
M. Jarke, A. Oberweis (Eds.): CAiSE’99, LNCS 1626, pp. 134-148, 1999.
ª Springer-Verlag Berlin Heidelberg 1999

Managing Componentware Development –
Software Reuse and the V-Modell Process*

Dirk Ansorge1, Klaus Bergner1, Bernd Deifel1, Nicolas Hawlitzky1,
Christoph Maier2, Barbara Paech3,**, Andreas Rausch1,

Marc Sihling1, Veronika Thurner1, Sascha Vogel1

1Technische Universität München, 80290 München, Germany,
{bergner | deifel | rausch | sihling | thurner | vogels}@in.tum.de

as@iwb.mw.tum.de, Hawlitzky@ws.tum.de
2FAST e.V., Arabellastr. 17, 81925 München, Germany

cma@fast.de
3Fraunhofer Institute for Experimental Software Engineering,

67661 Kaiserslautern, Germany
paech@iese.fhg.de

Abstract. We present the characteristics of component-based software engi-
neering and derive the requirements for a corresponding development process.
Based on this, we propose changes and extensions for the V-Modell, the Ger-
man standard process model for information systems development in the public
services. Following this model, we cover not only systems engineering, but also
project management, configuration management, and quality assurance aspects.

1 Motivation

Componentware provides the conceptual and technological foundation for building
reusable components and assembling them to well-structured systems. However, the
problem of creating and leveraging reusable software assets cannot be solved by tech-
nology only. It requires a methodological and organizational reuse infrastructure,
integrating software engineering and project management issues. This includes, for
example, the organization of a company-wide reuse process and the estimation of the
costs and benefits involved with reusing or building a certain component. Further-
more, reuse inherently extends the management domain from a single project to mul-
tiple projects and from the context of a single company to the context of the global
component market.

In this paper, we suggest some solutions for an integrated treatment of components
in information system development. We identify the main characteristics that distin-
guish component software from non-component software, and sketch the resulting
requirements for a component-oriented software engineering process. To be able to
describe the necessary extensions and changes in a coherent way, we discuss the
German standard for information systems development in the public service, called
V-Modell [VMod], as a specific example for a “traditional” single-project process

* This work was supported by the Bayerische Forschungsstiftung under the FORSOFT research

consortium.
** The work was mainly carried out while the author was at the TUM.

Managing Componentware Development - Software Reuse and the V-Modell Process 135

model. The V-Modell is highly suitable as a reference model for our purpose as it
covers all aspects of traditional software engineering, but was not designed with the
componentware paradigm in mind. Although our proposals for extensions and
changes are strongly related to the V-Modell, we think that they also apply to many
other process models used today. We have, therefore, tried to keep our presentation
general enough to be understood by and profitable to people who are not familiar with
the V-Modell.

The context of typical software engineering projects ranges from the ad-hoc devel-
opment of individual information systems within a small company over the distrib-
uted development of global information systems to the development of standard soft-
ware for the global market. Furthermore, different application areas, like distributed
systems or production systems in the area of mechanical engineering, impose addi-
tional constraints on the development process. In elaborating our proposals, we have
tried to leverage the experience and knowledge within the interdisciplinary
FORSOFT research cooperative, consisting not only of computer scientists and re-
searchers from mechanical and electrical engineering, but also of economy experts
and practitioners from leading companies in each of these four fields.

The paper is structured as follows: Section 2 identifies the main characteristics and
requirements associated with componentware, both from the perspective of compo-
nent users and component producers. Section 3 describes the V-Modell and sketches
the overall approach we took in extending and adapting it. The next two main sections
contain detailed proposals – Section 4 deals with single projects, while Section 5
treats the multi-project issues brought up by component reuse. A short conclusion
rounds off the paper.

2 Componentware – Perspectives and Requirements

In order to discuss the issues involved with componentware process models, it is
sufficient to define components as reusable pieces of software with clearly defined
interfaces. To be reusable, a component has to be understandable, capturing a gener-
ally useful abstraction. Furthermore, its integration into many different, heterogene-
ous system contexts must be possible in a cost-effective way, implying tool support
and interoperability standards, such as [Sam97, Nin96].

To discuss reusability in an appropriate way, two different perspectives must be
taken into account: The perspective of the component (re-) user and the perspective of
the component producer (cf. Section 2.1, 2.2).

If we try to relate the user and producer perspectives to traditional software engi-
neering and development process concepts, we can find a strong correspondence to
the notions of top-down versus bottom-up development. The top-down approach
starts with the initial customer requirements and refines them continually until the
level of detail is sufficient for an implementation with the help of existing compo-
nents. Conversely, the bottom-up approach starts with existing, reusable components
which are iteratively combined and composed to higher-level components, until a top-
level component emerges which fulfils the customer's requirements.

