
Model Checking Based on Sequential ATPG

Vamsi Boppana, Sreeranga P. Rajan, Koichiro Takayama, and Masahiro Fujita

Fujitsu Laboratories of America, Inc., 595 Lawrence Expressway, Sunnyvale, CA 94086,

{vboppana,sree,ktakayam,fujita}@fla.fujitsu.com

Abstract. State-space explosion remains to be a significant challenge for Finite
State Machine (FSM) exploration techniques in model checking and sequential
verification. In this work, we study the use of sequential ATPG (Automatic Test-
Pattern Generation) as a solution to overcome the problem for a useful class of
temporal logic properties. We also develop techniques to exploit the existence
of synchronizing sequences to reduce some temporal logic properties to simpler
properties that can be efficiently checked using an ATPG algorithm . We show
that the method has the potential to scale up to large, industrial-strength, hardware
designs for which current model checking techniques fail.

1 Introduction

The state-space explosion problem that challenges Finite State Machine (FSM) explo-
ration techniques such as CTL temporal logic model checking [McM93] for automa-
tic formal verification has been intensively studied from various angles. There have
been numerous efforts to tackle the state-space explosion problem [CGL94]. Techni-
ques such as compact data structures to represent the state-space [Bry95], on-the-fly
model checking [Pel96], state-space reduction techniques such as localization reduc-
tion [Kur94], and navigated model checking [TSNH98] have improved the applicability
of model checking towards increasingly large designs.

However, past efforts in alleviating the state-space explosion problem fall short of
making model checking scale up for efficient automatic verification of current, indu-
strial, hardware designs. Current model checking techniques could fail in several ways
including failure to extract state-transition relation information from the design structure
and requiring excessive storage for functional representations of the state-space during
computation.

In this work, we study the use of sequential ATPG (Automatic Test-Pattern Gene-
ration) algorithms [ABF90] for model checking a simple class of CTL formulae. The
approach involves the construction, based on the CTL formula, of a new circuit structure
from the circuit to be verified. Model checking is then cast into detecting a stuck-at-
fault on the output line of the constructed circuit. The method avoids building elaborate

N. Halbwachs and D. Peled (Eds.): CAV’99, LNCS 1633, pp. 418–430, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Model Checking Based on Sequential ATPG 419

functional information such as a complete state transition relation and benefits from
a directed, on-the-fly, structural exploration of the design under verification. Experi-
ments are performed on benchmark circuits with simple formulae of the form AG EF
P to study the efficiency of state space exploration with a state-of-the-art sequential
ATPG. Furthermore, we show reductions of the form AG EF P to EF P based on
verifying the existence of synchronizing sequences [Koh78,Hen68], whose application
causes an FSM to reach a specific state regardless of the starting state. The motivation
for these reductions stems from the fact that most machines are synchronizable (atleast
partially/weakly) with designer-supplied/ATPG-generated sequences and because they
enable efficient ATPG problem formulations. The reduction results have been verified
and incorporated into the PVS [ORR+96] proof checker.

The rest of the paper is organized as follows: Section 2 discusses the reduction of
simple CTL formulae for synchronizable machines. A discussion on sequential ATPG
algorithms and their application in state-space exploration is given in Section 3. The
method of transforming model checking simple CTL formulae to stuck-at-fault testing
is explained in Section 4. Experimental results are discussed in Section 5. Finally, con-
clusions are summarized in Section 6.

2 Formula Reduction for Synchronizable FSMs

Synchronizability of a FSM is used to reduce CTL formulae of the form AG EF P to EF
P . A formal definition of synchronizable machines is given in Section 2.1 followed by
an example illustrating the reduction in Section 2.2. The formalization of the reduction
of CTL formulae and their proofs in the PVS proof checker are explained in Section 2.3
and Section 2.4 respectively.

2.1 Synchronizable FSMs

Definition 1 (Synchronizability [Koh78,Hen68]) A machine M is synchronizable, if
there exists an input sequence Y , that takes M to a specified final state, regardless of
the output or the initial state.

Definition 2 (Initializability [CA89,CA93]) A machine M is initializable with three-
valued logic simulation if there exists an input sequence Y , such that the resulting state
of M (evaluated by three-valued simulation) is fully specified on the application of Y ,
when the initial state is fully unspecified (consisting of all Xs and corresponding to the
entire state space). Initializability, is thus synchronizability subject to three-valued logic
simulation.

It is important to note that verifying that a given sequence of test vectors is an initia-
lizing sequence is a much simpler task than verifying if the sequence is a synchronizing
sequence. The reason is that while checking for initializing sequences can be done on
the structure of the circuit (using 3-valued logic simulation on the netlist), checking for
synchronizing sequences may often require some form of knowledge and representation
of the state space. For large, industrial designs, the only feasible checks possible are
based on initializing sequences.

420 V. Boppana et al.

Table 1. Example FSM

PS ↓ NS NS
x=0 x=1

A B D
B A B
C D A
D D C

2.2 Basic Idea and Example

Consider the FSM shown in Table 1 [Koh78]. The machine has four statesA, B, C and
D, and one input x. The first column in the table represents the present state, the next
two columns represent the next states reached up on the application of input x.

It is clear that the machine has a synchronizing sequence 01010; this sequence, when
applied to the FSM, synchronizes the machine to stateD, regardless of the output or the
initial state. Consider the propertyD |= AGEF (C). This property can now be reduced
to D |= EF (C) based on verifying that there is a synchronizing sequence to the state
D (in this example, the sequence 01010 achieves the objective).

An intuitive explanation of the savings possible from this method is presented below.
Consider any arbitrary state that is reachable fromD, sayB for illustration. Transferring
the machine from stateB to stateC can be performed in the two distinct steps of transfer-
ring the machine from state B to the synchronized state D followed by transferring the
machine from stateD to stateC. Symbolically, this can be represented by the following:

B
EF−→ C ⇐ (B

Syn.seq.−→ D : D EF−→ C).

The key is to note that checking for the validity of a given initializing sequence (for
example, from designers or fromATPG vectors), incurs only the cost of logic simulation.
We also note the important difference between the use of a synchronizing sequence and
a reset sequence that is potentially derived from a reset signal in the circuit. While the
use of reset signals is equally applicable for our result, it may be entirely uninteresting to
apply a reduction in the formula based on the use of such signals. However, synchronizing
sequences (which are more general than reset sequences), when available, can be used to
simplify the properties as illustrated. Further, checking of multiple properties of the kind
illustrated can benefit from a single check for the validity of a synchronizing sequence.

2.3 Reduction of CTL Formulae: Formalization

Synchronizability can be formally expressed as a CTL formula: AG EF (s0), where
s0 is the specific state to which the FSM is synchronizable. Using the above CTL
formula to represent synchronizability, we state the following result that if there exists

Model Checking Based on Sequential ATPG 421

a synchronizing sequence for the FSM, then checking for the existence of at least one
path from the synchronized state on which a property holds eventually is equivalent to
checking for the property to hold eventually along at least one path from every state.
Formally,

Result 1 AG-EF Reduction
AG EF(s = s0) ∧ EFs0(p) =⇒ AG EF(p)

where s0 is the specific state to which the FSM is synchronizable, p is the predicate to
be checked. The reduction of the formula into the form EF(p) is critically helpful in
embedding the predicate p directly into the state justification engine of the sequential
ATPG algorithm. A brief description of the main phases in a sequential ATPG algorithm
and the proposed transformation procedure for obtaining a sequential ATPG problem
are discussed later in the paper.

2.4 Proof Mechanization of the CTL Formula Reduction

In this section, we verify and incorporate the model checking reduction results stated in
Section 2.3 into a mechanical theorem prover PVS [ORR+96]. PVS provides an inte-
grated environment for the development and analysis of formal specifications and has
a powerful theorem prover with a high-degree of automation together with a Binary
Decision Diagram (BDD)-based model checker. The verification of properties is perfor-
med by invoking appropriate built-in proof strategies. The proof strategies consist of a
combination of induction, rewriting, and special purpose decision procedures such as
for linear arithmetic and model checking using BDDs.

The proof of Result 1 proceeds by first lifting the CTL operator AG to a general
universal quantification on states in PVS and then expanding the EF operator first into
a mu-calculus formula which is then expanded into least/greatest fixpoints definitions.
Using definitions and theorems of least/greatest fixpoints theory the proof is completed.
The proof is fully automatic using PVS after lifting theAG operator to a general universal
quantification on states. It takes a few seconds on SPARCstation20 with 32M.

