
Automatic Verification of Combinational and
Pipelined FFT Circuits

Per Bjesse

Chalmers University of Technology, Sweden
bjesse@cs.chalmers.se

Abstract. We describe how three hardware components (two combina-
tional and one pipelined) for computing the Fast Fourier Transform have
been proved equivalent using an automatic combination of symbolic si-
mulation, rewriting techniques, induction and theorem proving. We also
give some advice on how to verify circuits operating on complex data,
and present a general purpose proof strategy for equivalence checking
between combinational and pipelined circuits.

1 Introduction

FFT components are a challenge to verify as they compute complex functions in-
volving many arithmetic operations. Bit-level correctness proofs for such circuits
are not within the reach of today’s technology; an appropriate level of modelling
is therefore on the level of individual arithmetic operations on signals carrying
numerical data.

In order to make verification techniques industrially interesting, it is gene-
rally agreed that a high degree of automation is desirable. Unfortunately classi-
cal automatic methods such as propositional logic tautology checking or model
checking can not be immediately applied at this level of abstraction. Different
extensions of model checking with uninterpreted functions encoded in BDDs
have been proposed [VB98]; we instead use theorem proving, but in such a way
that no user guidance is needed during the proofs.

As we aim for verification at the arithmetic level, it is imperative to structure
the proofs to be as simple as possible; we therefore devise heuristics for the
particular class of circuits we verify and apply automatic analyses that aim to
reduce the work that has to be done in the theorem prover. For this end we use
the Lava hardware development platform that has a powerful language in which
we can implement our analyses and write parametrisable scripts that control
complex theorem prover interactions [BCSS98].

The work described is an industrial case study with Ericsson Cadlab, Stock-
holm.

2 The Lava Hardware Development Platform

Lava is a hardware description language and a framework for hardware verifica-
tion developed at Chalmers and Xilinx [BCSS98]. One of the principal uses of
Lava is as a platform for hardware verification experiments.

N. Halbwachs and D. Peled (Eds.): CAV’99, LNCS 1633, pp. 380–393, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Automatic Verification of Combinational and Pipelined FFT Circuits 381

Lava is embedded in the functional language Haskell; all aspects of the deve-
lopment of hardware from descriptions down to the interfacing to layout tools are
expressed in the same language. The use of a polymorphic high level language
that supports higher order functions gives very concise hardware descriptions
and allows us to devise combinators that capture common design patterns.

The circuit descriptions can be interpreted by symbolic evaluation in a num-
ber of different ways; examples of built in standard analyses are circuit simu-
lation, generation of logical formulas in formats suitable for external theorem
provers and generation of VHDL. The verification interpretation is parametrised
over the proof procedure and allows the passing of optional proof parameters; a
user can therefore quickly retarget from one proof procedure to another without
losing fine grain control.

3 The Fast Fourier Transforms

The Fast Fourier Transforms (FFTs) are efficient algorithms for computing a
length N sequence of complex numbers X given an initial sequence x and a
constant WN defined as e−j2π/N :

X(k) =
N−1∑

n=0

x(n) · W kn
N , k ∈ {0 . . . N−1}

The FFTs exploit symmetries in the twiddle factors W k
N together with restric-

tions of sequence lengths (for example to powers of two) to reduce the number
of necessary computations. Examples of twiddle factor laws that express useful
symmetries are

W 0
N = 1

WN
N = 1

W k
n · Wm

n = W k+m
n

W k
n = W 2k

2n , (n, k ≤ N)

The FFT algorithms are often implemented in combinational hardware, and
are key building blocks in signal processing applications; the FFTs are rumoured
to be the worlds most implemented algorithms in hardware.

The reference FFT is the decimation in time Radix-2 algorithm, which ope-
rates on input sequences whose length is a power of two [PM92]. If the input
length also is a power of four, the decimation in frequency Radix-22 FFT can
be applied [He95]. From a designer’s point of view the question is whether the
combinational circuits that implement these algorithms are equivalent. As the
networks are fundamentally different, verification of equivalence is a non-trivial
undertaking.