Obviously, a pure bottom-up approach is impractical in most cases because the re-
quirements are not taken into account early enough. However, the top-down approach
also has some severe drawbacks: Initially the customer often does not know all rele-
vant requirements, cannot state them adequately, or even states inconsistent require-

136 Dirk Ansorge et al.

ments. Consequently, many delivered systems do not meet the customer's expecta-
tions. In addition, top-down development leads to systems that are very brittle with
respect to changing requirements because the system architecture and the involved
components are specifically adjusted to the initial set of requirements.

In our eyes, the central requirement for a component-oriented development process
is to combine and reconcile the top-down and the bottom-up approaches within a
unified process model. In order to capture the requirements for such a process model,
the next two subsections will first sketch the perspectives of component users and
producers in more detail. The third subsection will discuss possibilities and scenarios
for the integration and combination of both viewpoints.

2.1 Using Components for Application Development

Usually, the development process will start with eliciting and analyzing the require-
ments of the customer. Then, the overall system architecture is designed, and specifi-
cations for the involved subsystems and base components are evolved. When a candi-
date component has been identified, the central question for a component user is
whether to make it or to buy it. This decision critically depends on a comprehensive
search for existing components. For their assessment, understandable specifications of
the involved syntactic and behavioral interfaces are needed.

Sometimes, the available components will not match the customer’s requirements
or the system architecture exactly. If it is possible to adapt such components with
costs lower than the costs for making a substitute, they should be used anyway. The
components’ properties may also trigger changes to the system architecture or even to
the customer’s requirements, for example, when the customer decides to standardize
his business processes according to a best-practice approach realized by an available
standard component.

Using a component bears chances as well as risks. On the one hand, application
developers have the chance to focus on their core competencies instead of wasting
resources on re-creating readily available components for base services or for the
technical infrastructure. By only providing added value on top of existing building
blocks, they can considerably reduce their overall costs and their time-to-market. On
the other hand, using available components may imply the strategic risk of depend-
ence from certain component producers, and it may mean to give up valuable in-
house knowledge in a certain area.

2.2 Producing Marketable Components

The business of a component supplier is the construction and selling of reusable com-
ponents on the global component market. The customers and system contexts for such
commercial off-the-shelf (COTS) components are not known a priori and may differ
very much from each other. [CaB95] and [Dei98] present the basic problems arising
in the development and requirements engineering of COTS in general.

The large number of potential customers means that the development costs can be
distributed over all sold components, and allows the component producer to specialize
in a certain area. The cost-effectiveness of component production therefore depends
on the reusability of the produced software components. This implies two things:

Managing Componentware Development - Software Reuse and the V-Modell Process 137

First, component producers have to know the market and the requirements of their
possible customers very well. COTS producers, therefore, have to perform a compre-
hensive and careful risk analysis and market studies during their requirements elicita-
tion and product definition phase. To receive periodical feedback from their custom-
ers and to react directly to their needs, COTS suppliers normally develop their prod-
ucts in short release-cycles. Typically, they also try to acquire and retain customers by
offering various license models, for example, for evaluation, non-commercial, and
commercial usage.

Second, COTS components should be reusable in as many contexts as possible,
and the adaptation costs for customers should be low. This implies that components
should be very robust and must be thoroughly tested - implementation and documen-
tation errors will be fatal for many customers and eventually also for the producer.
Furthermore, support like design-time customization interfaces, adaptation tools as
well as different variants for different hardware and software standards or platforms
should be offered.

2.3 Integrating User and Producer Perspectives

Analogous to other markets, there are many possibilities for reconciling and integrat-
ing the idealized viewpoints sketched in the previous two subsections. Generally, the
distinction between component users and component suppliers is not a strict one.

When components consist of other, lower-level components, both roles blend into
each other, as the supplier of such a component also acts as a component user. There
may also be companies that are neither true users nor true suppliers because they only
act as link between both worlds. An example would be a company that acts as a com-
ponent broker, identifying the requirements of many customers and elaborating speci-
fications for components that result in orders to dedicated component developers.

Another common example is an in-house component profit center that selects and
produces components for a limited number of customers within a certain company. As
such in-house producers are only concerned with reuse within the context of a com-
pany and its in-house compliance standards, the necessary generality of the compo-
nents is reduced. In practice, there is often no clear separation between in-house profit
centers and COTS suppliers. Before a COTS supplier ships new components, he will
usually reuse these components in-house to test them. Conversely, an in-house sup-
plier may decide to sell a component that has been reused in-house successfully as a
COTS component on the global market.

We expect that interface organizations like the ones mentioned will play an im-
portant role in a fully developed component marketplace, much in analogy to existing
distributor hierarchies in established markets.