3 Sequential ATPG Algorithms and State Space Exploration

The objective of sequential ATPG algorithms is to generate test sequences that detect
all the detectable stuck-at faults in a sequential circuit [ABF90]. There is a large body
of literature available in the area of algorithms to solve the sequential ATPG problem. A
brief summary of the main steps in a typical sequentialATPG algorithm is now presented.
A detailed discussion of these algorithms is beyond the scope of this paper.

A stuck-at-0(1) fault refers to the value of a line in the circuit being held to a constant
0(1) value. A sequential ATPG algorithm attempts to detect every such fault (two faults
per each line in the sequential circuit) in the circuit. A fault is said to be detected if
there exists a sequence that produces different responses on the good machine and faulty

422 V. Boppana et al.

machines. Varying requirements on the start states sequential circuit are possible (the
machine may be assumed to start either from a completely unknown state or a from a
given start state).

Typical sequential ATPG algorithms achieve this objective of detecting a fault by
solving three sub-problems, excitation, propagation, and (state) justification. Excitation
refers to the process of identifying an input vector (on a single time-frame) that can
either produce a difference between the two circuits at a primary output or a flip-flop. The
objective of propagation is to then produce a test sequence that can take a difference value
(good/faulty equal to 1/0 or 0/1) from a flip-flop and propagate it to a primary output.
(State) justification is the process of taking any requirements at the state lines (flip-flops)
that were produced at the excitation phase and justify them either to the starting state or
the all-unknowns state. Efficient methods to solve each of these problems are available
in literature. Current methods are capable of handling designs with thousands of latches.

The main benefits of using a sequential ATPG algorithm are that there is no explicit
storage of states required at each time-frame; time-frame expansion is on-the-fly and is
restricted only to those parts of the design that truly need to expanded (this is a way to
perform on-the-fly abstraction). The algorithms overcome the need to store all the states
at each step of navigation through the state space by using decision trees that keep track
of variables being assigned at specific stages in the program (for example, a latch may
be given a value of 1 at a time-frame and if that value assignment results in no solution to
the problem, a value of 0 is reached by backtracking). Hence, this method of searching
for a requirement in the state space achieves a balance between a purely breadth-first
state exploration method (as in conventional model checkers) and a purely depth-first
exploration method (not efficient to explore large state spaces). The state-tuples that the
method explores at each time frame are usually decided based on effective heuristics to
determine easily controllable or observable state elements.

3.1 Distinguishing Sequence Generation

Results demonstrating the ability of state-of-the-art sequential ATPG algorithms to ju-
stify and efficiently handle large state spaces (over 1700 latches) have been reported in
academic literature. In addition, commercial sequential ATPG tools are frequently ap-
plied to designs consisting of several thousand latches. We first present the results from
a state-of-the-art, deterministic, test generation algorithm [NP91] (capable of proving
the indistinguishability of the faulty machine from the good machine) and then present
results obtained by using a genetic algorithm-based sequential ATPG [HRP97] that is
extremely efficient for obtaining distinguishing sequences but is incapable of proving un-
detectable faults. The fault detection results reported in that work achieved the highest
known detection coverages at that time.

These results are presented in Tables 2 and 3. For the data in Table 2, the time limit
and backtrack limit for each fault were set to be 20 seconds and 100,000 respectively
in each of the circuits except for s35932. because of the large number of faults in it.
For this circuit, a two second time limit and a backtrack limit of 10,000 were placed.
The columns in the table indicate the circuit name, the number of detected faults, the

Model Checking Based on Sequential ATPG 423

number of faults proven to be undetectable by the test generator, the number of aborted
faults, the time taken in seconds, and the number of vectors respectively. For the data in
Table 3, the columns represent the circuit, checkpoint, number of detected faults, number
of vectors produced and the time taken, respectively. The checkpoints refer to varying
stages during execution of the genetic algorithm where computation could be stopped.
The entries in bold represented the highest reported fault coverages at the time. It is clear
from the data in these two tables that sequential ATPG algorithms have the ability to
navigate through large state spaces efficiently to achieve the desired objectives.

