Skip to main content

A Unified Framework for Atlas Matching Using Active Appearance Models

  • Conference paper
  • First Online:
Book cover Information Processing in Medical Imaging (IPMI 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1613))

Abstract

We propose to use statistical models of shape and texture as deformable anatomical atlases. By training on sets of labelled examples these can represent both the mean structure and appearance of anatomy in medical images, and the allowable modes of deformation. Given enough training examples such a model should be able synthesise any image of normal anatomy. By finding the parameters which minimise the difference between the synthesised model image and the target image we can locate all the modelled structure. This potentially time consuming step can be solved rapidly using the Active Appearance Model (AAM). In this paper we describe the models and the AAM algorithm and demonstrate the approach on structures in MR brain cross-sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bajcsy, and Kovacic, A: Multiresolution elastic matching. Computer Graphics and Image Processing 46 (1989) 1–21

    Article  Google Scholar 

  2. Bajcsy, R., Lieberson, R., and Reivich, M: A computerized system for the elastic matching of deformed radiographic images to idealized atlas images. J. Comput. Assis. Tomogr. 7 (1983) 618–625

    Article  Google Scholar 

  3. Bookstein, F. L: Shape and the infromation in medical images: A decade of the morphometric synthesis. Computer Vision and Image Understanding 66,2 (1997), 97–118

    Article  Google Scholar 

  4. Brett, A. D., and Taylor, C. J: A method of automatic landmark generation for automated 3D PDM construction. In: British Machine Vison Conference 2, (1998) 914–923

    Google Scholar 

  5. Brett, A. D., and Taylor, C. J: A framework for automated landmark generation for automated 3D statistical model construction. In: IPMI (1999)

    Google Scholar 

  6. Caunce, A., and Taylor, C: Using local geometry to build 3D sulcal models. In: IPMI (1999).

    Google Scholar 

  7. Caunce, A., and Taylor, C. J: 3D point distribution models of the cortical sulci. In: British Machine Vision Conference. (1997) 550–559

    Google Scholar 

  8. Christensen, G. E., Joshi, S. C., and Miller, M: Volumetric transformation of brain anatomy. IEEE Trans. Medical Image 16 (1997), 864–877

    Article  Google Scholar 

  9. Christensen, G. E., Rabbitt, R. D., Miller, M. I., Joshi, S. C., Grenander, U., Coogan, T. A., and Essen, D. C. V: Topological Properties of Smooth Anatomic Maps. Kluwer Academic Publishers, (1995), 101–112

    Google Scholar 

  10. Cootes, T., Edwards, G. J., and Taylor, C. J: Active appearance models. In: ECCV (1998), 484–498

    Google Scholar 

  11. Cootes, T., and Taylor, C: Modelling object appearance using the grey-level surface. In: British Machine Vision Conference, (1994) 479–488

    Google Scholar 

  12. Cootes, T. F., Hill, A., Taylor, C. J., and Haslam, J: The use of active shape models for locating structures in medical images. Image and Vision Computing 12 (1994), 276–285

    Article  Google Scholar 

  13. Cootes, T. F., Taylor, C. J., Cooper, D. H., and Graham, J: Active shape models-their training and application. Computer Vision and Image Understanding 61, (1995), 38–59.

    Article  Google Scholar 

  14. Edwards, G. J., Taylor, C. J., and Cootes, T: Learning to identify and track faces in image sequences. In: British Machine Vison Conference (1997) 130–139

    Google Scholar 

  15. Fleute, M., and Lavallee, S: Building a complete surface model from sparse data using statistical shape models: Application to computer assisted knee surgery. In: MICCAI (1998) 878–887

    Google Scholar 

  16. Hill, A., Cootes, T. F., Taylor, C. J., and Lindley, K: Medical image interpretation: A generic approach using deformable templates. Journal of Medical Informatics 19 (1994) 47–59

    Article  Google Scholar 

  17. Jones, M. J., and Poggio, T: Multidimensional morphable models. In: ICCV (1998) 683–688.

    Google Scholar 

  18. Maintz, J. B. A., and Viergever, M. A: A survey of medical image registration. Medical Image Analysis 2 (1998) 1–36

    Article  Google Scholar 

  19. McInerney, T., and Terzopoulos, D: Deformable models in medical image analysis: a survey. Medical Image Analysis 1 (1996) 91–108

    Article  Google Scholar 

  20. Nastar, C., Moghaddam, B., and Pentland, A: Generalized image matching: Statistical learning of physically-based deformations. In: ECCV Vol. 1 (1996) 589–598.

    Google Scholar 

  21. Press, W., Teukolsky, S., Vetterling, W., and Flannery, B: Numerical Recipes in C (2nd Edition). Cambridge University Press, (1992)

    Google Scholar 

  22. Sclaroff, S., and Isidoro, J: Active blobs. In: ICCV (1998) 1146–53

    Google Scholar 

  23. Subsol, G., Thirion, J. P., and Ayache, N: A general scheme for automatically building 3D morphometric anatomical atlases: application to a skull atlas. Medical Image Analysis 2 (1998) 37–60

    Article  Google Scholar 

  24. Székely, G., Kelemen, A., Brechbühler, C., and Gerig, G: Segmentation of 2-D and 3-D objects from mri volume data using constrained elastic deformations of flexible fourier contour and surface models. Medical Image Analysis 1 (1996) 19–34

    Google Scholar 

  25. Wang, Y., and Staib, L. H: Elastic model based non-rigid registration incorporating statistical shape information. In MICCAI (1998) 1162–1173

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cootes, T.F., Beeston, C., Edwards, G.J., Taylor, C.J. (1999). A Unified Framework for Atlas Matching Using Active Appearance Models. In: Kuba, A., Šáamal, M., Todd-Pokropek, A. (eds) Information Processing in Medical Imaging. IPMI 1999. Lecture Notes in Computer Science, vol 1613. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48714-X_24

Download citation

  • DOI: https://doi.org/10.1007/3-540-48714-X_24

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66167-2

  • Online ISBN: 978-3-540-48714-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics