one component into another. We
find this diagrammatic approach an excellent way to communicate proofs.

For us, the most time-consuming part of this technique has been discovering
the local behavior-preserving laws. It is our experience that these laws are much
easier to discover when one uses the right level of abstraction. In particular,
we encapsulate all control and dataflow information concerning a given instruc-
tion in the pipeline into an abstract data type called a transaction [1,17]. We
have found that not only do transactions reduce the size of microarchitecture
specifications, they also provide enough “auxiliary” state information to make
law-discovery practical.

The rest of the paper gives a brief introduction to our specification language,
and then discusses many of the laws we have discovered. We then show their use
by applying the laws in a proof of equivalence between two microarchitectures.
While space constraints prohibit us from giving the complete proof, the top-level
proof is sketched diagrammatically in [16].

2 Specifying a Pipelined Microarchitecture

We specify microarchitectures using the Hawk language [4,17]. Hawk allows us to
express modern microarchitectures clearly and concisely, to simulate the micro-
architectures, either directly with concrete values, or symbolically, and provides
a formal basis for reasoning about their behavior at source-code level. Currently
Hawk is a set of libraries built on top of the pure functional language Haskell,
which is strongly typed, supports first-class functions, and infinite data structu-
res, such as streams [8,21]. It is this legacy that led us to look for transformation
laws in the first place: one often-cited benefit of purely functional programs is
that they are amenable to verification through equational reasoning. We wanted
to see if such algebraic techniques scaled up to microarchitectural verification.

2.1 Hawk Signals

Hawk is a purely declarative synchronous specification language, sharing a se-
mantic base similar to Lustre[7]. The basic data structure underlying Hawk is
the signal, which can be thought of as an infinite sequence of values, one per
clock cycle, and circuits are pure functions from input signals to output signals.
The elements of a signal must belong to the same type.

We use a notion of transactions to specify the immediate state of an entire
instruction as it travels through the microprocessor [1]. A transaction is a re-
cord with fields containing the instruction’s opcode, source register names and
values, and the destination register name and its value, plus any additional in-
formation, like the speculative branch target PC for each branching instruction.
A microarchitecture is a network of components, each of which processes signals
of transactions.



290 J. Matthews and J. Launchbury

Figure 1 shows the diagram of a simple one-stage microarchitecture, built out
of transaction signal processors. Each component incrementally assigns values to
various transaction fields, based on the component’s internal state (if any) and
the values of transaction fields assigned by earlier components. A textual Hawk
specification of this circuit consists of set of mutually-recursive stream equations
between the components. However, in this paper we will represent Hawk circuits
as diagrams.

For example, the

stall

regFileIn aluIn memIn

writeback

writeback
regFile alu memICache

False

Fig. 1. One-stage pipeline.

regFile component has
two transaction signal
inputs and one transaction
signal output. At a given
clock cycle, the first input
(called regFileIn in Fi-

gure 1) contains a transaction whose opcode and register name fields have been
initialized, but whose value fields have all been zeroed out. The second input
(called writeback) contains the completed transaction from the previous clock
cycle. The regFile component first updates its internal register file state, based
on the destination register name and value fields of the writeback input. It
then fills in the source operand value fields of the regFileIn transaction based
on the corresponding operand register names and the updated register file, and
outputs the filled in transaction, all within the same clock cycle.

The alu component examines the opcode and source operand value fields of
the transaction output by regFile. If the opcode is an ALU operation (which
include branch instructions), the alu component computes the appropriate re-
sult, assigns the result to the destination operand value field of the transaction,
and outputs the transaction along the memIn wire, again within the same (long)
clock cycle. If the opcode is not an ALU operation, the alu component outputs
the transaction unchanged.

The mem component behaves similarly for memory load and store operations.
Like the regFile component, the mem component has internal state, representing
the contents of data memory at each clock cycle. This state is updated and
referenced based on the transactions sent to the mem component. Just as with
the alu component, all memory and transaction updating occurs within the
same clock cycle. The mem component sends the completed transaction to a delay
component (represented in our diagrams as a shaded box), to make it available to
the ICache and regFile components in the next clock cycle. These transactions
also become the output of the entire microarchitecture, as is shown by the right-
most arrow. The initial value output by the delay component is the default
transaction nopTrans, which represents an “inert” transaction which behaves
like a NOP instruction, but does not affect the ICache’s program counter.

The ICache component produces new transactions, based on the value of the
current program counter and the contents of program memory (the instruction-
set architectures we consider have separate address spaces for instructions and
data). Both the current PC and the instruction memory contents are internal



Elementary Microarchitecture Algebra 291

to ICache. The ICache takes on its writeback input the completed transaction
from the previous clock cycle. The ICache examines the transaction for branches
that have been taken. When it finds such an instruction, it modifies its internal
PC accordingly and starts fetching transactions from the branch target address.
The ICache has as output a signal of transactions representing the newly-fetched
instructions. Each transaction’s source and destination operand values are in-
itialized to zero, since the ICache doesn’t know what values they should have.
The other pipeline components will fill in these fields with their correct values.
The ICache has a second input, called stall, which is a signal of Boolean values.
On clock cycles where stall is asserted, the ICache will output the same tran-
saction as it did on the previous clock cycle. In this simple microarchitecture,
stall is always false. In more complex pipelines, the stall signal is typically
asserted when the pipeline needs to stall due to a branch misprediction.

For more complex pipelines, we also allow the ICache to perform branch
prediction, based on an internal branch target buffer. When performing branch
prediction, the ICache will also annotate branch instruction transactions with the
predicted branch target PC. A branch misp component (not shown in Figure 1)
can locally compare the predicted branch target with the actual branch target
to determine if a branch misprediction has occurred.

3 Microarchitecture Laws

With any algebraic reasoning there

F
F

F

Fig. 2. Universal circuit-duplication law

need to be some ground rules. We
take as fundamental the notion of re-
ferential transparency or, in hardware
terms, a circuit duplication law. Any
circuit whose output is used in multi-
ple places is equivalent to duplicating the circuit itself, and using each output
once. This law is shown graphically in Figure 2. Because of the declarative na-
ture of our specification language, every circuit satisfies this law. That is, it is
impossible within Hawk for a specification of a component to cause hidden side-
effects observable to any other component specification. In many specification
languages this law does not hold universally. For example, duplicating a circuit
that incremented a global variable on every clock cycle would cause the global
variable to be incremented multiple times per clock period, breaking behavioral
equivalence. Hawk circuits can still be stateful, but all stateful behavior must be
local and/or expressed using feedback.

The next few sections introduce many other laws, some of which are specific to
particular combinations of components, while others are quite widely applicable.
Each instantiation of a law needs to be proved with respect to the specification
of the circuit components involved. We have found induction and bisimulation
to be the most useful ways of proving the laws in this paper, expressed as proofs
in Isabelle.



292 J. Matthews and J. Launchbury

3.1 Delay Laws

The delay circuit is a funda-
F G GG F

Fig. 3. feedback rotation law

mental building block of clocked
circuits, especially when combined
with feedback. A feedback vari-
ant of the circuit duplication law

shown in Figure 3, called the feedback rotation law, allows circuits to be split
along feedback wires. This law is not universal, but it is valid for any circuit that
does not contain zero-delay cycles (amongst others). Happily, all of the laws we
discuss, including the feedback rotation law itself, preserve a well-formedness
property: if a circuit contains no zero-delay cycles, then any transformed circuit
will also have no zero-delay cycles.

The time-invariance law (Fi-

F F

Fig. 4. time-invariance law.

gure 4) is also nearly universal. A
circuit is time-invariant if one can
retime the circuit by removing the
delays from all the inputs of the
circuit and placing new delays on
the circuit’s outputs. Any combi-
natorial circuit that preserves de-

fault values is automatically time-invariant, but so are stateful circuits like the
register file and memory cache. Interestingly, the ICache is not.

We use the above laws extensively to remove pipeline stages. If a pipeline
stage is time-invariant, then we can move the pipeline registers (represented as
delay circuits) from before the pipeline stage to afterwards. If subsequent pi-
peline stage are also time-invariant, then we can repeat the process, eventually
moving all of the delay circuits to the end of the pipeline. However, forwarding
logic between pipeline stages must still access the appropriate time-delayed out-
puts of later pipeline stages. The feedback-rotation law polices this, and ensures
that the appropriate time-delay is kept by forcing delays to be inserted on all
feedback wires to the forwarding circuits.

3.2 Bypasses and Bypass Laws

The purpose of forwarding logic in a pipeline is to ensure that results computed
in later pipeline stages are available to earlier pipeline stages in time to be
used. Conceptually, the forwarding logic at each pipeline stage examines its
current instruction’s source operand register names to see if they match a later
stage’s destination operand register name. For every matching source operand,
the operand value is replaced with the result value computed by the later pipeline
stage. Non-matching source operands continue to use operand values given by
the preceding pipeline stage.