Table 2. Sequential ATPG results

Circuit Detected Undetectable Aborted Time (sec.) Vectors
s298 265 26 17 389 306
s344 314 8 20 489 117
s400 336 9 81 1888 1644
s420 28 152 275 6235 16
s526 51 17 487 10883 34
s641 404 61 2 89 219
s713 476 105 0 23 177
s820 812 31 7 433 928
s832 816 46 8 500 967
s953 89 990 0 147 14

s1238 1283 72 0 14 478
s1423 555 11 949 20359 88
s1488 1439 27 20 1238 1124
s1494 1439 27 20 1238 1124
s5378 3152 148 1303 27078 949

s35932 34719 3856 519 7172 317

4 Model Checking Using Sequential ATPG

The transformation of model checking to stuck-at-fault detection can be performed
based on an automata-theoretic approach as illustrated in Figure 1. Given a temporal
logic formula, the transformation constructs monitor automata and a test network reali-
zing a function that evaluates to “1” iff the monitor automaton/automata reaches a bad
state/states.After generating the network, a sequentialATPG algorithm can be invoked on
the new circuit with the stuck-at fault to be tested as its objective. Note that transforming
model checking to stuck-at-fault detection in this manner may not be the most efficient.
It is usually more efficient to build the model-checking objectives such as checking for
the reachability of a bad state in the monitor automaton into the implementation of the

424 V. Boppana et al.

Table 3. Sequential ATPG results

Circuit Ckpt Det Vec Time Circuit Ckpt Det Vec Time
s382 1 361 601 1.07 min s1423 1 1410 2065 13.2 min

2 362 1285 5.9 min 2 1410 2965 40.1 min
3 364 1486 8.1 min 3 1414 3943 1.27 hr

s444 1 408 354 38.5 sec s1494 1 1393 295 5.34 min
2 420 753 2.3 min 2 1453 540 7.50 min
3 424 1945 20.1 min 3 1453 540 7.60 min

s526 1 431 486 1.37 sec s5378 1 3562 2175 4.60 hr
2 442 1098 8.3 min 2 3607 4461 25.1 hr
3 454 2642 54.5 min 3 3639 11571 37.8 hr

s713 1 475 157 1.1 min s35932 1 35100 257 2.1 hr
2 476 176 1.30 min 2 35100 257 10.2 hr
3 476 176 1.31 min 3 35100 257 10.9 hr

s820 1 812 572 3.07 min am2910 1 2190 953 6.25 min
2 814 590 3.60 min 2 2197 1761 13.5 min
3 814 590 3.63 min 3 2198 2509 29.4 min

s1196 1 1235 521 1.12 min div16 1 1727 352 32.0 min
2 1237 536 1.21 min 2 1810 1168 2.62 hr
3 1239 574 1.49 min 3 1814 3476 8.1 hr

ATPG algorithm as state justification objectives. We note again that reducing formulae
to forms that permit passing of objectives directly to the state-justification engine is
critically helpful in the efficiency of this procedure.

Any property for which a monitor automaton can be constructed to result in a test
network of manageable size can be checked by such a transformation. Intuitively, this
approach seems ideally suited for checking safety properties i.e., those properties every
violation of which occurs after a finite execution of the system. A theoretical characte-
rization of the exact class of properties that can be transformed effectively into sequential
ATPG problems was not attempted in this paper. Our paper is targeted at studying the
efficiency of sequential ATPG algorithms for state space exploration. Specifically, we
have restricted the properties to be of the form EF P . The general reduction approach
would be based on techniques for constructing monitor automata for more general pro-
perties [Wol82,FTMo83,FTMo85,NFKT87] and may be able to exploit recent results
on constructing smaller automata based on a classification of safety properties [KV99].

4.1 Example

The transformation of a property of the form EF P , where P is a conjunction of value
assignments to some signals in the circuit is shown in Figure 2. The property checked
in the example is EF (y1 = 1 AND y2 = 1). In the example, an AND gate tying the

Model Checking Based on Sequential ATPG 425

(Generated from
property)

CIRCUIT

TEST NETWORK

INPUT

s-a-0 fault

AUTOMATA

Fig. 1. Transformation of model checking to sequential ATPG: resulting circuit structure

signals y1 and y2 is added to the original circuit under verification. Note that no monitor
automata are needed to be constructed for this example.

4.2 Three-Valued Testability and Overspecification

It is important to note that various definitions of untestability have been discussed in lite-
rature [PR92,PR93,CM93,Bop97]. A detailed discussion of these definitions is beyond
the scope of this paper. However, two of the most important issues involved in the
definition of untestability are briefly discussed.

