Skip to main content

Signed Genome Rearrangement by Reversals and Transpositions: Models and Approximations

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1627))

Included in the following conference series:

Abstract

An important problem in computational molecular biology is the genome rearrangement using reversals and transpositions. Analysis of genome evolving by inversions and transpositions leads to a combinatorial optimization problem of sorting by reversals and transpositions, i.e., sorting of a permutation using reversals and transpositions of arbitrary fragments. The reversal operation works on a single segment of the genome by reversing the selected segment. Two kinds of transpositions have been studied in the literature. The first kind of transposition operation deletes a segment of the genome and insert it into another position in the genome. The second kind of transposition operation deletes a segment of the genome and insert its inverse into another position in the genome. Both transposition operations can be viewed as operations working on two consecutive segments. A third transposition operation working on two consecutive segments is introduced which, together with reversal and the first two kinds of transposition operations, forms the complete set of operations on two consecutive segments. In this paper, we study the sorting of a signed permutation by reversals and transpositions. By allowing only the first kind of transpositions, or the first two kinds of transpositions, or all three kinds of transpositions, we have three problem models. After establishing a common lower bound on the numbers of operations needed, we present a unified 2-approximation algorithm for all these problems. Finally, we present a better 1.75-approximation for the third problem.

This research was supported in part by the Army Research Office grant DAAH04-96-10233.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Bafna and P.A. Pevzner, Sorting by reversals: genome rearrangements in plant organelles and evolutionary history of X chromosome, Molecular Biology Evolution, 12(1995), 239–246.

    Google Scholar 

  2. V. Bafna and P.A. Pevzner, Genome rearrangements and sorting by reversals, SIAM Journal on Computing, 25(2)(1996), 272–289.

    Article  MATH  MathSciNet  Google Scholar 

  3. V. Bafna and P.A. Pevzner, Sorting by transpositions, SIAM Journal on Discrete Mathematics, 11(2)(1998), 224–240.

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Caprara, Sorting by reversals is difficult, in Proceedings of the First Annual International Conference on Computational Molecular Biology, 1997, 75–83.

    Google Scholar 

  5. Q.-P. Gu, S. Peng and H. Sudborough, A 2-approximation algorithm for genome rearrangements by reversals and transpositions, Theoretical Computer Science, 210(1999), 327–339.

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Hannenhalli and P. Pevzner, Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals, to appear in Journal of the ACM. A preliminary version appeared in the Proceedings of 27th Annual ACM Symposium on the Theory of Computing, 1995.

    Google Scholar 

  7. S. Kececioglu and D. Sankoff, Exact and approximation algorithms for the inversion distance between two permutations, in Proceedings of the 4th Annual Symposium on Combinatorial Pattern Matching, LNCS 684, 1993, 87–105. Extended version appeared in Algorithmica, 13(1995), 180—210.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lin, GH., Xue, G. (1999). Signed Genome Rearrangement by Reversals and Transpositions: Models and Approximations. In: Asano, T., Imai, H., Lee, D.T., Nakano, Si., Tokuyama, T. (eds) Computing and Combinatorics. COCOON 1999. Lecture Notes in Computer Science, vol 1627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48686-0_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-48686-0_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66200-6

  • Online ISBN: 978-3-540-48686-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics