Deciding Equality Formulas by Small Domains
Instantiations *

Amir Pnueli, Yoav Rodeh, Ofer Shtrichman, and Michael Siegel

Dept. of Applied Mathematics and Computer Science, The Weizmann Institute of
Science, Rehovot, Israel, {amir|yrodeh|ofers}@wisdom.weizmann.ac.il

Abstract. We introduce an efficient decision procedure for the theory
of equality based on finite instantiations. When using the finite instan-
tiations method, it is a common practice to take a range of [1..n] (where
n is the number of input non-Boolean variables) as the range for all
non-Boolean variables, resulting in a state-space of n". Although various
attempts to minimize this range were made, typically they either requi-
red various restrictions on the investigated formulas or were not very
effective. In many cases, the n" state-space cannot be handled by BDD-
based tools within a reasonable amount of time. In this paper we show
that significantly smaller domains can be algorithmically found, by ana-
lyzing the structure of the formula. We also show an upper bound for
the state-space based on this analysis. This method enabled us to verify
formulas containing hundreds of integer and floating point variables.

Keywords: Finite Instantiation, equality logic, uninterpreted functions, com-
piler verification, translation validation, Range Allocation.

1 Introduction

Automated validation techniques for formulas of the theory of equality become
increasingly important as the advantages of abstraction and the use of unin-
terpreted functions (UIFs) become more evident. UIFs are mainly useful when
proving equivalence between two models. Proving design equivalence or com-
paring a specification to an implementation are two typical examples of such
equivalence proofs. In our case, we proved equivalence between source and tar-
get code serving as the input and output of a compiler, and thus verified that
the compilation process was correct (see [PSS98b], [PSS99] and [Con95] for more
details about this project).

When verifying equivalence between two formulas, it is often possible to ab-
stract away all functions, except the equality sign and Boolean operators, by
replacing them with UIFs. An abstracted formula holds less information and
therefore can be represented by a significantly smaller BDD. It was Ackerman
[Ackb4] who first showed the reduction of such abstracted formulas to function-
free formulas of the theory of equality, while preserving validity. He suggested
doing so by replacing each occurrence of a function with a new variable, and
adding constraints that preserve their functionality as an antecedent of the

* This research was supported in part by the Minerva Center for Verification of Re-
active Systems, a gift from Intel, a grant from the U.S.-Israel bi-national science
foundation, and an Infrastructure grant from the Israeli Ministry of Science and the
Arts.

N. Halbwachs and D. Peled (Eds.): CAV’99, LNCS 1633, pp. 455-469, 1999.
(© Springer-Verlag Berlin Heidelberg 1999

456 A. Pnueli et al.

formula, rewriting the formula (z = F(z,y) Au = y) — z = F(z,u) into
(z=znhy=u)— fi=fo) = (z=firu=y) — 2= fa).

The abstraction process itself does not preserve validity and may transform
a valid formula such as x 4+ y = y + « into the invalid formula F(z,y) = F(y,x)
which does not hold for all functions F'. However, in many useful contexts, such
as the verification of compilers which do not perform extensive arithmetical
optimizations, the process of abstraction is often justified. At least we can rely on
the fact that the process of abstraction into UIFs never generates false positives,
and that if the abstract version is found valid, this is also the case with the
concrete formulas it abstracts.

After performing such an abstraction followed by Ackerman’s reduction, the
resulting formula is an equality formula, and enjoys the small model property
(i.e. it is satisfiable iff it is satisfiable over a finite domain). Therefore, the next
step is the calculation of a finite domain, such that the formula is valid iff it is
valid over all interpretations of this finite domain. The latter can be checked with
a finite state decision procedure. A known ‘folk theorem’ is that it is enough to
give each variable the range [1..n] (where n is the number of non-Boolean input
variables), resulting in a state-space of n™. It is not difficult to see that this range
is sufficient for preserving the validity or invalidity of the formula. If a formula
is not valid, there is at least one assignment that makes the formula false. Any
assignment that partitions the variables into the same equivalence classes will
also falsify the formula (the absolute values are of no importance). Since there can
not be more than n classes, the [1..n] range is sufficient regardless of the formula’s
structure. In this paper we will show that analyzing the formula’s structure can
lead to significantly smaller domains. For example, a trivial improvement is to
construct a graph whose vertices are the formula’s non-Boolean variables, and
the edges represent the comparisons between them. Then, instead of giving a
range of [1..n] to all variables, give to each variable the range [1..k], where k
is the size of the component it belongs to (k < n). Experiments with ‘real-life’
problems has shown us that this simple partitioning can be very effective.

Hojati et. al ([HIKB96], [HKGB97]) tried to avoid the [1..n] range by first
considering the explicit DNF of the formula. Given the formula in this form, they
‘colored’ the comparison graph of each clause (a graph based on the disequali-
ties in the formula) and chose the maximal chromatic number (the number of
colors needed for coloring the graph) as the range for each variable. As a second
step, they tried to approximate the maximum number of disequalities needed to
satisfy the formula, in a general formula. Given that number, a uniform range
of [1..k] is sufficient, where k is calculated on the basis of this number. It seems
that finding a good approximation is very hard. Although several heuristics are
suggested, it is unclear how well they work. They also indicated an inherent pro-
blem with finding a good BDD ordering in the presence of Ackerman constraints
(the stripping assertions in the notation of their paper).

Sajid et al [SGZ198] proposed a different approach. Since non-Boolean va-
riables appear in the formula only when compared to one another, they suggest
encoding each such comparison with a new Boolean variable, and ensuring tran-

Deciding Equality Formulas by Small Domains Instantiations 457

sitivity of equality by restricting the BDD traversing accordingly. Although this
traversing procedure is proved by the authors to be worst-case exponential, it
proved to be more efficient than finite instantiations with the [1..n] range.

Even with this range, which we show in this paper is not tight, it is not
always the case that this kind of encoding results in a smaller state-space (as
was mentioned by the authors themselves). Consider, for example, a formula
where all variables are compared to each other (graphically, this is a clique of
n vertices). In this case, n - (n — 1)/2 new Boolean variables will be introduced,
each represented by a BDD variable. Finite instantiations with a range of [1..n],
on the other hand, will require only n - logn BDD variables.

In a more recent work, Bryant, German and Velev [BGV99] restricted the
logic to formulas that contain positive equalities only, i.e. the outcome of any
equality test between terms can only be part of a monotonically positive Boo-
lean formula. This restriction disallows the use of the outcome of equalities in
control decisions. Given this restricted logic, they were able to substitute UIF's
with unique constants that serve as ‘witnesses’ in case the formula is false. This
replacement naturally reduced the state-space immensely, and made the decision
procedure highly efficient. Although they chose the same case study examined
by [SGZ198], the results are not given in a way that they can be compared.

The formulas we consider here are not restricted to positive equalities. They
are implications of the form A;L; p; — AJL; ¢, typically with several thou-
sand clauses on each side, and more than a thousand variables. The abstraction
process adds several hundred more variables (hundreds of which are integer and
floating-point) and thousands of constraints. Although we decompose the for-
mula, we still have many verification conditions with more than 150 integer
variables. Since the size of the domain is crucial to the time required to com-
plete the proof with a BDD-based tool, the n™ state-space (where n > 150 in
our case) is naturally far too large to handle.

In the next section, we present a precise definition of the problem we consider:
deciding validity (satisfiability) of equality formulas, and explain how it naturally
arises in the context of translation validation. In Section 3 we outline our general
solution strategy, which is a computation of a small set of domains (ranges) R
such that the formula is satisfiable iff it is satisfiable over R, followed by a test for
R-satisfiability performed by a standard BDD package. The remaining question
is how to find such a set of small domains. To answer this question, we show how
it can be reduced to a graph-theoretic problem. The rest of the paper focuses on
algorithms, which, in most cases, produce tractably small domains. In Section 4,
we describe the basic algorithm. The soundness proof of the algorithm is given in
Section 5. In Section 6, we present several improvements to the basic algorithm,
and analyze their effect on the upper bound of the resulting state-space. We
describe experimental results from an industrial case study in Section 7, and
conclude in Section 8 by considering possible directions for future research.

2 The Problem: Deciding Equality Formulas

Our interest in the problem of deciding equality formulas arose within the context
of the Code Validation Tool (CVT) that we developed as part of the European

458 A. Pnueli et al.

project Sacres. The focus in this project is on developing a methodology and a
set of tools for the correct construction of safety critical systems.

CVT is intended to ensure the correctness of the code generator incorporated
in the Sacres tools suite which automatically translates high level specifications
into running code in C and Ada (see [PSS98b], [PSS99], [Con95]). Rather than
formally verifying the code generator program, CvT verifies the correctness of
every individual run of the generator, comparing the source with the produ-
ced target language program and checking their compatibility. This approach
of translation validation seems to be promising in many other contexts, where
verification of the operation of a translator or a compiler is called for.

We will illustrate this approach by a representative example. Assume that

a source program contained the statement z := (z; + y1) - (z2 + y2) which
the translator we wish to verify compiled into the following sequence of three
assignments:

Uy =1+ Y15 U = T2 + Y25 2= Uy - U2,
introducing the two auxiliary variables u; and us.

For this translation, cvT first constructs the verification condition

U =T+ Yyt ANug =22 +ya Nz=uy-uy — z=(x1+y1)- (v2+y2),
whose validity we wish to check.

The second step performed by ¢vT in handling such a formula is to abstract
the concrete functions appearing in the formula, such as addition and multipli-
cation, by abstract (uninterpreted) function symbols. The abstracted version of
the above implication is:

Uy = F(IL’l,yl)/\UQ = F(iL’Q, yg)/\Z = G(Ul,UQ) — 2= G(F(Zl,yl), F(CEQ,yg))
Clearly, if the abstracted version is valid then so is the original concrete one.

Next, we perform the Ackerman reduction [Ackb4], replacing each functional
term by a fresh variable but adding, for each pair of terms with the same function
symbol, an extra antecedent which guarantees the functionality of these terms.
Namely, that if the two arguments of the original terms were equal, then the
terms should be equal. It is not difficult to see that this transformation preserves
validity.