First, we consider the notion of three-valued testability. A fault is three-valued testa-
ble iff there exists a test sequence that can produce a difference (0/1 or 1/0) at a primary
output when the good and the faulty machines are started from the all-unknowns (all Xs)
states and three-valued logic simulation is used to evaluate the output responses. This is
the notion of untestability used by most practical gate-level ATPG algorithms operating
with three-valued logic. The set of three-valued testable faults was shown to be a subset
of all testable faults [PR92,PR93]..

Secondly, we consider the problem of overspecification [CM92,CM93] present in
some sequential ATPG algorithms. The problem occurs because most gate-level test
generation algorithms for sequential circuits are based on the use of the time frame
expansion technique [ABF90] and the use of combinational test generation algorithms
such as PODEM [Goe90] within each time frame. Some underlying combinational test
generation algorithms, unfortunately, may overspecify the requirements at present state

426 V. Boppana et al.

y

y

2

1

s-a-0

I O

Original circuit

Fault inserted

Fig. 2. Transformation of model checking to sequential ATPG: example

lines while processing a time frame (PODEM, for instance, may overspecify the requi-
rements). This, of course, does not create a problem for combinational circuits, because
overspecifying primary inputs does not affect the applicability of a test vector to the
circuit. However, for sequential circuits, whenever this occurs, the objectives on the pre-
vious time frame may be more specified than necessary and may result in an incorrect
claim by the test generation algorithm regarding the three-valued testability of the fault.

While the loss of accuracy caused by the use of three-valued logic and overspecifi-
cation have not been much of a concern to the test generation problem itself (because
it was shown that they cause only a small loss of fault coverage in the test generation
process), it has potentially serious implications as far as using some ATPG algorithms
for verification is concerned. Untestability characterization and several techniques for
improving the accuracy of the test generation process (for example, based on verify-
ing the existence of initializing sequences) have been presented earlier [PR93,CM93,
Bop97]. The design verification application must be carefully analyzed before choosing
the appropriate sequential ATPG algorithm.

5 Experimental Results

Results on state justification experiments for some hard-to-test ISCAS circuits

Four circuits have been chosen for our experiments on property checking because of
the difficulty posed by them to sequential ATPG algorithms. Each of these circuits has

Model Checking Based on Sequential ATPG 427

Table 4. Number of properties successfully checked using VIS and ATPG

Circuit Number of signal assignments per property
(5 properties for each case)

2 3 5
VIS ATPG VIS ATPG VIS ATPG

s526 5 5 5 4 5 5 (4+1)
s1423 0 4 0 0 0 0
s5378 0 5 (2+3) 0 4 0 0

s35932 0 4 0 1 0 1

been checked to be initializable using ATPG-generated test sequences. The sequential
ATPG algorithm being used in our experiments is HITEC [NP91]. Our experiments on
the ISCAS circuits were run on a SPARCstation 20 with 64MB of memory. A time limit
of 20 seconds and a backtrack limit of 100,000 where set in the ATPG algorithm for
each of the formulae checked.

Table 4 shows the experimental results comparing the performance of the ATPG-
based approach with VIS [Gro96]. For each circuit, fifteen properties of the form AG
EF(Pi) were generated and verified against the circuit. For each formula, Pi was
generated by choosing a specific number of internal signals (five properties generated
for each case with two, three and five signals), specifying Boolean values for them
randomly, and ANDing them together. For example, a case with two signal assignments
could consist of a Pi with (a=1 AND b=0). The table lists the number of cases out of the
five chosen cases that the formula was successfully proven/disproved. For entries where
numbers are provided in parantheses, the first number in the paranthesis indicates the
number of cases for which vectors were obtained and the second number indicates the
number of cases for which no test sequence was available (proven untestable). As can
be clearly seen from the Table, the ATPG-based approach is capable of providing results
for certain formulae even for very large circuits.