Combinational implementations are not the only ones possible; pipelined se-
quential designs can use less circuit area by trading space for time. A pipelined
implementation of a size 2n Radix-22 FFT (see figure 1) consists of two simple

382 P. Bjesse

Twiddle
memory

W0 W1 W2

BF1 BF2 BF2BF1 BF1 BF2

32 16 1248

In OutC1 C2 C1 C2 C1 C2

6-bit counter

l m

Fig. 1. Structure of pipelined implementation of a size 64 Radix-22 FFT

kinds of combinational components (C1 and C2) that together form a stage; a
whole circuit consists of n/2 stages. Each primitive block is controlled by syn-
chronisation signals generated by an n-bit counter. This counter also addresses
a multi port memory that outputs streams of twiddle factors that are multiplied
together with the outputs of each stage.

Figure 2 shows how the pipelined FFT circuit simulates the corresponding
combinational circuit over time by reading the inputs in the first sequence of
input values IF (0) while spitting out undefined outputs until time lag (2n − 1
for a size 2n FFT) when the first element of the output sequence OF (0) is
generated; the lag time is always constant. At the same time as the outputs
are produced, inputs from a new input sequence are read so that the circuit
continuously processes data.

output

input

OF(0) OF(1)

t

t

IF(0) IF(1)

lag lag+2*20 lag+1*2N N

Fig. 2. Operation of the pipelined circuit

Automatic Verification of Combinational and Pipelined FFT Circuits 383

4 FFT Low-Level Descriptions

The FFT descriptions are parameterised by the circuit size and are formulated
using a number of simple circuits and combinators that are useful for signal
processing applications.

A key point is that the regularity of the combinational networks makes the
circuits very easy to describe in Lava; the description of the Radix-2 FFT in
terms of the signal processing combinators is just 3 lines long (see appendix A).

The Lava circuit descriptions can be used to automatically generate structu-
ral VHDL for all parts of the implementations with the exception of the multi
port memory component.

5 Verification of Components

As we want automatic proofs, we will only be concerned with equivalence check-
ing for fixed size circuits. We will also exploit designer knowledge and use Lava
analyses in order to make the proofs tractable for the external proof procedure.
The circuits are modelled on the level of operations on infinite precision com-
plex numbers; this modelling is appropriate as finite representations of complex
numbers only can be used for approximate calculation of the FFT. A reasona-
ble notion of implementation equivalence must therefore be defined in terms of
infinite precision complex arithmetic.

As a shorthand, we adopt the convention that

F (x, y) ≡ F (x(0)..x(i−1), y(0)..y(i−1))

if F ∈ Form (the set of first order logic formulas) and x, y ∈ Si where S is any
non-empty set.

5.1 Theoretical Basis of the Verifications

Combinational circuits can be viewed as functions f from input to output. Lava’s
symbolic evaluation can generate formulas δf that define the functions we are
concerned with in the sense that T ` δf (I, O) ⇒ f(I) = O if T is a theory
containing theorems that are true in a standard interpretation of complex arith-
metic.

The formulas that are constructed in the following verifications are expressed
in first order logic with equality, and contain variables and two-place function
symbols plus, sub, tim and W . The circuit equivalence checking problem is
reduced to showing that certain formulas that capture implementation equiva-
lence are members of the theory T which we give axioms for. The axioms are
well-known properties of complex arithmetic and some twiddle factor identities.
We know that the axioms hold in the interpretation I that complies with the
following conditions

– The domain is the set of complex numbers

384 P. Bjesse

– plus designates complex addition
– sub designates complex subtraction
– tim designates complex multiplication
– W designates the function fw(k, N) = e−j2πk/N

All formulas that are derivable from the axioms in a sound proof system are
therefore also true in I.

5.2 Combinational FFT Verification

Are the abstract implementations of the Radix-2 and the Radix-22 FFT equiva-
lent for sizes that are an exponent of four?

The fixed size FFT circuits are functions F1(I) and F2(I) from complex input
sequences to complex output sequences. Lava’s symbolic evaluation can generate
formulas δ1 and δ2 that define these functions. Our criterion for equivalence of
the combinational FFT is that

δ1(I, O1) ∧ δ2(I, O2) → O1 = O2

Instead of generating the two defining formulas individually and then combi-
ning them together to a resulting formula, we can construct a test bench circuit
that directly generates the correctness formula when interpreted symbolically:

fftSame n =
do inp <- newCmplxVector (4ˆn)

out1 <- radix2 (2*n) inp
out2 <- radix22 n inp
equals (out1,out2)

The test bench builds a vector of unrestricted complex variables, which are given
to both FFT implementations. The resulting output sequences are then point-
wise compared to each other for equality. If the formula describing this system
is derivable by the theorem prover using the axioms for the theory T , then it is
true in the model I and the implementations are equivalent.