Applying the Ackerman reduction to the abstracted formula, we obtain the
following equality formula:

(x1=z2ANy1 =92 — fr = fa) A
©: (ur = fi Nuz = foa = g1 = g2) A - zZ=0 (1)
uy=fi Nus=fo N z=q
Note the extra antecedent ensuring the functionality of F' by identifying the
conditions under which f; should equal fo and the similar requirement for G.

This shows how equality formulas such as ¢ of Equation (1) arise in the

process of translation validation.

Equality Formulas: Even though the variables appearing in an equality for-
mula such as ¢ are assumed to be completely uninterpreted, it is not difficult to
see that a formula such as ¢ is generally valid (satisfiable) iff it is valid (respec-
tively, satisfiable) when the variables appearing in the formula range over the
integers. This leads to the following definition of the syntax of equality formulas
that the method presented in this paper can handle.

Deciding Equality Formulas by Small Domains Instantiations 459

Let z1, 29, ... be a set of integer variables, and by, bs, ... be a set of Boolean
variables. We define the set of terms 7T by

T = integer constant | x; | if & then 77 else 7y
The set of equality formulas @ is defined by

] n= bj ‘] | @1 V @2 | 71 = 7—2 | if @0 then 451 else @2

Additional Boolean operators such as A, —, <>, can be defined in terms of —, V.
For simplicity, we will not consider in this paper the cases of integer constants
and Boolean variables. The full algorithm is presented in [PRSS98].

3 The Solution: Instantiations over Small Domains

Our solution strategy for checking whether a given equality formula ¢ is satis-
fiable can be summarized as follows:

1. Determine, in polynomial time, a range allocation R : Vars(y) — QN, by
mapping each integer variable x; € ¢ into a small finite set of integers, such
that ¢ is satisfiable (valid) iff it is satisfiable (respectively, valid) over some
R-interpretation.

2. Encode each variable x; as an enumerated type over its finite domain R(x;),
and use a standard BDD package to construct a BDD B,,. Formula ¢ is satis-
fiable iff B, is not identical to 0.

We define the complexity of a range allocation R to be the size of the state-space
spanned by R, that is, if Vars(y) = {z1,...,2,}, then the complexity of R is
|R| = |R(z1)| x |R(z2)] X -+ X |R(x,)|. Obviously, the success of our method
depends on our ability to find range allocations with small complexity.

3.1 Some Simple Bounds

In theory, there always exists a singleton range allocation R*, satisfying the
above requirements, such that R* allocates each variable a domain consisting of a
single natural, i.e., |R*| = 1. This is supported by the following trivial argument.

If ¢ is satisfiable, then there exists an assignment (z1,...,2,) = (21,...,25)
satisfying ¢. It is sufficient to take R* : 1 — {#1},... 2z, — {z,} as the singleton
allocation. If ¢ is unsatisfiable, it is sufficient to take R* : x1,...,z, — {0}.

However, finding the singleton allocation R* amounts to a head-on attack
on the primary NP-complete problem. Instead, we generalize the problem and
attempt to find a small range allocation which is adequate for a set of formulas
@ which are “structurally similar” to the formula ¢, and includes ¢ itself.

Consequently, we say that the range allocation R is adequate for the formula
set @ if, for every equality formula in the set ¢ € @, ¢ is satisfiable iff ¢ is
satisfiable over R.

First, let us consider &,,, the set of all equality formulas with at most n
variables.

Claim 1 (Folk theorem) The uniform range allocation R : {x1,...,x,} +—
[1..n] with complexity n™ is adequate for ®,,.

We can do better if we do not insist on a uniform range allocation which allocates
the same domain to all variables. Thus the range allocation R : x; — [1..4] is
also adequate for @,, and has the better complexity of n!. In fact, we conjecture
that n! is also a lower bound on the size of range allocations adequate for &,,.

460 A. Pnueli et al.

The formula set @,, utilizes only a simple structural characteristic common
to all of its members, namely, the number of variables. Focusing on additional
structural characteristics of formulas, we obtain much smaller adequate range
allocations, which we proceed to describe in the rest of this paper.

3.2 An Approach Based on the Set of Atomic Formulas

We assume that ¢ has no constants or Boolean variables, and is given in a
positive form, i.e. negations are only allowed within atomic formulas of the form
x; # xj. An important property of formulas in positive form is that they are
monotonically satisfied, i.e. if S7 and Sy are two subsets of atomic formulas of ¢
(where ¢ is given in positive form), and S; C S, then Sy | ¢ implies Sy = .
Any equality formula can be brought into a positive form, by expressing all
Boolean operations such as —, < and the if-then-else construct in terms of the
basic Boolean operations —, V, and A, and pushing all negations inside.

Let At(yp) be the set of all atomic formulas of the form x; = x; or z; # x;
appearing in ¢, and let &(A) be the family of all equality formulas which have
A as the set of their atomic formulas. Obviously ¢ € @(At(¢)). Note that the
family defined by the atomic formula set {x1 = x2,21 # x2} includes both the
satisfiable formula x1=x5 V 1#x2 and the unsatisfiable formula z;=x5 A x1#x>.

For a set of atomic formulas A, we say that the subset B = {¢1,..., ¢} C A
is consistent if the conjunction 1 A- - Ay is satisfiable. Note that a set B is con-
sistent iff it does not contain a chain of the form 1 = x9, xo = 3, ..., X,_1 = T
together with the formula =1 # z,.