It is also interesting to note the differences in the state space exploration strategy in
the two approaches. Results are shown on the small circuit s526 for which VIS could
successfully complete the model-checking experiment to compare it with the state space
exploration strategy in the ATPG-based approach. These results are presented in Table 5.
Five signals were chosen from the circuit, random Boolean values were assigned to
these signals and they were tied together by an AND as before. The numbers of vectors
produced to achieve the required assignment of internal signals and the times required for
generating these sequences are shown. The number of vectors produced by the ATPG-
based approach indicates the performance of the structural search (somewhere between
a DFS and a BFS) as opposed to the BFS-like search (for these types of formulae)
involved in VIS. We emphasize again, of course, that the ATPG-based approach does not
need to build the state transition relation and extensive functional representations and
hence is memory efficient. Even the largest benchmark circuit tried (with 1728 flip-flops)
required less than 20MB of memory.

428 V. Boppana et al.

Table 5. Differences in state space exploration strategy

Circuit VIS ATPG
Vectors Time (sec.) Vectors Time (sec.)

s526 21 0.9 132 880.8
s526 48 1.8 240 41.4
s526 1 0.6 3 0.03
s526 8 0.8 50 3.6
s526 1 0.8 3 0.02

Results on property checking experiments on an industrial circuit

Experiments were also performed on a large industrial circuit to verify the effec-
tiveness of the proposed sequential ATPG-based property checking system. The design
used was that of an IO controller consisting of five modules: ADDRESS DECODER,
OUT CONTROL, READ CONTROL, IRQ CONTROL and REG BANK. The circuit
consisted of 148 flip-flops, 51 primary inputs, 51 primary outputs and 1753 basic cells.

Experiments were performed to identify load sequences for obtaining specific values
at registers embedded deep in the design. The ATPG approach was compared against
a state-of-the-art, model checking tool BINGO [INH96,IN97]. The ATPG approach
was successful in obtaining a sequence for every register tried while BINGO could not
produce any sequence more than 6 vectors long. BINGO was terminated in each of these
cases because the memory requirement exceeded 500 MB. The ATPG approach required
no more than 20 MB for each of the cases and produced vector sequences of length upto
22.

6 Conclusions

In this paper we have given an efficient method based on stuck-at-fault testing tech-
niques for automatic verification for a useful subclass of properties of synchronizable
FSMs, typical of hardware designs. We have presented reduction of CTL formulae of
the form AG EF P to EF P based on the existence of synchronization sequences and
proven the reductions in the PVS proof-checker. Model checking the reduced formulae
is transformed to stuck-at-fault testing and solved by sequential ATPG.

We have shown that the method has the potential to scale up to large hardware designs
for which current model checking methods fail. The reason our method scales up is
because it does not involve extracting and computing expensive functional information
such as the complete state-transition relation. Instead, the approach relies on efficient
fault-testing that exploits the circuit structure of the hardware design to be verified. As
part of future work, we plan to characterize and experiment with more general properties
that can be reduced to the stuck-at-fault testing problem and to investigate methods to
incorporate the advantages of BDD-based model checking and theATPG-based approach
into a unified framework.

Model Checking Based on Sequential ATPG 429

References

[ABF90] M. Abramovici, M. A. Breuer, and A. D. Friedman. Digital System Testing and
Testable Design. New York, NY: Computer Science Press, 1990.

[AH96] R. Alur and T. A. Henzinger, editors. Computer-Aided Verification, CAV ’96, volume
1102 of Lecture Notes in Computer Science, New Brunswick, NJ, July/August 1996.
Springer-Verlag.

[Bop97] V. Boppana. State information-based solutions for sequential circuit diagnosis and
testing. Technical Report CRHC-97-20, Ph.D. thesis, Center for Reliable and High-
Performance Computing, University of Illinois at Urbana-Champaign, July 1997.

[Bry95] R.E. Bryant. Binary decision diagrams and beyond: Enabling technologies for formal
verification. In Proceedings of the International Conference on Computer-Aided
Design, pages 236–243, November 1995.

[CA89] K. T. Cheng and V. Agrawal. State Assignment for Initialilzable Synthesis. In Proc.
Intl. Conf. Computer-Aided Design, pages 212–215, November 1989.

[CA93] K. T. Cheng and V. Agrawal. Initializability consideration in sequential machine
synthesis. IEEE Trans. Computers, 41(3):374–379, March 1993.

[CGL94] E. Clarke, O. Grumberg, and D. Long. Verification tools for finite-state concurrent
systems. In A Decade of concurrency–Reflections and Perspectives, volume 803 of
Lecture Notes in Computer Science. Springer-Verlag, 1994.