Lava’s verification interpretation takes a test bench circuit and a proof pro-
cedure with some arguments, and automatically generates formulas and runs the
proof. The manual step that has to be taken is to choose a prover and possibly
give proof options. In this case, we have to choose a first order logic theorem
prover, and specify some axioms. These include some simple algebraic laws for
the arithmetic operators, such as distributivity of multiplication over addition
and that 1 is a unit element for multiplication. The twiddle factor identities from
section 3 are also necessary.

Although these axioms with any first order logic prover are in theory sufficient
to prove the circuits equivalent, the number of consequences grows very quickly
if the rules are applied mindlessly. This combined with the fact that the FFT
circuits generate formulas that for larger sizes grow to be megabytes big means
that we must give extra proof options in order to make the proofs tractable.
Symbolic evaluation of the FFTs for 4 abstract inputs reveals some interesting
circuit properties (the input and output vectors are indexed backwards):

Automatic Verification of Combinational and Pipelined FFT Circuits 385

Lava> symbolic_eval (radix2 2)
[(x3 - W(2, 0) * x1) - W(4, 1) * (x2 - W(2, 0) * x0),
(W(2, 0) * x1 + x3) - W(4, 0) * (W(2, 0) * x0 + x2),
W(4, 1) * (x2 - W(2, 0) * x0) + (x3 - W(2, 0) * x1),
W(4, 0) * (W(2, 0) * x0 + x2) + (W(2, 0) * x1 + x3)
]

Lava> symbolic_eval (radix22 1)
[W(4, 0) * ((x3 - x1) - W(4, 1) * (x2 - x0)),
W(4, 0) * ((x1 + x3) - (x0 + x2)),
W(4, 0) * (W(4, 1) * (x2 - x0) + (x3 - x1)),
W(4, 0) * ((x0 + x2) + (x1 + x3))
]

The lack of control logic in the combinational FFT components causes the circuit
outputs to be polynomials in the inputs and twiddle factors only. Rewriting of
the expressions by simplifying away twiddle factors that are equal to 0 or 1,
conversion of the remaining twiddle factors to the form W x

N and restructuring
of arithmetic expressions to sum of products form makes it possible to show the
two results equal by syntactic equality alone.

The rewriting has to be done in a particular way for it to be applicable to the
larger circuits. If the axioms are given as standard equalities, they can be used
in both directions. This is not how the most efficient proof would proceed, as it
suffices to use all the rules in one direction only: expand out the polynomials,
take away trivial twiddle factors and rewrite the others.

Unidirectional rules are therefore more suitable for our purposes. The theo-
rem prover Otter has efficient such rules that are called demodulators [MW97];
the use of a demodulation rule can be unconditional or restricted by predicates
on terms. An important property of these rules is that they are used as often as
possible without accumulating intermediate results. This reduces the number of
consequences and makes normalisation of large expressions tractable.

The demodulation proof rules are specified inside Lava and passed to Otter as
two theories. The actual proofs are done by calling the verification interpretation
on the test bench and the proof configuration:

options = [Prover otter, Theory arithmetic, Theory (twiddle 4)]

Lava> verify options (fftSame 1)
Valid

In this way the equivalence of circuits up to size 256 is proven automatically.
Statistics for the resulting proofs and some system formula measures such as the
number of primitive logical and arithmetic operations are given in table 1. The
running times are measured on a 300 MHz Sun Enterprise 450.

386 P. Bjesse

Table 1. Statistics for verification of equivalence between combinational FFTs

FFT size Verification time (s) Formula size (Bytes) # of variables # of formula operations
4 0.09 1179 33 59
16 0.39 10 761 233 433
64 10.31 172 088 1334 2529
256 827 2 886 561 6939 13 313

5.3 Pipelined FFT Verification

We would now like to verify that the sequential pipelined implementation of the
Radix-22 is equivalent to the combinational circuit. We employ a strategy that is
optimised for equivalence checking of combinational and constant delay (“lag”)
pipelined circuits.

The presentation is divided into two parts: The first part describes the stra-
tegy and the second demonstrates how it applies to the particular case of our
FFT verification.

A strategy for pipeline equivalence proofs If we observe the pipelined
circuit for a single clock period, it is a function from a starting state S and input
I to a finishing state S′ and a resulting output O.

(O, S′) = ppl(I, S)

We use the term “frame” to refer to a complete in- or output data sequence
for the combinational or pipelined circuit. Lava can generate a defining formula
δppl(I, S, O, S′) for the ppl(I, S) transition function that captures how the circuit
behaves over a single clock tick. The objective is to show equivalence between
the two implementations for any number of successive frames starting from a
(partially) specified initial state, using the following verification strategy which
we refer to as Equivω:

1. Generate the defining formula δppl(I, S, O, S′) of the pipelined circuit.
2. Define l to be the number of inputs that the pipelined circuit has to consume

before it can read the first input of the second frame.
3. Define m as the least number of time steps that the pipelined circuit has to

run to allow an observer to deduce that the output from the sequential circuit
matches a single frame of output from the combinational implementation.

4. Let k = max(l, m).
5. Let δk

ppl be the following formula that expresses what behaviour a length k
trace of the sequential circuit exhibits

δppl(I0, S0, O0, S1) ∧ δppl(I1, S1, O1, S2) ∧ . . . ∧ δppl(Ik−1, Sk−1, Ok−1, Sk)

This is the k-step unrolling of the pipelined transition function.
We refer to a trace that is a model for δk

ppl as a T trace, and observe the
following:

Automatic Verification of Combinational and Pipelined FFT Circuits 387

– If we define an initialisation state as a state that immediately precedes
the processing of a new frame, both S0 and Sl are initialisation states
on all T traces. Furthermore, Sl is the closest initialisation state to S0.

– Any infinite trace of the system is made up from infinitely many conca-
tenated T traces; given that l < k successive traces trn and trn+1 also
overlap with trn(l . . . k−1) = trn+1(0 . . . k−l−1).

6. Generate a defining formula for the combinational circuit, δcmb(I, O).
7. From δk

ppl and δcmb, construct a formula λ that expresses implementation
equivalence for a single frame of inputs

8. A proof of λ without any assumptions at all on the initialisation state S0
implies ∀S0.λ. This corresponds to equivalence for any number of time frames
as the circuits will behave in the same way regardless of the initialisation
state values before a new frame is processed; a direct proof of λ is hence not
realistic. Therefore strengthen the assumptions on S0 by a formula φ that
restricts some of the S0 variables to the initial values given in the pipelined
circuit description. If now

φ(S0) → λ

is provable, the circuits are equivalent for any number of time frames under
the assumption that φ is always true in initialisation states. Refer to this
assumption as assumption A

9. Try to prove assumption A valid by a proof of

φ(S0) ∧ λ → φ(Sl)

As φ holds in the initial state of the circuit, this formula implies A as it asserts
that φ will hold in the state Sl (that is reached immediately before a new
processing cycle is initiated) if φ is true in S0 (that was reached immediately
before this frame was processed); A is therefore entailed by induction.

10. If step 8 and step 9 were successful, deduce multi frame equivalence

A valid question is, of course, “Why is it reasonable to assume that a part of
the pipelined circuit always is in a state where φ holds before a new frame is
read?”. This is probable as the pipelined circuit is supposed to repeat the frame
processing behaviour again; the registers in the control logic should therefore
have similar contents in the initialisation states as in the specified initial circuit
state.

By having reduced the problem to two simple proofs we have devised a simple
strategy for showing pipelined circuits with a fixed lag equivalent to combinatio-
nal implementations. This strategy is implemented in an automatic Lava proof
script that is parameterised over circuit descriptions, frame length, the constant
lag and a proof configuration for the frame equivalence proof. This script auto-
matically generates and reduces all formulas as much as possible before calling
the theorem prover specified in the proof configuration; the only manual steps
are to choose which state variables to restrict and to select a proof procedure.
Any prover and extra proof options can be specified in the proof configuration;
the pipelined circuit description can also have as many or as few initial values
given as desired.

388 P. Bjesse

Application to the pipelined Radix-22 FFT The script that implements
Equivw proves pipeline equivalence for the FFT circuits with the automatically
generated equivalence formula .A defined as

J;pl(Io .. h-1, So .. Sk, Oo .. Ok-1)1\Jcmb(Io . .Ii-1, Ob .. 0~-1)--+ Otag·.Ok-1 = Ob .. 0~-1

where lag= 2N- 1, i = 2N and k = 2N +lag.
A sufficient restriction ¢ on the initial state of the pipelined FFT circuit is

that the n-bit counter is initialised to 0. The reason why this simple assertion
is strong enough to prove the FFT implementations equivalent is that at re­
initialisation the rest of the pipeline state is unimportant, new values have to be
read for processing anyway. This is likely to hold for most pipelined implemen­
tations of combinational circuits.

The initialisation information ¢ is always used by the Lava script to reduce
the generated formulas as much as possible while they are produced. This reduc­
tion computes the values of logical expressions whenever possible and propagates
the resulting new information. As a consequence, the formulas that specify the
behaviour of the control logic inside the pipelined FFT are evaluated away and
there-initialisation invariant in step 9 of Equivw is proved by syntactic equality.
The equivalence checking problem for the pipelined FFT is therefore reduced
back to a proof of an equivalence formula that turns out to be amenable to nor­
malisation with the theories used for the combinational equivalence checking.
The complexity of the resulting proofs are indicated in table 2.

Table 2. Statistics for verification of pipelined equivalence

FFT size Verification time (s) Formula size (Bytes)
4 0.05 1227
16 0.61 10 045
64 22.26 162 862

256 1361 2 797 617

5.4 Manual Preparation

Approximately two weeks was spent on studying the FFT implementations, devi­
sing signal processing combinators and writing circuit descriptions. The addition
of support in Lava's interpretations for complex numbers and the writing of the
symbolic simulation interpretation with automatic formula reduction took one
week of work each.

Finding the proof procedure was the creative step for the combinational FFT
verification. Two other theorem provers, Prover [Sta,89] and Gandalf [Tam97],
was tried before Otter. Prover lacked crucial arithmetic laws, and Gandalf did
not support the unidirectional rules that were needed to make the proofs scale up.
A correct set of rewrite rules took some hours work by two users, Koen Claessen

Automatic Verification of Combinational and Pipelined FFT Circuits 389

and Tanel Tammet, who were unfamiliar with the FFT but knew Otter well.
Any other applicable proof procedure would also have needed rewrite rules for
the twiddle factors, so we believe that this degree of manual work is unavoidable.

Once the symbolic simulation interpretation with formula reduction was writ-
ten, a first (more involved) pipeline proof script could be constructed in half an
hour. This strategy was successful the first time it was tried; we later simplified
the heuristic to the presented form. The only non-reusable steps of the combina-
tional and pipelined verifications were to choose Otter with rewrite rules as the
proof procedure and to restrict the synchronisation counter state to the initial
state 0.

6 Lessons Learned

The FFT circuits are representatives for a general class of circuits that compute
complex functions without using a large amount of boolean control logic. In
general, a few guidelines for proofs of circuit equivalence for such circuits can be
drawn out of the FFT work:

– For each problem domain, it might be possible to find a small number of
generalised proof scripts that can be powerful enough for a particular class
of problems to make proofs automatic in most cases. These scripts should
be parametrisable by proof options so that they not are too blunt to be
reusable.

– As the proofs that have to be done when operations like arithmetic are
involved are relatively complex, the prover’s job must be simplified as much
as possible. The use of automatic partial evaluation and formula reduction
can in some cases lessen the need for prover inferences drastically. A tool like
Lava that supports analyses like simplification of formulas by propositional
reasoning and cone-of-influence analysis can help the designer simplify the
problem at hand.

– It is not always necessary to explore the state space of a design. Ordinary
induction can sometimes avoid very complex or intractable computations,
and make for uncomplicated proofs.

– Normal form rewriting is a powerful technique that can be implemented very
efficiently using modern rewrite engines. However, the use of unidirectional
rules is crucial to make the strategy applicable to larger circuits.

7 Related Work

The Radix-2 FFT algorithm has previously been verified against the DFT using
the ACL2 theorem prover [Gam98]. The level of abstraction in this verification
was high and the proof thus required substantial user interaction. In contrast,
we have aimed for fully automatic proofs, and verified the hardware FFTs at
the netlist level. Our proofs are only for equivalence of fixed size circuits, but
are not reliant on circuit regularity.

390 P. Bjesse

The pipeline proof principle bears some resemblance to the refinement map-
ping approach to pipelined microprocessor control verification [BD94,Cyr93].
However, as we are comparing a pipelined circuit against a combinational one,
we cannot directly associate a single sequential step with the combinational im-
plementation; we instead correlate whole frames. We also exploit the fact that
constant lag pipelined circuits are targeted.

There are alternatives to Otter as a proof procedure: the Stanford validity
checker decides quantifier free first order logic with linear arithmetic and uninter-
preted functions by boolean case splitting (backtracking), rewrites and congru-
ence closure [BDL96]. SVC has been used extensively in hardware verification,
and is used as the decision procedure in the Burch and Dill approach to micro-
processor verification [BD94]. Multiway decision graphs are a variation on the
ROBDD theme that accommodates abstract data types, uninterpreted function
symbols and rewrite rules [ZSC+95]; this data structure has been used to ve-
rify non-pipelined microprocessors and an ATM switch [TZS+96]. MDGs give
a canonical representation for a fragment of quantifier free first-order formulas
and support exploration of abstract state spaces (but do not guarantee con-
vergence of fixpoint computations). As we have demonstrated, it is not always
necessary to do such expensive computations; induction and normalising can be
both sufficient and efficient.

Both MDGs and SVC need the user to provide rewrite rules or a normaliser
for new theories. This means that the manual step of finding a normal form for
twiddle factors is also necessary with these proof procedures.

8 Conclusions

This paper has shown how some FFT circuits have been verified from within the
hardware development tool Lava after the existing system was extended with
complex numbers and a general purpose strategy for equivalence checking of
combinational and fixed lag pipelined circuits. The verification has been auto-
matic in the sense that the only manual proof steps has been to select the proof
procedure, rewrite rules and the initial state variables to restrict. The proofs are
at a relatively low level, which should give a high confidence in the correctness
of the modelled circuits; the logical formulas has been generated by symbolic
evaluation of the hardware descriptions. No part of the verification has relied on
the specific way that the arithmetic operators are implemented, or the represen-
tation of complex numbers. However, the proofs are not general in the size of
the FFT; different instances have to be proved separately.

We have also presented an induction principle that exploits the problem
structure of equivalence checking between a pipelined circuit and a combinational
reference circuit, and contributed some suggestions for verification of circuits
that contain little control logic but do complicated computations expressed in
abstract operations.

Automatic Verification of Combinational and Pipelined FFT Circuits 391

9 Future Work

Lava is optimised for developing and verifying hardware. We pay for the strength
we gain by limiting the problem domain, however, by presently being unable to
reason internally about the proof strategies. Instead we have to go outside the
system to a general purpose interactive theorem prover and do high level proofs
there. We would like to have Lava integrated with a proof system that would
allow us to do this kind of reasoning.

The counter examples that are produced by proof procedures are formatted
and passed back to the user by Lava; unfortunately many first order logic theo-
rem provers (including Otter) lack such capabilities. For verification with normal
form rewriting to be smooth, it must be easy to find a rewriting theory quickly.
It is therefore imperative to have some tool that analyses the output of a failed
proof and allows the user to deduce what rules are missing, or gives the user
good clues to why the two formulas are not equivalent. This is something that
should (and will) be implemented in Lava as a proof analysis.

Acknowledgements

Thanks to Koen Claessen and Tanel Tammet for finding the Otter rewriting
theory, and to Mary Sheeran and Byron Cook for careful readings of earlier
drafts.

References

[BCSS98] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava: Hard-
ware Design in Haskell. In Proceedings of the third International Conference
on Functional Programming. ACM SIGPLAN, acm press, September 1998.

[BD94] Jerry Burch and David Dill. Automatic Verification of Microprocessor Con-
trol. In Proceedings of the Computer Aided Verification Conference, July
1994.

[BDL96] Clark Barrett, David Dill, and Jeremy Levitt. Validity checking for combi-
nations of theories with equality. In Mandayam Srivas and Albert Camilleri,
editors, Formal Methods In Computer-Aided Design, volume 1166 of Lec-
ture Notes in Computer Science, pages 187–201. Springer Verlag, November
1996. Palo Alto, California, November 6–8.

[Cyr93] David Cyrluk. Microprocessor verification in PVS. Technical Report SRI-
CSL-93-12, SRI Computer Science Laboratory, December 1993.

[Gam98] Ruben Gamboa. Mechanically verifying the correctness of the Fast Fourier
Transform in ACL2. In Third International Workshop on Formal Methods
for Parallel Programming: Theory and Applications, 1998.

[He95] Shousheng He. Concurrent VLSI Architectures for DFT Computing and Al-
gorithms for Multi-output Logic Decomposition. PhD thesis, Lund Institute
of Technology, 1995.

[MW97] William W. McCune and L. Wos. Otter: The CADE-13 competition in-
carnations. Journal of Automated Reasoning, 18(2):211–220, 1997.

[PM92] John Proakis and Dimitris Manolakis. Digital Signal Processing. Macmillan,
1992.

392 P. Bjesse

[St̊a89] Gunnar St̊almarck. A System for Determining Propositional Logic Theo-
rems by Applying Values and Rules to Triplets that are Generated from a
Formula, 1989. Swedish Patent No. 467 076 (approved 1992), U.S. Patent
No. 5 276 897 (1994), European Patent No. 0403 454 (1995).

[Tam97] Tanel Tammet. Gandalf. Journal of Automated Reasoning, 18(2):199–204,
1997.

[TZS+96] Sofiène Tahar, Zijian Zhou, Xiaoyu Song, Eduard Cerny, and Michel Lange-
vin. Formal verification of an ATM switch fabric using Multiway Decision
Graphs. In IEEE Proceedings of Sixth Great Lakes Symposium on VLSI,
March 1996.

[VB98] Miroslav Velev and Randal Bryant. Bit-Level Abstraction in the Verifica-
tion of Pipelined Microprocessors by Correspondence Checking. In Formal
Methods in Computer-Aided Design, volume 1522 of LNCS, pages 18–35,
Palo Alto, November 1998. Springer Verlag.

[ZSC+95] Zijian Zhou, Xiaoyu Song, Fransisco Corella, Eduard Cerny, and Michel
Langevin. Description and Verification of RTL Designs Using Multiway
Decision Graphs. In Proceedings of the Conference on Hardware Description
Languages and their applications, August 1995.

A Appendix

A.1 The Radix-2 FFT Description

Figure 3 shows a size 16 Radix-2 FFT network, where merging arrows indicate
addition and constants under a wire indicate multiplication. The Lava descrip-
tion of the size 2n Radix-2 FFT circuit follows the network structure closely,
and is parametrised by n:

radix2 n =
bitRev n >-> compose [stage i | i <- [1..n]]
where
stage i = raised (n-i) two (twid i >-> bflys (i-1))
twid i = one (decmap (2ˆ(i-1)) (wMult (2ˆi)))

The FFT circuit is made up from the sequential composition of an initial bit
reversal permutation network (not shown in the picture) and n circuit stages.
Stage i is a column of 2n−i components that each contains a twiddle factor
multiplication stage sequentially composed with a butterfly network. Given that
x = 2i−1, a size i multiplication stage performs multiplications with W 0

2i ...W
x−1
2i

on the respective wires of one half of a bus, while passing the other half through
unchanged.

More information on the signal processing building blocks and the descripti-
ons of the combinational circuits can be found in [BCSS98].

Automatic Verification of Combinational and Pipelined FFT Circuits 393

W
0
2

W
0
2

W
0
2

W
0
2

W
0
2

W
0
2

W
0
2

-1

-1

-1

-1

-1

-1

-1

-1

x(15)
-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

x(0)

x(6)

x(9)

x(8)

x(4)

x(2)

x(1)

x(13)

x(11)

x(7)

x(3)

x(5)

x(10)

x(12)

x(14)

X(0)

X(6)

X(9)

X(15)

X(1)

X(2)

X(3)

X(4)

X(5)

X(7)

X(8)

X(10)

X(11)

X(12)

X(13)

X(14)

W
0
2

W4

W4
0

1

W4

W4

0

1

W4

W4

W4

W4

W16

W16

W16

W16

W16

W16

W16

W16

0

1

0

1

W8

W8

W8

W8

0

1

2

3

W8

W8

W8

W8

0

1

2

3

0

1

2

3

4

5

6

7

Fig. 3. The structure of a size 16 Radix-2 FFT

	Introduction
	The Lava Hardware Development Platform
	The Fast Fourier Transforms
	FFT Low-Level Descriptions
	Verification of Components
	Theoretical Basis of the Verifications
	Combinational FFT Verification
	Pipelined FFT Verification
	Manual Preparation

	Lessons Learned
	Related Work
	Conclusions
	Future Work
	Appendix
	The Radix-2 FFT Description