Elementary Microarchitecture Algebra 293

This conceptual logic can be implemented conci-
update

inp out

Fig. 5. bypass circuit

sely using transactions. A bypass circuit (Figure 5)
has two inputs, each a signal of transactions: The
first input (inp) contains the transactions from
the preceding pipeline stage. The second input
(update) contains the transactions from a subse-
quent pipeline stage. The bypass circuit at each
clock cycle compares the source operand names of the current inp transaction
with the destination operand names of the current update transaction. The out-
put of bypass is identical to inp, except that source operands matching update’s
destination operand are updated. Bypasses arise frequently enough in pipeline
specifications that we draw them specially, as diamonds with the update input
connected to either the top or the bottom.

Bypass circuits have many nice

Fig. 6. bypass circuit idempotence law

properties. Not only are they time-
invariant and obey a kind of idem-
potence (Figure 6), but they also
interact closely with register files
and various execution units.

The fundamental interaction

regFileregFile

Fig. 7. register-bypass law

between a bypass and register file
is shown in Figure 7. We call this
the register-bypass law, and it is
used repeatedly in eliminating for-
warding logic when simplifying pi-
pelines. The law states that we can
delay writing a value into the register file, so long as we also forward the value
to be written, in case that register was being read on the same clock cycle.

Initially we considered this law to be a theorem about register files, and
accordingly we proved that it held for a number of different implementations.
However, it is also tempting to view this law as an axiom of register files. In
effect, by using the law repeatedly from right to left, we obtain a specification
for how the register file must behave for any time prefix.

Hazard - Bypass Law Another bypass law permits the removal of bypasses
between execution units. It is often the case that after retiming all delay circuits
to the end of a pipeline, two execution units in a pipeline (such as an ALU
unit and a Load/Store unit) are connected with one-cycle feedback loops. Each
bypass circuit is forwarding the outputs of an execution unit to the inputs of
that same execution unit, one clock cycle later.

If the upstream pipeline stages can guarantee that there is no hazard bet-
ween successive transactions, then the double feedback is equivalent to the single



294 J. Matthews and J. Launchbury

feedback circuit shown at the bottom of Figure 8. This (conditional) identity is
called the hazard-bypass law.

To be more concrete, suppose

exec2

exec2exec1no_haz

exec1no_haz

Fig. 8. hazard-bypass law

exec1 is the ALU and exec2 the
memory cache. Then an ALU-mem
hazard arises if a transaction which
loads a register value from memory
is immediately followed by an ALU
operation which requires that regi-
ster’s value. Under these circum-
stances the two feedback loops
would give different results. Un-
der all other circumstances the two
circuits are equivalent. We express
this conditional equivalence using
the no haz component. It is an ex-

ample of a projection component and is discussed in the next section.

3.3 Projection Laws

Many laws, like the hazard-bypass law above, require that the input signals
satisfy certain properties, and commonly, we may know that the output signal
of a given component always satisfies a particular property. We can capture this
knowledge of properties using signal projections.

A signal projection is a component with one input and one output. As long
as the input signal satisfies the property of interest, the component acts like an
identity function, returning the input signal unchanged. However, if the input
does not satisfy the property we are interested in, the projection component
modifies the input signal in some arbitrary way so that the property is satisfied.

Let us consider an example. For the hazard-bypass law we are interested in
expressing the absence of ALU-mem hazards in a transaction signal. We reify
this property as a no haz projection. On each clock cycle, the no haz component
compares the current input transaction with the previous input transaction. If
there is no ALU-mem hazard between the two transactions, then the current
transaction is output unchanged. If a hazard does exist, then no haz will instead
output nopTrans, which is guaranteed not to generate a hazard (since nopTrans
contains no source operands).

Where do projections come from? After all, they are not the sort of compo-
nent that microarchitectural designers introduce just for fun.

Fig 9 provides an example of a law which “generates” a projection. The
hazard-squashing logic guarantees that its output contains no hazards, and this
is expressed in that the circuit is unchanged when the no haz component is
inserted on its output.

(The hazard component outputs a Boolean on each clock cycle stating
whether its two input transactions constitute a hazard. The kill component
takes a transaction signal and a Boolean signal as inputs. On each clock cycle, if



Elementary Microarchitecture Algebra 295

the Boolean input is false, then kill outputs its input transaction unchanged.
If the Boolean input is true, then kill outputs a nopTrans, effectively “killing”
the input transaction.)