3 Adapting and Extending the V-Modell

The V-Modell [VMod] is one of the few examples of an integrated treatment of soft-
ware engineering and project management issues. The overall development process is
structured into four different sub-models, namely Systems Engineering (SE, “Sy-
stemerstellung”), Project Management (PM, “Projektmanagement”), Quality Assur-
ance (QA, “Qualitätssicherung”), and Configuration Management (CM, “Konfigura-
tionsmanagement”). Each sub-model includes a process and detailed guidelines for

138 Dirk Ansorge et al.

how to produce the different development products, for example specification docu-
ments and source code. Together, all development products make up the so-called
Product Model (“Erzeugnisstruktur”).

In the following two subsections, we will describe the V-Modell’s approach in de-
fining the process and its overall structure, and discuss our proposals for general
changes and extensions regarding component oriented development.

3.1 Flow-Based vs. Pattern-Based Process Description

The V-Modell’s overall approach in defining the process is flow-based. Development
products are elaborated within activities and flow into other activities that need them
as input. This structure is reflected in the scheme for the activity description:

from product to
activity state activity state

Activity a1 accepted development result r1 activity a2 processed
...

The scheme means that the corresponding development activity receives the devel-
opment result r1 in state accepted as input from activity a1. After completion of the
activity, the state of r1 is set to processed and the result is forwarded to activity a2.

In the V-Modell, this flow-based definition approach is combined with a rather tra-
ditional process which is more or less structured into sequential phases. As mentioned
above, a sequential process does not fit very well to the bottom-up aspect needed for
componentware development. Furthermore, the flow-based formulation of the process
model limits the developers’ freedom to react flexibly on unforeseen events because
the prescribed activity flows must be followed.
The V-Modell tries to alleviate these problems by two measures:
• Feedback loops are introduced into the product flows. This allows to rework and

correct products by repeatedly performing certain activities, resulting in an itera-
tive process.

• Informal scenarios provide additional guidance in scheduling the order of activities
in the process before the start of a project. With respect to componentware, the
scenarios Use of Ready-Made Components (“Einsatz von Fertigprodukten”) and
especially Object-Oriented Development (“Objektorientierte Entwicklung”) seem
to be most adequate.

In our eyes, both measures can only partly solve the above mentioned problems.
While the introduction of iterations does not fully remove the rigidity of the pre-
scribed processes of the flow-based model, the scenario approach is very informal and
does not match very well with the rest of the process model. Furthermore, the sce-
nario has to be selected before the start of a project and provides no support for modi-
fications during its runtime.

To remedy the deficiencies of the V-Modell, it must be reworked in a more princi-
pal way. We propose, therefore, to switch from the current flow-based description to a
pattern-based model. Here, the state and consistency of the hierarchical product model
together with an assessment of the external market situation form the context for so-
called process patterns which recommend possible activities. This way, top-down and

Managing Componentware Development - Software Reuse and the V-Modell Process 139

bottom-up activities may be selected and performed based on the process manager’s
assessment of the current development situation. We have motivated and described
our pattern-based approach in detail in [BRSV98a,BRSV98b,BRSV98c]. Apart from
a high-level description of a suitable product model, we have elaborated a compre-
hensive catalog of process patterns for component-oriented software engineering.

We think that the V-Modell should be reworked in order to serve as the basis for a
complete pattern-based process model with a detailed product model, spanning all
activities of the development process. To achieve this, the basic description scheme
should be changed. Instead of describing the flow of products between sequential
activities, as shown above, the pattern of activities necessary to create products or
establish consistency conditions between products should be described without relat-
ing to preceding or subsequent activities. The resulting scheme could look like this:

pre process pattern p1 post
product state product state

product p1 complete activity a1 product p2 in progress
...

This scheme means that this process pattern is applicable when development prod-
uct p1 is completed (the conditions related to the external situation are not shown
here). After completion of the activities described in the process pattern, the devel-
opment product p2 is created and set to state in progress.

3.2 Single-Project vs. Multi-project Development

In its current form, the V-Modell aims at the management of single projects, where
software is developed more or less “from scratch”. Componentware brings up two
kinds of new issues:
• There must be support for the reuse of components within a single project. This

requires new engineering activities, for example, searching for existent software
components. Furthermore, existing activities have to be extended or must change
their focus. Testing, for example, now has to deal not only with software that was
developed in-house, but also with components from external suppliers.

• The process has to be extended in order to support multi-project issues. This re-
lates, for example, to establishing a company-wide reuse organization, or to main-
taining a repository containing components that can be reused by many projects.

The V-Modell uses so-called roles to describe the knowledge and skills necessary for
carrying out certain activities appropriately. These roles are then assigned to the
available persons on a per-project basis. Some example roles are System Analyst,
Controller, or Quality Manager. Similar to our process-changes, we also had to both
modify existing roles and introduce new ones in order to reflect the additional and
changed skills. The System Analyst, for example, is now also responsible for assessing
the business-oriented functionality of existing systems and components as a prerequi-
site for the elicitation of the customer requirements (cf. Section 4.1). An example for
a completely new role is the Reuse Manager who has to identify the need for new
components within a business organization, and propagates the usage of available
components within development projects (cf. Section 5.2).