Given a set of atomic formulas A, a range allocation R is defined to be
satisfactory for A if every consistent subset B C A is R-satisfiable.

For example, the range allocation R:x1,x9, 23 — {0} is satisfactory for the
atomic formula set {z; = x9, ©o = x3}, while the allocation R:xq — {1}, o —
{2}, x3 — {3} is satisfactory for the formula set {x1 # x2, 2 # 23}. On the
other hand, no singleton allocation is satisfactory for the set {z1 = 2, x1 # x2}.
A minimal satisfactory allocation for this set is R:z1 — {1}, z2 — {1,2}.

Claim 2 The range allocation R is satisfactory for the atomic formula set A iff
R is adequate for P(A) the set of formulas ¢ such that At(p) = A.

Thus, we concentrate our efforts on finding a small range allocation which is
satisfactory for A = At(yp) for a given equality formula ¢. In view of the claim,
we will continue to use the terms satisfactory and adequate synonymously.

Partition the set A into the two sets A = A_ U A, A_ containing all the
equality formulas in A, while A contains the disequalities. Variable x; is called
a mized variable iff (z;,z;) € A= and (z;, x1) € Ay for some z;,z1, € Vars(yp).

Note that the sets A—(y) and A (y) for a given formula ¢ can be computed
without actually carrying out the transformation to positive form. All that is
required is to check whether a given atomic formula has a positive or negative
polarity within ¢. A sub-formula p has a positive polarity within ¢ iff it is nested
under an even number of negations.

Ezample 1. Let us illustrate these concepts on the formula ¢ of Equation (1),
whose validity we wished to check.

Deciding Equality Formulas by Small Domains Instantiations 461

Since our main algorithm checks for satisfiability, we proceed to form the
positive form of —¢, which is given by:

(x1 #x2Vyr #ya V f1=fa) A
p: (ur £ fiVus # faVgr=g2) N N z# ga,
U1:f1 A u2:f2 A Z =01
and therefore
Az A(fi = £2), (91 =92), (w1 = f1), (u2=fa), (z=g1)}
Az (@1 # x2), (1 # y2), (w1 # f1), (u2 # f2), (2 # g2)}
Note that w1, us, f1, f2, g2 and z in this example are mixed variables.
O

This example would require a state-space of 11! if we used the range allocation
[1..4) (11 using [1..n]). As is shown below, our algorithm finds an adequate
range allocation of size 16.

3.3 A Graph-Theoretic Representation of the Sets A_, A

The sets A, and A= can be represented by two graphs, G_ and G, defined as
follows:

(x;,z;) is an edge on G_, the equalities graph, iff (z; = ;) € A=.

(w4, 2;) is an edge on G, the disequalities graph, iff (z; # x;) € A.
We refer to the joint graph as GG. Each vertex in G represents a variable. Vertices
representing mixed variables are called mixed vertices.

An inconsistent subset B C A will appear as a contradictory cycle i.e. a cycle
consisting of a single GG, edge and any positive number of G_ edges.

In Fig. 1, we present the graph G corresponding to the formula —y, where
G_-edges are represented by dashed lines and G -edges are represented by solid
lines. Note the three contradictory cycles: (g2 — g1 — 2), (u1 — f1), and (uz — f2).

@
FQ O O

Fig. 1. The Graph G : G, U G_ representing -

4 The Basic Range Allocation Algorithm

Following is a two-step algorithm for computing an economic range allocation R
for the variables in a given formula .

I. Pre-processing
Initially, R(x;) = 0, for all vertices z; € G.

A. Remove all G, edges which do not lie on a contradictory cycle.
B. For every singleton vertex (a vertex comprising a connected component by
itself) x;, add to R(x;) a fresh value u;, and remove z; from the graph.

462 A. Pnueli et al.

I1. Value Allocation

A. While there are mixed vertices in G do:
1. Choose a mixed vertex x;. Add u;, a fresh value, to R(z;).
2. Assign R(z;) := R(z;) U {u;} for each vertex z;, s.t. there is a G_-path
from z; to x;.
3. Remove z; from the graph.
B. For each (remaining) connected G_ component C—, add a common fresh
value uc_ to R(zy), for every xy € C—.

We refer to the fresh values u; added to R(z;) in steps I.B and II.A.1, and uc_
added to R(xy) for xx € C— in step I1.B, as the characteristic values of these
vertices. We write char(z;) = u; and char(zy) = uc_. Note that every vertex is
assigned a single characteristic value. Vertices which are assigned their characte-
ristic values in steps I.B and II.A.1 are called individually assigned vertices, while
the vertices assigned characteristic values in step II.B are called communally
assigned vertices. Fresh values are assigned in ascending order, so that char(z;) <
char(z;) implies that x; was assigned its characteristic value before z;.

The presented description of the algorithm leaves open the order in which
vertices are chosen in step II.A, which has a strong impact on the size of the
resulting state-space. The set of vertices that are removed in this step can be
seen as a verter cover of the G, edges, i.e., a set of vertices V' such that every
G edge has at least one of its ends in V. To keep this set as small as possible,
we apply the known “greedy” heuristic for the Minimal Vertex Cover problem,
and accordingly we denote this set by mvc. We choose mixed vertices following a
descending degree on G . Among vertices with equal degrees on G, we choose
the one with the highest degree on GG_. This heuristic seems not only to find a
small vertex cover, it also partitions the graph rather rapidly.