To be useful, a pro-

hazard

kill

hazard

kill no_haz

Fig. 9. Hazard-squashing logic guarantees no hazards

jection component needs
to be able to migrate
from a source circuit
that produces it (such as
the circuit in Figure 9)
to a target circuit that
needs the projection to
enable an algebraic law (such as the hazard-bypass law). Thus a projection
component must be able to commute with the intervening circuits between the
source and the target circuit. Well-designed projections commute with many cir-
cuits. For instance, the no haz projection commutes with bypass, alu, mem, and
regFile components. It also commutes with delay components (that is, no haz
is time-invariant).

Projections are also convenient for expressing the fact that a component
only uses some of the fields of an input transaction. For instance, the hazard
component only looks at the opcode, source, and destination register name fields
of its two input transactions. We can create a projection called proj ctrl that
sets every other field of a transaction to a default value, and prove a law stating
that the hazard component is unchanged when proj ctrl is added to any of
its inputs. We can then show that proj ctrl commutes with other components,
such as bypasses and delays. This allows us to move the input wires to hazard
across these other components, which is sometimes necessary to enable other
laws. Similarly, the proj branch info projection allows us to move ICache and
branch misp component inputs.

4 Transforming the Microarchitecture

The laws we have been discussing can be used for aggressively restructuring
microarchitectures while retaining equivalence. We have used them to simplify
several pipelined microarchitectures with a view to verification. The example
we present here contains three levels of forwarding logic, resolves hazards by
stalling the pipeline, and performs branch speculation. The block diagram for
this microarchitecture is shown in Figure 10.

By using just algebraic laws, we have been able to reduce most of the com-
plexity, leaving essentially an unpipelined microarchitecture. We are currently
implementing the algebraic laws as a rewrite system in Isabelle. For this paper
we describe our top-level rewrite strategy informally.

Retiming We first remove all delay circuits from the main pipeline path. We
accomplish this by repeatedly applying the time-invariance law, and by splitting
delays along wires through the circuit duplication and feedback rotation laws.



296 J. Matthews and J. Launchbury

branch_misp

regFile alu memkillICache

hazard

Fig. 10. Microarchitecture before simplification

Move control wires Next, we move all wires not directly involved with forwar-
ding logic to either before or after all of the bypass circuits. This is to enable the
hazard-bypass laws, which we apply in a later step. We move the wires by ins-
erting projection circuits and using the corresponding projection-commutativity
laws.

Propagate hazard information The hazard-bypass laws can only be ap-
plied when there are no hazards between the affected stages. So we generate a
no-hazard projection at the end of the dispatch stage (which is justified by a
projection-absorption law applicable to the kill-circuit complex in that stage),
and then move it between the first and second bypass circuits. We also use addi-
tional properties of the proj ctrl, kill, and regFile circuits (discussed in [16])
to swap the hazard/kill complex with the register file, so that the register-bypass
law can be used more readily in the next step of the simplification. The circuit
in Figure 11 shows the microarchitecture after this step has been completed.
Notice that the ALU and memory units are now connected exactly as required
for an application of the hazard-bypass law.

alu mem

proj_branch_info

no_haz

branch_misp hazard

proj_ctrl

kill regFile

proj_ctrl

ICache

Fig. 11. Microarchitecture after the “propagate hazard information” step



Elementary Microarchitecture Algebra 297

Remove forwarding logic We can now apply the hazard-bypass law to remove
the bypass circuit just prior to the memory unit. We eliminate the other two
bypass circuits by applying the register-bypass law twice.

Cleanup The pipeline has now been simplified as much as possible, except that
there are still some extra delay components as well as several unnecessary pro-
jection circuits. We merge delay components, then move the projection circuits
back to their places of origin and remove them using the projection laws in the
opposite direction.

branch_misp

kill

hazard

regFileICache alu mem

Fig. 12. Microarchitecture after simplification

The final microarchitecture is shown in Figure 12. This circuit still outputs
exactly the same transaction values, cycle-for-cycle, as the microarchitecture in
Figure 10, but is considerably less complex. We can now apply conventional
techniques to verify that this microarchitecture is a valid implementation of the
ISA.

5 Discussion

5.1 Related Work

Hawk is built on top of the pure functional language Haskell, where algebraic
techniques for transforming functional programs are routinely used for equiva-
lence checking and verification [2,3,13] and for compilation and optimization [5,
12]. Much of our work can be seen as an extension of these ideas. Hawk itself is
very similar in flavor to Lustre [6] except that in Lustre signals are accompanied
by additional clock information. The Hawk specification style follows from the
work of Johnson[9], O’Donnell[18], and Sheeran[25].