140 Dirk Ansorge et al.

Based on the distinction of single-project and multi-project issues, we propose the
following overall approach for extending the V-Modell with respect to component-
oriented development:
• The existing V-Modell is slightly extended and modified in order to cope with the

additional requirements for componentware. Leaving the structure of the V-Modell
intact has the advantage that project managers do not have to adopt a totally new
process model, but can build on existing knowledge.

• To deal with multi-project issues, new multi-project counterparts for the existing
sub-models are added to the V-Modell. This extension reflects the deep impact
componentware has on the organization of a company, but makes it possible for
companies to introduce the necessary changes step by step and relatively inde-
pendent from single projects.

The following figure visualizes the structure of the extended V-Modell:

Single-Project Issues Multi-Project Issues
Software Engineering
Project Management
Quality Assurance
Configuration Management

The next two main sections are organized as follows: Section 4 deals with the four
sub-models in the context of a single project, while Section 5 is concerned about the
multi-project issues.

4 Single Project Issues

Reuse enforces two basic principles on a software development project. On the one
hand, standardization is necessary to support integration of components, and on the
other hand flexibility of process and product is important in order to react to the dy-
namic component market. Standardization in software engineering activities requires,
in particular, a well-defined component concept, standardized description techniques,
separation between business-oriented and technical issues and a detailed assessment
of components to be integrated. Flexibility implies a detailed search for adequate
components, a close intertwining of component search, architectural design and re-
quirements capture as well as an emphasis on adaptation and configuration in design
and implementation. For project management flexibility in process definition and
market activities is required and standards for supplier, contract and variant manage-
ment. Configuration and quality management need to set standards for a component
library, the integration of components and their test.

In the following subsections we discuss the impact of these principles on the ac-
tivities and roles of the sub-models of the V-Modell.

4.1 Systems Engineering

The sub-model Systems Engineering (SE) subsumes all activities related to hardware
and software development as well as the creation of the corresponding documents. It
defines nine main activities which are carried out more or less sequentially: Starting

Managing Componentware Development - Software Reuse and the V-Modell Process 141

with Requirements Analysis (SE1), specific software and hardware requirements are
analyzed. Then, the system is designed and split up into a hierarchy of logical and
physical components (SE2 to SE5). These components are then implemented (SE6)
and finally integrated (SE7 to SE8). Finally, the last main activity, RollOut (SE9),
takes care of how to install the system in its specified environment, and how to con-
figure and execute it properly.

Clear Component Concept: The V-Modell offers a variety of structuring con-
cepts, reaching from IT Systems over Segments, Software and Hardware Units, Soft-
ware Substructures, and Components to Modules. However, none of these concepts is
defined clearly or even formally. This forces each development project to come up
with its own incompatible, proprietary interpretations which hinders the reuse of ex-
isting components from other projects. To remedy this situation, we recommend to
unify the structuring concepts by defining a uniform concept for hierarchical compo-
nents. A first approach may be found in [BRSV98c].

Standardized Description Techniques: Apart from a clear component concept,
reuse requires well-defined, standardized description techniques for the structure and
behavior of components. This includes mostly so-called black-box descriptions of the
component’s external interfaces. During adaptation of pre-fabricated components in
some cases also white-box descriptions of the internals of a component are necessary.
Proposals for component description languages and graphical description techniques
can be found in [UML97,SGW94,HRR98,BRSV98c]. The V-Modell yet only gives
some recommendations on what to specify (for example, functionality, data manage-
ment, exception handling of a component) and which description techniques may be
used (for example, E/R diagrams or Message Sequence Charts), but it does not con-
tain guidelines or requirements for component descriptions.

Reuse Activities: Although the V-Modell contains some remarks on reusing ex-
isting components in its activity descriptions, a comprehensive treatment of this as-
pect is missing - system development is mainly seen as starting out from scratch. To
provide support for reuse, some activities have to be changed or to be added:
• Search for Existing Components should be an explicit activity. Its main purpose is

to build an in-project component repository (cf. Section 4.3) based on selecting
suitable components from public or in-house repositories (cf. Sections 4.3, 5.2).
The V-Modell should provide standard activities for adding, deleting, editing, and
searching components and the different versions and variants of these components.

• Based on the criticality of the involved existing components, detailed evaluations
have to be carried out in order to assess their suitability and compatibility with the
existing design. The Component Evaluation activity includes not only validation,
verification, process and product tests, but also harmonization of the component
and the system quality (cf. Section 4.4). To avoid costly workarounds it should be
completed before making the definitive decision to use the respective component.
A Replacement Analysis may additionally serve to be able to estimate the costs in-
volved with changing architectures and using a substitute component.

• The Design and Implementation activities change their focus. Instead of designing
and coding new software modules, componentware relies mainly on Composition,
Instantiation, and Adaptation of existing components and infrastructure systems
[Krue92]. In its current version, the V-Modell only covers the special case of a

142 Dirk Ansorge et al.

central database component, which has to be realized and tested, based on the re-
spective database schema.
Controlling: As mentioned in Section 2, existing components may trigger changes

to the architecture and even the requirements of the customer. The V-Modell tries to
support this via the so-called Requirements Controlling activity (“Forderungscontrol-
ling”) which is a bottom-up activity in the sense of Sections 2 and 3.1. Based on
eventual preliminary architectural considerations, the requirements may possibly
changed after the Requirements Analysis phase. With componentware requirements
should be controlled regularly, especially after the system architecture or key compo-
nents have been elaborated or changed. Furthermore, if for example new components,
standards, or technologies arise on the market also a Architecture Controlling activity
should be performed

Separation of Business-Oriented and Technical Issues: The V-Modell structures
the design into three main activities: During System Design (SE2), the overall archi-
tecture is designed. SW/HW Requirements Analysis (SE3) extends the requirements
for the involved hardware and software units. High-Level SW Design (SE4) is con-
cerned with designing the internal architecture of software units, and Low-Level SW
Design (SE5) specifies the interfaces and implementations of the involved software
components in detail. With respect to componentware, this scheme has major flaws:
• The combined specification of hardware and software units in the system archi-

tecture makes it impossible to separate the business-oriented software design from
the technical architecture, consisting of the involved hardware environment and the
middleware infrastructure. This is inconsistent with one of the key features of
modern component approaches [EJB98], namely, the possibility to employ busi-
ness-oriented components within different technical system contexts [HMPS98].

• It is not possible to postpone the decision whether a certain component is to be
implemented by means of software or by means of hardware.

We therefore propose to abolish the activities SE2 to SE4, replacing them with two
activities for Business-Oriented Design and for Technical Design, which are clearly
separated. The hardware/software mapping and the reconciliation and unification of
these two architectures into a single, overall architecture may then be done in the
subsequent Low-Level Design activity, as shown in [BRSV98a,BRSV98b].

4.2 Project Management

The sub-model Project Management (PM) consists of three kinds of activities: project
initialization activities, planning activities, and execution activities. The Project Ini-
tialization activity (PM1) comprises basic steps that are performed once before the
project starts, like the definition of project goals and the selection of tools. Further-
more, roles have to be assigned to persons and the V-Modell has to be “tailored” with
respect to project-specific needs. During the tailoring activity, the project manager
decides which activities of the full V-Modell may be discarded. The initialization
phase results in an overall Project Plan, including a rough expenditure estimate and a
time schedule.

Afterwards planning and execution activities start. Typical planning activities are
performed periodically for each sub-phase of the project. They include the Allocation
of External Orders (PM2), the Management of Suppliers (PM3), Detailed Planning

Managing Componentware Development - Software Reuse and the V-Modell Process 143

(PM4) of resources, milestones and expenditures, and Cost/Value Analysis (PM5).
The resulting data serves as a basis for Go-/No-Go Decisions (PM6) for parts of the
project. Concurrently, Risk Management (PM7), Controlling (PM8), and Reporting
(PM9) activities are performed. Execution activities pertain to Training and Briefing
of Employees (PM10 and PM13), Preparation of Resources (PM11), and Allocation
of Tasks (PM12).

The final Project Completion activity (PM14) results in a final report about pro-
gression and project results. Project Management roles defined in the V-Modell in-
clude the Project Director, the Project Manager, the Controller, the Legal Adviser,
and the Project Adviser.

Flexible Process Redefinition: In principle, the V-Modell already contains all ac-
tivities necessary for componentware. However, changes on the component market
require much more flexible approaches to planning and controlling. Following the
pattern-based process model sketched in Section 3.1, the Project Manager and the
Project Director may redefine the project during its runtime by selecting adequate
patterns. Similar to the V-Modell’s tailoring process, the conditions for the pattern
application may be defined before the start of the project.

Dynamic Negotiation of Results: The current V-Modell already provides some
facilities for bottom-up information flow and iterative elaboration of results, as de-
scribed in Section 3.1. The additional flexibility brought by the pattern-based process
model leads to a new understanding of the process management role: instead of a pure
controlling activity, managing can now be seen as mediating between the customer,
the developer, and the external component producers. Mediation relies on activities
like Requirements Controlling in order to dynamically elicit and define the customer
requirements, or Architecture Controlling in order to dynamically elaborate a suitable
system architecture, taking into account the possible risks, benefits and costs of ap-
plying and integrating available components (cf. Section 4.1). The following issues
mainly deal with the relation to the external component suppliers.

Market Analysis and Marketing: The initialization phase of sub-model PM has
to be supplemented by a market analysis for the corresponding system or component.
Component users need information about existing systems mainly in order to elicit the
requirements of their customers. For component suppliers, detailed knowledge of the
market is a vital precondition, as described in Section 2.2. Therefore, they usually
start their development projects with a market study, scanning the market for similar
components and analyzing requirements of potential customers. Depending on the
results, the supplier estimates the potential income and the strategic value of the
planned component. This assessment will in turn be used to further refine the features
of the component in order to find an optimum cost/value ratio. In case of novel com-
ponents and so-called enabling technologies, time-to-market is usually the most im-
portant factor – even if not all desirable features are present, the component may open
up a new market. In case of more mature markets where components with similar
features already exist, the component supplier also has to differentiate the component
from those of competitors, either by providing additional features or by offering it for
a lower price. Due to the importance of all activities concerned with the market, we
propose to add the new role Marketing Manager to the V-Modell.

Supplier Management: While marketing is mainly concerned with the possible
customers of a system or component, supplier management deals with producers of
external components that are to be used within a project. While the V-Modell already
includes an activity for Supplier Management, it is mainly intended for subcontractor

144 Dirk Ansorge et al.

management. Dealing with independent component suppliers involves some addi-
tional issues. Besides an evaluation of the price and the features of the offered com-
ponents, a supplier’s reliability and continued support are important to component
users, especially in case of critical, non-standard components. During Risk Manage-
ment, corresponding technical and strategic risks must, therefore, be assessed care-
fully.

Contract Management: After a user has decided to buy a certain component, a
contract has to be concluded. Conversely, suppliers must prepare a licensing model
for their products. The license model directly influences the profitability of compo-
nent reuse, for example, by regulating how often license fees have to be paid or
whether new releases of components may be bought with certain discounts. Redistri-
bution and copyright issues must also be clarified. It is also important whether the
supplier commits himself to a certain roadmap for further development, beyond the
usual responsibility for removing errors. Furthermore, the supplier’s liability in case
of damages caused by a component has to be clarified. Finally, precautions for the
bankruptcy of the supplier should be made, for example, by stating in the contract that
the source code of the supplied product must be handed over to the user in that case.
The management of supplier contracts widens the job of the Legal Advisor.

Variant Management: Another important point for both users and suppliers is
component variant management. Users should strive to minimize the number of vari-
ants, for example, by preferring to reuse existing components against buying modified
or compatible ones (cf. Section 4.3). Users also have to check if any of their existing
components may be suitable for reuse in a new development project by reviewing the
project requirements. For COTS-suppliers, the situation is more complex. On the one
hand, having many variants rises the number of potential customers. On the other
hand, suppliers can usually only manage a limited range of variants with justifiable
effort. To coordinate the development of the variants and especially to avoid dupli-
cated work, we propose the new role Variant Manager for component suppliers.

4.3 Configuration Management

The primary goal of the sub-model Configuration Management (CM) is to ensure that
each part of a product as well as the product itself is identifiable at every time. It in-
cludes four main activities: In Configuration Management Planning (CM1), guide-
lines for the configuration, change, build, and archive management have to be estab-
lished. Product and Configuration Management (CM2) deals with the creation, dele-
tion, and change of the product’s entities, the product itself, and configurations of the
entities. This includes especially the transfer of reusable entities to the central Con-
figuration Management Services activity. Change Management (CM3) handles error
reports, problem reports, and suggestions for improvements. At last, the Configura-
tion Management Services (CM4) provide common services like product catalogues,
data administration, access control administration, and interface management.

Integration of Component Descriptions: In addition to the traditional hierarchi-
cal structure of product models componentware demands for a clear separation of
architectural requirements for a certain abstract component from the description of
existing components. This allows component users to integrate different, encapsulated
components along with their descriptions from external suppliers. Note that the ex-

Managing Componentware Development - Software Reuse and the V-Modell Process 145

change of standardized component descriptions relies on the standardization of the
description format as well as of the involved description techniques (cf. Section 4.1).

Component Library Management: Apart from the developed products, Configu-
ration Management must also archive components that have been assessed or used in
a certain development project. It is also necessary to manage a list of external reposi-
tories in order to help developers in searching for reusable components. Note that the
management of a component library for a single project doesn’t pertain to building a
global component repository used by multiple projects (cf. Section 5.3).

Variant Management: For the management of different variants of a single prod-
uct, one can use concepts and tools for version management that are already available.
Branches capture different variants and their history, while configurations may be
used to model different internal structures of a component variant. However, due to
the complexity introduced by variants, dealing with variants methodically remains an
open research question.

4.4 Quality Assurance

The Quality Assurance sub-model consists of five main activities: Similar to the proj-
ect initialization activity in the Systems Engineering sub-model, the QA Initialization
(QA1) results in an overall QA Plan which describes the planned tests. Test Prepara-
tion (QA2) provides a more detailed plan, including the planned measures, test cases,
and test procedures. These planning activities are complemented by performing the
actual test and quality assurance measures – Process Tests of Activities (QA3) corre-
sponds to reviewing and assessing the processed activities, while Product Test (QA4)
deals with the development documents. QA Reporting (QA5) represents the informa-
tion flow to Project Management activities which are informed in case of problems
detected during Quality Assurance. The structure of activities QA1 to QA5 is similar
in that each of them considers constructive as well as analytical measures, in order to
both avoid and correct failures.

Component Assessment: Existing QA activities of the V-Modell not always suf-
fice for ensuring the quality of components. As their source code may not be avail-
able, the assessment techniques for externally developed components might differ
from those employed for assessing software developed in-house. In many situations,
one has to resort to black-box tests based on a specification of the component’s de-
sired behavior. The Supplier Management main activity may also provide some addi-
tional information about the quality level of certain component producers. Sometimes,
it will even be possible to access the source code, for example, with Open Source
Software [Ray98], or when the supplier agrees to provide it. Finally, in contrast to
tests of internally developed components, tests of external components should not be
delayed until system integration. Rather, they have to be performed during the elabo-
ration of the architecture and the interfaces in order to detect hidden flaws that could
require costly workarounds during implementation or might even compromise the
whole project (cf. Section 4.1).

146 Dirk Ansorge et al.

5 Reuse Aspects

Reuse inherently expands the development context from a single project to multiple
projects. Building a reusable component generally requires more effort which is only
worthwhile if it can be sold several times. Therefore it is vital for component users to
investigate related current and potential development projects for potential reuse op-
portunities. Rather than being forced into the organizational framework of a single
development project, multi-project activities are generally carried out continuously
over longer periods of time by a reuse organization. This organization is responsible
for the coordination of all development efforts of the company, and it administers the
company’s component repository.

In the following, we describe some of the issues involved in the management of
such a reuse organization. As sketched in Section 3.2, the principle structure, organi-
zation, and processes resemble very much their counterparts in the existing V-Modell.
As an example, consider the roles of the new sub-model Reuse Management which
are more or less isomorphic to the roles of the existing sub-model Project Manage-
ment, only that their context comprehends not only a single project, but also multiple
projects and that their tasks usually are more long-term oriented.

The following sections will, therefore, not repeat these foundations again, but only
provide some additional recommendations and insights. As with the other activities of
the V-Modell, nothing is said about the actual organizational settings – the reuse or-
ganization may be a dedicated department or a group of distributed component care-
takers working on ordinary projects most of the time.

5.1 Systems Engineering

Reference Architecture and Company Standards: A reuse organization may not
only develop reusable components, but also elaborate the company’s overall IT ar-
chitecture and company standards. Clear guidelines help to avoid compatibility prob-
lems and ease the work of application developers, as they can start with proven and
accepted solutions. Advantages for component suppliers are similar appearance and a
common corporate identity on the market.

Identification and Generalization of Reusable Components: Candidate compo-
nents for (re-)use in multiple projects may be found by examining single in-house
projects or by harmonizing product lines based on an overall domain analysis, but
also by assessing the properties of components on the component market. Identified
component candidates have to go through a reuse analysis which estimates the poten-
tial degree of reuse. Normally, in-house components from projects must first be
adapted and generalized in order to be usable in a wider context. This may also lead to
truly reusable components which may evolve to a stand-alone product for the compo-
nent market themselves.

5.2 Reuse Management

Assistance for Systems Engineering: Normally, reference architectures and com-
pany standards are only proposed and elaborated by Systems Engineering. The final
decision is usually met by Reuse Management. Similar considerations apply for the
Identification and Generalization of Reusable Components.

Managing Componentware Development - Software Reuse and the V-Modell Process 147

Component Propagation: Multi project management has to propagate the usage
of components within development projects by actively marketing them within the
company. First and foremost, this means to announce already existing components,
for example, by organizing systematic publicity campaigns and by informing projects
about the company’s global component repository.

Rewarding Reuse: Building a reusable component within a project leads to in-
creased costs and efforts. Reuse management therefore has to create a system of in-
centives for this purpose, for example, by granting additional financial resources to
project managers or developers.

Coordinating Development Activities: Sometimes a certain project may intend to
use a component which currently is under development in another project. In cases
like this, reuse management has to coordinate the development of both projects by
harmonizing both project plans accordingly. Especially when time-to-market is a
decisive criterion for the success of a software product, component reuse may be
profitable even if costs increase compared to in-house development. In such a situa-
tion, a component supplier may speed up development within certain limits, if enough
resources are available. Reuse management may support the negotiation of costs and
development time in order to optimize the total benefits for the company.