Ezxample 2. The following table represents the sequence of steps resulting from
the application of the Basic Range Allocation algorithm to the formula —p:

‘Step/ var ‘ T ‘ To ‘ Y1 ‘ Y ‘ Uy ‘ f1 ‘ fo ‘ Us ‘ g2 ‘ z ‘ g1 ‘Removed ‘
Step LA Edges: (z1 — x2), (y1 — y2)
Step I.B o(12]3 T1,T2,Y1,Y2
Step II.A (fl) 4 4 4 4 f1

Step II.A (fg) 4,5 4,5 f2

Step ILA (g2) 6] 6] 6 |g

Step 11.B 47

Step II.B 4,58

Step I1.B 6,9 6,9

[Final R-sets [0 [1 [2[3[47]4[45][458] 6]69][6,9[Size =48 |

5 The Algorithm is Sound

In this section we argue for the soundness of the basic algorithm. We begin by
describing a procedure which, given the allocation R produced by the basic algo-
rithm and a consistent subset B, assigns to each variable x; € G an integer value
a(z;) € R(x;). We then continue by proving that this assignment guarantees that
every consistent subset is satisfied, and that it is always feasible.

Deciding Equality Formulas by Small Domains Instantiations 463

An Assignment Procedure

Given a consistent subset B and its representative graph G(B), assign to each
vertex z; € G(B) a value a(z;) € R(x;), according to the following rules:
1. If z; is connected by a (possibly empty) G_(B)-path to an individually

assigned vertex x;, assign to x; the minimal value of char(x;) among such x;’s.
2. Otherwise, assign to x; its communally assigned value char(z;).

Ezample 3. Consider the R-sets that were computed in example 2. Let us apply
the assignment procedure to a subset B that contains all edges excluding both
edges between u; to f1, the dashed edge between g, and go, and the solid edge
between f> and wus. The assignment will be as follows:

By rule 1, f1, fo and us are assigned the value char(f;) =‘4’, because f; was
the first mixed vertex in the sub-graph {f1, f2, us} that was removed in step
IT.A, and consequently it has the minimal characteristic value.

By rule 1, 21,22,y and y» are assigned the characteristic values ‘0’, ‘1°, ‘2’
‘3’ respectively, which they received in step 1.B.

By rule 1, go is assigned the value char(gs) =6’ which it received in IT.A.

By rule 2, z and g; are assigned the value ‘9’ which they received in II.B.

O

Claim 3 The assignment procedure satisfies every consistent subset B.

Proof: We have to show that all constraints implied by the set B are satisfied
by the assignment.

Consider first the case of two variables z; and x; which are connected by a
G_(B) edge. We have to show that a(z;) = a(z;). Since x; and z; are G_(B)-
connected, they belong to the same G_(B)-connected component. If they were
both assigned a value in step 1, then they were assigned the minimal value of an
individually assigned vertex to which they are both G_(B)-connected. If, on the
other hand, they were both assigned a value in step 2, then they were assigned
the communal value assigned to the G_ component to which they both belong.
Thus, in both cases they are assigned the same value.

Next, consider the case of two variables z; and z; which are connected by a
G (B) edge. To show that a(z;) # a(x;), we distinguish between three cases:

A: If both z; and z; were assigned values by rule 1, they must have in-
herited their values from two distinct individually allocated vertices. Because,
otherwise, they are both connected by a G_(B) path to a common vertex, which
together with the (7;,2;) G_ (B)-edge closes a contradictory cycle, excluded by
the assumption that B is consistent.

B: If one of z;, z; was assigned a value by rule 1 while the other acquired its
value by rule 2, then since any communal value is distinct from any individually
allocated value, a(z;) must differ from a(z;).

C: The remaining case is when both z; and z; were assigned values by
rule 2. The fact that they were not assigned values in step 1 implies that their
characteristic values are not individually but communally allocated. If a(z;) =

464 A. Pnueli et al.

a(x;) it means that z; and x; were allocated their communal values in the
same step IL.B of the allocation algorithm, which implies that they had a G_-
path between them. Hence, x; and x; belong to a contradictory cycle, and the
solid edge (z;,x;) was therefore still part of G in the beginning of step IL.A.
By definition of muwc, at least one of them was individually assigned in step
IT.A.1, and consequently, according to the assignment procedure, the component
it belongs to is assigned a value by rule 1, in contrast to our assumption. We
can therefore conclude that our assumption that a(z;) = a(x;) was false. O

Claim 4 The assignment procedure is feasible (i.e. the R-sets include the values
required by the assignment procedure).

Proof: Consider first the two classes of vertices that are assigned a value by rule
1. The first class includes vertices that are removed in step I.B. These vertices
have only one (empty) G_(B) path to themselves, and are therefore assigned the
characteristic value they received in this step. The second class includes vertices
that have a (possibly empty) G_(B) path to a vertex from moc. Let z; denote
such a vertex, and let x; be the vertex with the minimal characteristic value that
x; can reach on G_(B). Since z; and all the vertices on this path were still part
of the graph when z; was removed in step IL.A, then according to step 1I.A.2,
char(z;) was added to R(x;). Thus, the assignment of char(x;) to x; is feasible.

Next, consider the vertices that are assigned a value by rule 2. Every vertex
that is removed in step I.B or II.A is clearly assigned a value by rule 1. All the
other vertices are communally assigned a value in step II.b. In particular, the
vertices that do not have a path to an individually assigned vertex are assigned

such a value. Thus, the two steps of the assignment procedure are feasible. O
Claim 5 ¢ is satisfiable iff ¢ is satisfiable over R.

Proof: By claims 3 and 4, R is satisfactory for A— UA_. Consequently, by claim
2 R is adequate for ¢(At(p)), and in particular R is adequate for @(p). Thus,
by the definition of adequacy, ¢ is satisfiable iff ¢ is satisfiable over R. O

6 Improvements of the Basic Algorithm

There are several improvements to the basic algorithm, which can significantly
decrease the size of the resulting state-space. Here, we present some of them.
6.1 Coloring

Step II.A.1 of the basic algorithm calls for allocation of distinct characteristic
values to the mixed vertices. This is not always necessary, as we demonstrate in
the following small example.

Ezample j. Consider the subgraph {uj, f1, f2, us} from the graph of Fig. 1.
Application of the basic algorithm to this subgraph may yield the following
allocation, where the assigned characteristic values are underlined: Ry : u; —
{0,2}, f1 — {0}, fo — {0,1},us — {0,1,3}. This allocation leads to a state-
space complexity of 12.

By relaxing the requirement that all individually assigned characteristic va-
lues should be distinct, we can obtain the allocation Rs : u; — {0,2}, f1 —
{0}, f2 — {0}, uz2 — {0,1} with a state-space complexity of 4.

It is not difficult to see that R, is adequate for the considered subgraph. 0O

Deciding Equality Formulas by Small Domains Instantiations 465

We will now explore some conditions under which the requirement of distinct
individually assigned values can be relaxed while maintaining adequacy of the
allocation.

Assume that the mixed vertices are assigned their individual characteristic
values in the order z1, ..., x,,. Assume that we have already assigned individual
char values to z1,...,7z,_1 and are about to assign a char value to z,. What
may be the reasons for not assigning to x,. the value of char(z;) for some i < r?
Examining our assignment procedure, such an assignment may lead to violation
of the B-constraints only if there exists a path of the form:

LTi=—— = ... ___xj—:r;k___ e = = =Xy

where for every individually assigned vertex x, on the G_-path from z; to z;
(including z;), i < p, and equivalently for every vertex z, on the G_-path from
x, to x (including x), r < q.

This observation is based on the way the assignment procedure works: it
assigns to all vertices in a connected G_(B) component the characteristic value
of the mixed vertex with the lowest index. Thus, if there exists a vertex x, on
the path from z; to z; s.t. p < 4, then x; will not be assigned the value char(z;).
Consequently, there is no risk that the assignment procedure will assign z; and
x) the same value, even if the characteristic values of x; and x, are equal.

We refer to vertices that have such a path between them as being incompatible
and assign them different characteristic values.

Assigning Values to Mixed Vertices with Possible Duplication.

To allow duplicate characteristic values, we add the following as step I.C of the
algorithm.

1. Predetermine the order z1,...,Z,,, by which individually assigned variables
will be allocated their characteristic values.

2. Construct an incompatibility graph G, . whose vertices are x1,..., 7y, and
there is an edge connecting x; to z,. iff x; and z, are incompatible.

3. Find a minimal coloring for G, ., i.e. assign values (‘colors’) to the vertices
of G, s.t. no two neighboring vertices receive the same value. Due to the
preprocessing step, we require that each connected component is colored

with a unique ‘pallet’ of colors.
Step II.A.1 should be changed as follows:

1. Choose a mixed vertex z;. Add to R(xz;) the color ¢; that was determined in
step I.C.3 as the characteristic value of x;.

Like the case of minimal vertex covering, step 3 calls for the solution of the
NP-hard problem of minimal coloring. In a similar way, we resolve this diffi-
culty by applying one of the approximation algorithms (e.g. one of the “greedy”
algorithms) for solving this problem.

Ezample 5. Once more, let us consider the subgraph {u1, f1, fa2, ua} of Fig. 1.
The modified version of the algorithm identifies the order of choosing the mi-

xed vertices as fi, fo. The incompatibility graph G, . for this ordering simply

466 A. Pnueli et al.

consists of the two vertices f; and fo with no edges. This means that we can
color them by the same color, leading to the allocation Rs : u; — {0,2}, f1 —
{0}, fa — {0}, ug — {0,1}, presented in Example 4.

For demonstration purposes, assume that all four vertices in this component
were connected by additional edges to other vertices, and that the removal order
of step IL.A was determined to be : fi, f2, u2,u;. The resulting G, . is depicted
in Fig. 2(a). By the definition of G, ., every two vertices connected on this
graph must have different characteristic values. For example f; and us cannot
have the same characteristic value because G(B) can consist of both the solid
edge (f2,uz) and the dashed edge (f1, f2) (in the original graph). Since according
to the assignment procedure the value we assign to f; and f; is determined by
char(f1), it must be different than char(uz).

Since this graph can be colored by two colors, say, fi and fs colored by 0,
while u; and ug colored by 1, we obtain the allocation Rz : u3 — {0,1}, f1 —

{0}, f2 — {0}, u2 — {0,1} O
O—O O—m GG
(a) (b)

Fig.2. (a) The Graph G, (b) Illustrating selective allocation

6.2 Selective Assignments of Characteristic Values in Step I1.B

Step I1.B of the basic algorithm requires an unconditional assignment of a fresh
characteristic value to each remaining connected G_ component. This is not
always necessary, as shown by the following example.

Ezample 6. Consider the graph G presented in Fig. 2(b). Applying the Range
Allocation algorithm to this graph can yield the ordering f1, fo and consequently
the allocation Ry : u; — {0,3}, f1 — {0}, fo — {0,1},us — {0,1,2} with
complexity 12 (although by the coloring procedure suggested in the previous
sub-section u; and fo can have the same characteristic value, it will not reduce
the state-space in this case).

Our suggestion for improvement will identify that, while it is necessary to add
the characteristic value ‘3’ to R(u1), the addition of ‘2’ to R(ug) is unnecessary,
and the allocation Rj : u; — {0,3}, f1 — {0}, fo — {0,1},us — {0,1} with
complexity 8 is adequate for the graph of Fig. 2(b). O

Assume that C_ is a remaining connected G_ component with no mixed vertices,
and let K = (,c~_ R() be the set of values that are common to the allocations
of all vertices in C— (in fact, it can be proven that for all z € C_, R(x) is equal).
Let y1,...,yr & C= be all the vertices which are GG -neighbors of vertices in C—.
The following condition is sufficient for not assigning the vertices of C— a fresh

characteristic value:
k

Condition Con: k < |K]|, or K — U R(y;) # 0.
i=1

Deciding Equality Formulas by Small Domains Instantiations 467

Note that when condition Con holds, there is always a value in K which is
different from the values y1,...,yx.

For example, when we consider the component {us} in the graph of Fig. 2(b),
we have that K = {0,1} with |K| = 2, while {us} has only one G -neighbor:
f2. Consequently, we can skip the assignment of the fresh value ‘2’ to us.

Therefore, we modify step II.B of the basic algorithm to read as follows:

B. For each (remaining) connected G_ component C—, if condition Con does
not hold, add a common fresh value uc_ to R(xy), for every), € C—.

A more general analysis of these situations is based on solving a set-covering
problem (or approximations thereof) for each invocation of step II.B (more de-
tails are provided in [PRSS98]). Experimental results have shown that due to
this analysis, in most cases step II.B is not activated. Furthermore, condition
Con alone identifies almost all of these cases without further analysis.

6.3 An Upper Bound

We present an upper bound for the size of the state-space, as computed by
our algorithm. For a dashed connected component G’i , let ng = |G’Z | and let
my = |mwcg| (the number of individually assigned vertices in G*). Also, let i
denote the number of colors needed for coloring these my vertices (obviously,
yr < mg).

When calculating the maximum state-space for the component G’i , there are
three groups of vertices to consider:

1. For every vertex x; s.t. ¢ < yg, |R(z;)| < i. Altogether they contribute yy! or
less to the state-space.

2. For every vertex x; s.t. yx, < i < my, |R(x;)| < yk. Altogether they contribute
yp "V or less to the state space.

3. For every vertex x; s.t. my < i < ng, |R(z;)| < yr + 1. Each of these vertices
can not have more than y; values when the mg-th vertex is removed. Then,
only one more value can be added to their R-set in step IL.B (in fact, this
additional element is rarely added, as was explained in the previous sub-
section). Altogether these vertices contribute (yx + 1)™ =™ or less to the

state-space.

Combining these three groups, the new upper bound for the state-space is:

StateSpace < [J(us!) -y ¥ - (yx + 1) (

k
The worst case, according to formula (2), is when all vertices are mixed (G_ =
G), there is one connected component (nx = n), the minimal vertex cover is
my = m = n — 1 and the chromatic number yy, is equal to my. Graphically, this
is a ‘double clique’ (a clique where G_ = G_) which brings us back to n!, the

upper bound that was previously derived in Section 3.

[\
~

7 Experimental Results

The Range Allocation algorithm proved to be very effective for the application
of code validation. One of the reasons for this has to do with the process of
decomposition (described in [PSS99]) which the cvT tool invokes before range

468 A. Pnueli et al.

allocation. If the right-hand side of the implication we try to prove is a conjunc-
tion of m clauses, then this process decomposes the implication up to m separate
formulas. Each of these formulas consists of one clause in the right-hand side,
and the cone of influence on the left (this is the portion of the formula in the
left-hand side that is needed for proving the chosen clause on the right). This
process often leads to highly unbalanced comparison graphs: G_ is relatively
large (all the comparisons on the left-hand side with positive polarity belong to
this graph) and G, is very small, resulting in a relatively small number of mixed
vertices. These types of graphs result in very small ranges, and many times a
large number of variables receive a single value in their range and thus become
constants. We have many examples of formulas containing 150 integer variables
or more (which, using the [1..n] range, results in a state-space of 15015Y) which
after performing the Range Allocation algorithm, can be proved in less than a
second with a state-space of less than 100. In most cases, these graphs are made
of many unconnected G_ components with a very small number of G, edges.