We have also been influenced by the algebraic techniques used in the re-
lational hardware-description language Ruby [24]. Sizeable Ruby circuits have
been successfully derived and verified through algebraic manipulation [10,11].
What distinguishes our work is our focus on microarchitectural units as objects
of study in their own right. The Ruby research has emphasized circuits at the
gate level.

In terms of verification, our approach is most similar to two known techni-
ques, called retiming [14,23,26] and unpipelining [15]. A circuit is retimed when



298 J. Matthews and J. Launchbury

the delay components of the circuit are repositioned, while the functional compo-
nents are left unchanged, effectively through repeated applications of the time-
invariance law. Typically, circuits are retimed to reduce the clock cycle time. In
contrast, we retime circuits as part of a simplification process. In fact, we often
use the time invariance law to increase cycle time!

Unpipelining [15] is a verification technique where a pipelined microar-
chitecture, specified as a state machine, is incrementally transformed into a
functionally-equivalent unpipelined microarchitecture. Unpipelining proceeds by
repeatedly merging the last stage of a pipeline into the next to last stage, produ-
cing a microarchitecture with one less stage on each iteration. On each iteration,
the two microarchitectures are proven equivalent by induction over time. This
is similar to our approach, except that we use transactions to encapsulate and
reuse many of the verification steps, and we only need to prove the equivalence
of the portion of the microarchitecture being transformed, rather than the entire
microarchitecture, on each iteration. On the other hand, Levitt and Olukotun’s
implementation of unpipelining is much more automated than our work up to
now.

Transactions were a key concept in allowing us to discover and formulate
many of the algebraic laws of microarchitectural components. Unsurprisingly, the
usefulness of transactions has been noticed before. Aagaard and Leeser used tran-
sactions to specify and verify hierarchical networks of pipelines [1], and Önder
and Gupta have used a similar concept of instruction contexts as a core datatype
in UPFAST, an imperative microarchitecture simulation language [19]. Further,
Sawada and Hunt use an extended form of transactions in their verification of
a speculative out-of-order microarchitecture [22]. Each transaction records two
snapshots of the entire ISA state, before and after the instruction is executed.
In their work, however, transactions are not part of the microarchitecture itself,
but are constructed separately for verification purposes.

5.2 Next Steps in Microarchitecture Algebra

As we have come to see it, the main principle of applying algebraic techniques
to microarchitectures is to use geometric reasoning to move and absorb circuits,
and to express that reasoning as local equalities whenever possible. Conditional
equalities can be expressed using projections.

Some care is required in the definition of basic components. We have striven
to design the component circuits to satisfy as rich a variety of algebraic laws as
possible, such as preserving default values, satisfying time-invariance, and so on.
Sometimes we hit on the correct definitions immediately, but more commonly
adapted the definitions over time admitting more and more laws. One example of
this is in pipeline registers. Initially, we used conditional delays to act as pipeline
registers, but since then have found it useful to separate clocked behavior from
functional behavior, enabling the two dimensions to be manipulated separately.

In some sense the components we now manipulate are not optimal in terms of
transistor counts. In particular, many units receive and propagate information
they are not interested in. However, much of this overhead can be removed



Elementary Microarchitecture Algebra 299

automatically through a similar set of rewrite laws built around more primitive
components than those presented in this paper. We plan to write this up in a
subsequent paper.

6 Acknowledgements

We wish to thank Borislav Agapiev, Carl Seger, Byron Cook, Sava Krstic, and
Thomas Nordin for their valuable contributions to this research. The authors
are supported by Intel Strategic CAD Labs and Air Force Material Command
(F19628-93-C-0069). John Matthews receives support from a graduate research
fellowship with the NSF.

References

1. Aagaard, M., and Leeser, M. Reasoning about pipelines with structural ha-
zards. In Second International Conference on Theorem Provers in Circuit Design
(Bad Herrenalb, Germany, Sept. 1994).

2. Bird, R., and Wadler, P. Introduction to Functional Programming. Prentice
Hall International Series in Computer Science. Prentice Hall, 1988.

3. Bird, R. S., and Moor, O. D. Algebra of Programming. Prentice Hall, 1996.
4. Cook, B., Launchbury, J., and Matthews, J. Specifying superscalar micro-

processors in Hawk. In FTH’98, Workshop on Formal Techniques for Hardware
and Hardware-like Systems (Marstrand, Sweden, June 1998).

5. Gill, A., Launchbury, J., and Peyton Jones, S. L. A Short Cut to Defo-
restation. In FPCA’93, Conference on Functional Programming Languages and
Computer Architecture (Copenhagen, Denmark, June 1993), ACM Press, pp. 223–
232.

6. Halbwachs, N. Synchronous programming of reactive systems. Kluwer Academic
Pub., 1993.

7. Halbwachs, N., Lagnier, F., and Ratel, C. Programming and verifying real-
time systems by means of the synchronous data-flow programming language Lustre.
IEEE Transactions on Software Engineering, Special Issue on the Specification and
Analysis of Real-Time Systems (September 1992).

8. Hudak, P., Peterson, J., and Fasel, J. A gentle introduction to Haskell.
Available at www.haskell.org, Dec. 1997.

9. Johnson, S. D. Synthesis of Digital Systems from Recursive Equations. ACM
Distinguished Dissertation Series. MIT Press, 1984.

10. Jones, G., and Sheeran, M. Collecting butterflies. Tech. rep., Oxford University
Computing Laboratory, 1991.

11. Jones, G., and Sheeran, M. Designing arithmetic circuits by refinement in
ruby. In Mathematics of Program Construction (1993), vol. 669 of LNCS, Springer
Verlag.

12. Jones, S. L. P., and Santos, A. L. M. A transformation-based optimiser for Has-
kell. Science of Computer Programming 32, 1–3 (Sept. 1998), 3–47.

13. Launchbury, J. Graph algorithms with a functional flavour. Lecture Notes in
Computer Science 925 (1995).

14. Leiserson, C. E., and Saxe, J. B. Retiming synchronous circuitry. Algorithmica
6 (1991), 5–35.



300 J. Matthews and J. Launchbury

15. Levitt, J., and Olukotun, K. A scalable formal verification methodology for
pipelined microprocessors. In 33rd Design Automation Conference (DAC’96) (New
York, June 1996), Association for Computing Machinery, pp. 558–563.

16. Matthews, J., and Launchbury, J. Elementary microarchitecture algebra: Top-
level proof of pipelined microarchitecture. Tech. Rep. CSE-99-002, Oregon Gra-
duate Institute, Computer Science Department, Portland, Oregon, Mar. 1999.

17. Matthews, J., Launchbury, J., and Cook, B. Specifying microprocessors
in Hawk. In IEEE International Conference on Computer Languages (Chicago,
Illinois, May 1998), pp. 90–101.

18. O’Donnell, J. From transistors to computer architecture: Teaching functional
circuit specification in Hydra. In Symposium on Functional Programming Langu-
ages in Education (July 1995).

19. Önder, S., and Gupta, R. Automatic generation of microarchitecture simulators.
In IEEE International Conference on Computer Languages (Chicago, Illinois, May
1998), pp. 80–89.

20. Paulson, L. Isabelle: A Generic Theorem Prover. Springer-Verlag, 1994.
21. Peterson, J., et al. Report on the programming language Haskell: A non-strict,

purely functional language, version 1.4. Available at www.haskell.org, Apr. 1997.
22. Sawada, J., and Hunt, W. A. Processor verification with precise exceptions and

speculative execution. Lecture Notes in Computer Science 1427 (1998), 135–146.
23. Saxe, J., and Garland, S. Using Transformations and Verifications in Circuit

Design. Formal Methods in System Design 4, 1 (1994), 181–210.
24. Sharp, R., and Rasmussen, O. An introduction to Ruby. Teaching Notes ID–

U: 1995-80, Dept. of Computer Science, Technical University of Denmark, October
1995.

25. Sheeran, M. µFP, an Algebraic VLSI Design Language. PhD thesis, Program-
ming Research Group, University of Oxford, 1983.

26. Sheeran, M. Retiming and slowdown in Ruby. In The Fusion of Hardware Design
and Verification (Glasgow, Scotland, July 1988), G.J. Milne, Ed., IFIP WG 10.2,
North-Holland, pp. 289–308.


	Introduction
	Specifying a Pipelined Microarchitecture
	Hawk Signals

	Microarchitecture Laws
	Delay Laws
	Bypasses and Bypass Laws
	Projection Laws

	Transforming the Microarchitecture
	Discussion
	Related work
	Next Steps in Microarchitecture Algebra

	Acknowledgements