[CM92] K. T. Cheng and H. K. T. Ma. On the over-specification problem in sequential ATPG
algorithms. In Proc. Design Automation Conf., pages 16–21, June 1992.

[CM93] K. T. Cheng and H. K. T. Ma. On the over-specification problem in sequential ATPG
algorithms. IEEE Trans. Computer-Aided Design, 12(10):1599–1604, October 1993.

[FTMo83] M. Fujita, H. Tanaka, and T. Moto-oka. Verification with prolog and temporal logic. In
Proc. of IFIP WG10.2 International Conference on Hardware Description Languages
and their Applications, May 1983.

[FTMo85] M. Fujita, H. Tanaka, and T. Moto-oka. Logic design assistance with temporal logic. In
Proc. of IFIP WG10.2 International Conference on Hardware Description Languages
and their Applications, Aug. 1985.

[Goe90] P. Goel. An implicit enumeration algorithm to generate tests for combinational logic
circuits. IEEE Trans. Computers, C-30(3):215–222, March 1990.

[Gro96] The VIS Group. VIS: A system for verification and synthesis. In Alur and Henzinger
[AH96], pages 428–432.

[Hen68] F. C. Hennie. Finite-State Models for Logical Machines. New York, NY: John Wiley
& Sons, Inc., 1968.

[HRP97] M. S. Hsiao, E. M. Rudnick, and J. H. Patel. Sequential circuit test generation using
dynamic state traversal. In Proc. European Design and Test Conf., pages 22–28,
March 1997.

[IN97] H. Iwashita and T. Nakata. Forward model checking techniques oriented to buggy
designs. In Proc. Intl. Conf. Computer-Aided Design, pages 400–404, November
1997.

[INH96] H. Iwashita, T. Nakata, and F. Hirose. Ctl model checking based on forward state
traversal. In Proc. Intl. Conf. Computer-Aided Design, pages 82–87, November 1996.

[Koh78] Z. Kohavi. Switching and Finite Automata Theory. New York, NY: McGraw-Hill,
1978.

[Kur94] R. P. Kurshan. Computer-Aided Verification of Coordinating Processes—The
Automata-Theoretic Approach. Princeton University Press, Princeton, NJ, 1994.

[KV99] O. Kupferman and Moshe Y. Vardi. Model checking of safety properties. In CAV99,
1999.

430 V. Boppana et al.

[McM93] Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Pub., Boston,
MA, 1993.

[NFKT87] H. Nakamura, M. Fujita, S. Kono, and H. Tanaka. Temporal logic based fast ve-
rification systems using cover expressions. In Proc. of IFIP WG10.5 International
Conference on VLSI, Aug. 1987.

[NP91] T. Niermann and J. H. Patel. HITEC: A test generation package for sequential circuits.
In Proc. European Design Automation Conf., pages 214–218, February 1991.

[ORR+96] S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K. Srivas. PVS: Combining
specification, proof checking, and model checking. In Alur and Henzinger [AH96],
pages 411–414.

[Pel96] Doron Peled. Combining partial order reductions with on-the-fly model-checking.
Formal Methods in System Design, 8(1):39–64, 1996.

[PR92] I. Pomeranz and S. M. Reddy. The multiple observation time test strategy. IEEE
Trans. Computer-Aided Design, 40(5):627–637, May 1992.

[PR93] I. Pomeranz and S. M. Reddy. Classification of faults in synchronous sequential
circuits. IEEE Trans. Computers, 42(9):1066–1077, September 1993.

[TSNH98] K. Takayama, T. Satoh, T. Nakata, and F. Hirose. An approach to verify a large scale
system-on-a-chip using symbolic model checking. In Proceedings of the International
Conference on Computer Design, pages 308–313, October 1998.

[Wol82] P. Wolper. “synthesis of communicating processes from temporal logic specifica-
tions”. Technical Report STAN-CS-82-925, Dept. of Computer Science, Stanford
University, 1982.

	Introduction
	Formula Reduction for Synchronizable FSMs
	Synchronizable FSMs
	Basic Idea and Example
	Reduction of CTL Formulae: Formalization
	Proof Mechanization of the CTL Formula Reduction

	Sequential ATPG Algorithms and State Space Exploration
	Distinguishing Sequence Generation

	Model Checking Using Sequential ATPG
	Example
	Three-Valued Testability and Overspecification

	Experimental Results
	Conclusions