We used cvT to validate an industrial size program, a code generated for
the case study of a turbine developed by SNECMA[Con95]. The program was
partitioned manually (by SNECMA) into 5 modules which were separately com-
piled. Altogether the specification of this system is a few thousand lines long
and contains more than 1000 variables. After the abstraction we had about 2000
variables. Following is a summary of the results achieved by cvT:

[Module|Conjuncts|Time (min.)]

M1 530 1:54
M2 533 1:30
M3 124 0:27
M4 308 2:22
M5 860 5:55
[Total : | 2355] 12:08]

The figures for module M5 are only an estimate because the decomposition has
been performed manually rather than automatically.

We also tried to conduct a comparative study with [SGZT98]. Although we
had the same input files (the comparison between pipelined and non-pipelined
microprocessors, as originally suggested by Burch and Dill [BD94]) as they did,
it was nearly impossible to compare the results on this specific example, because
of several reasons, the most significant of which were that all the examples
considered in [SGZ198] were solvable in fragments of a second by both methods,
and also led to comparable sizes BDD’s.

We predict that a comparison on harder problems will reveal that the two
methods are complementary. While the Boolean encoding method is efficient
when there is a small number of comparisons, the Range Allocation algorithm
is more efficient when there is a small number of mixed vertices.

8 Conclusions and Directions for Future Research

We presented the Range Allocation method, which can be used as a decision
procedure based on finite instantiations, when validating formulas of the theory

Deciding Equality Formulas by Small Domains Instantiations 469

of equality. This method proved to be highly effective for validating formulas
with a large number of integer and float variables.

The method is relatively simple and easy to implement and apply. There is
no need to rewrite the verified formula, and any satisfiability checker can be used
as a decision procedure.

The algorithm described in this paper is a simplified version of the full Range
Allocation algorithm implemented in the CvT tool. The full algorithm includes
several issues that were not discussed here mainly due to lack of space. A more
comprehensive description of the algorithm can be found in [PRSS98].

The Range Allocation algorithm can be improved in various ways. For ex-
ample, the muvc set is not unique, and the problem of choosing among muvc sets
that have an equal size is still an open question. Furthermore, given an muc set,
the ordering in which the vertices in this set are removed in stage II/a should
also be further investigated. Another possible improvement is the identifica-
tion of special kind of graphs. For example, the range [1..4] is enough for any
planar graph (where G_ = G_). It should be rather interesting to investigate
whether ‘real-life’ formulas have any special structure which can then be solved
by utilizing various results from graph theory.

Another possibility for future research is to extend the algorithm to formulas
with less abstraction, and more specifically to formulas including the > and >
relations.

References

[Ackb54] W. Ackerman. Solvable cases of the Decision Problem. Studies in Logic and
the Foundations of Mathematics. North-Holland, Amsterdam, 1954.

[BD94] J. R. Burch and D. L. Dill. Automatic verification of pipelined microprocessor
control. In Proc. CAV’9/, Incs 818, pp 68-80.

[BGV99] R. Bryant, S. German, and M. Velev. Exploiting positive equality in a logic
of equality with uninterpreted functions. In this volume, 1999.

[Con95] The Sacres Consortium. Safety critical embedded systems: from requirements
to system architecture, 1995. Esprit Project Description EP 20.897, URL
http://www.tni.fr/sacres.

[HIKB96] R. Hojati, A. Isles, D. Kirkpatrick, and R.K. Brayton. Verification using
uninterpreted functions and finite instantiations. FMCAD’96, pp 218 — 232.

[HKGB97] R. Hojati, A. Kuehlmann, S. German, and R. Brayton. Validity checking
in the theory of equality using finite instantiations. In Proc. Intl. Workshop
on Logic Synthesis, 1997.

[PRSS98] A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel. An efficient algorithm
for the range minimization problem. Tech. report, Weizmann Institute, 1998.

[PSS98b] A. Pnueli, M. Siegel, and O. Shtrichman. Translation validation for synchro-
nous languages. ICALPY8 Incs 1443, pages 235-246

[PSS99] A. Pnueli, M. Siegel, and O. Shtrichman. The code validation tool (CVT)-
automatic verification of a compilation process. Intl. journal on Software
Tools for Technology Transfer (STTT), vol 2, 1999.

[SGZT98] K. Sajid, A. Goel, H. Zhou, A. Aziz, S. Barber, and V. Singhal. BDD based
procedures for a theory of equality with uninterpreted functions. CAV’98,
Incs 1427, pp 244-255.

	Introduction
	The Problem: Deciding Equality Formulas
	The Solution: Instantiations over Small Domains
	Some Simple Bounds
	An Approach Based on the Set of Atomic Formulas
	A Graph-Theoretic Representation of the Sets A_=, A_(not) =

	The Basic Range Allocation Algorithm
	The Algorithm is Sound
	Improvements of the Basic Algorithm
	Coloring
	Selective Assignments of Characteristic Values in Step II.B
	An Upper Bound

	Experimental Results
	Conclusions and Directions for Future Research