Management of Human Resources: Similar to building a portfolio of reusable
components, Reuse Management may strive to build a portfolio of human resources.
This may be achieved by tracking existing abilities of the employees, but also by
identifying abilities that are likely to be used in multiple future projects.

5.3 Configuration Management

All issues applying to component Configuration Management have already be men-
tioned in Section 4.3 and apply to Reuse Configuration Management analogously,
only that the context is the company and not a single project.

5.4 Quality Assurance

Establishing Component Assessment and Quality Standards: In-house assessment
standards for components should be developed and established, and assessment rules
should be given to the supplier to achieve a common quality level within the com-
pany. The standards and rules have to be based on an experience database that has to
be built up and refreshed within each new project.

Reusing Test Results: Reuse can reduce the effort for QA activities within similar
projects or similar usage contexts. The reason is that certain QA activities must be
carried out only once while developing a component. Whenever the component is
reused, the focus may then be on integration testing. Even the remaining efforts may
be reduced more and more based on the increasing experience with the component.

6 Conclusions

In this paper we have argued that the process models used today, and the V-Modell in
particular, is not yet suited to the requirements of a componentware development
process. In particular, this concerns the lack of an organizational structure and a proc-
ess allowing the exchange of information and software either between different, not

148 Dirk Ansorge et al.

necessarily concurrent projects within a company or via an open market for compo-
nents. We have, thus, proposed some modifications and enhancements for the current
version of the V-Modell, mainly by introducing new roles and new activities, by
evolving a new sub-model concentrating on reuse, and by switching to a pattern-based
process definition instead of a flow-based one. In our view, this constitutes the neces-
sary and sufficient foundation for a more detailed elaboration of the V-Modell for
component-oriented development.

References

[BRSV98a] K. Bergner, A. Rausch, M. Sihling, A. Vilbig, “A Componentware Development
Methodology Based on Process Patterns”, Pattern Languages of Programs 1998 (PLOP98),
Monticello, Illinois, 1998.

[BRSV98b] K. Bergner, A. Rausch, M. Sihling, A. Vilbig, “A Componentware Methodology
based on Process Patterns”, Technical Report TUM-I9823, Institut für Informatik, Technis-
che Universität München, 1998.

[BRSV98c] K. Bergner, A. Rausch, M. Sihling, A. Vilbig, “An Integrated View on Compo-
nentware - Concepts, Description Techniques, and Process Model”, IASTED International
Conference Software Engineering '98, Las Vegas, 1998.

[CaB95] E. Carmel, S. Becker, “A Process Model for Packaged Software Development”, IEEE
Transactions on Engineering Management, Vol. 42, No. 1, 1995.

[Dei98] B. Deifel, “Requirements Engineering for Complex COTS”, REFSQ´98, Pisa, 1998.
[EJB98] Sun Microsystems, “Enterprise JavaBeans Specification”, Version 1.0, Sun Microsys-

tems, 901 San Antonio Road, Palo Alto, CA94303, 1998.
[HMPS98] W. Hordijk, S. Molterer, B. Paech, Ch. Salzmann, “Working with Business Objects:

A Case Study”, Business Object Workshop, OOPSLA’98, 1998.
[HRR98] F. Huber, A. Rausch, B. Rumpe, “Modeling Dynamic Component Interfaces”, in

TOOLS 26, Technology of Object-Oriented Languages and Systems, pp. 58-70, Madhu
Singh, Bertrand Meyer, Joseph Gil, Richard Mitchell (eds.), IEEE Computer Society, 1998.

[Krue92] Ch. W. Krueger, “Software Reuse”, ACM Computing Surveys, 24,2, 1992.
[Nin96] J.Q. Ning, “A Component-Based Development Model”, COMPSAC’96, pp. 389-394,

1996.
[Ray98] E. Raymond, “Open Source: The Future is Here”, WWW page

http://www.opensource.org, 1998.
[Sam97] J. Sametinger, “Software Engineering with Reusable Components”, Springer 1997.
[SGW94] B. Selic, G. Gullekson, P. Ward, “Real-Time Object-Oriented Modeling”, John

Wiley and Sons Ltd, Chichester, 1994.
[UML97] UML Group, Unified Modeling Language Version 1.1, Rational Software Corpora-

tion, Santa Clara, CA95051, USA, 1997.
[VMod] IABG, “Das V-Modell”, WWW page http://www.v-modell.iabg.de/, 1998.

	1	Motivation
	2	Componentware Œ Perspectives and Requirements
	3	Adapting and Extending the V-Modell
	4	Single Project Issues
	5	Reuse Aspects
	6	Conclusions
	References

