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Abstract. Multidimensional data analysis is currently being discussed
in terms like OLAP, data warehousing, or decision support, mainly con-
centrating on business applications. Numerous OLA P-tools providing
flexible query facilities for datacubes are being designed and distributed.
Typical analysis sessions with these kind of systems comprise long and
branching sequences of exploratory analysis steps which base upon each
other. While concentrating on single functions and processing steps, man-
agement of this analysis process as a whole is scarcely supported.

This paper proposes a dataflow-based visual programming environment
for multidimensional data analysis (VIOLA) as an approach to deal
with this problem. Providing a foundation of basic operations, data
processing, navigation, and user interaction, an appropriate data model
(MADEIRA) is developed. Epidemiological studies, i. e. investigations of
aggregate data on populations, their state of health, and potential risk
factors, will serve as a leading example of a typical application area.

1 Introduction

Especially in the field of business applications, flexible and systematic analysis
of fast growing databases has gained more and more general interest in the last
few years. Based on data warehouses, which collect data from different sources,
OLAP-tools are oriented towards decision support [I]. Databases analysed by
these tools are modelled as a set of multidimensional dataspaces or cubes. These
contain aggregated fact data (measures, described by quantifying or summary
attributes), e.g. sales or profit, which are classified by a number of dimensions
(parameters, described by qualifying or category attributes) like product, shop, or
time. Instances of parameter values are usually classified in a category hierarchy.

Each dimension of a datacube corresponds to a criterion for partitioning base
data in different subgroups. A cell of a cube describes the group of base data
entities defined by the corresponding instances of the cube’s category attributes.
Since all cell values relate to groups of entities, this kind of data is also called
macrodata. This contrasts with typically relational microdata mostly constitut-
ing the base data from which aggregated measures are calculated by aggregation
functions like count, sum, or average over certain attributes.
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Multidimensional data analysis is certainly not restricted to the business do-
main. In this paper, epidemiological studies (as for example carried out in disease
registries) are supposed to serve as an application example. A typical multidi-
mensional dataspace in this domain represents incidence or mortality counts or
rates by age, sex, study region, time, and type of disease. Studies typically han-
dle base data of up to some million cases classified in 5-50 dimensions — each of
them with two to some thousand different values on usually not much more than
ten different aggregation levels. As well as enterprise managers in the “original”
OLAP domain introduced above, who navigate through business databases while
searching for interesting information, also in the area of epidemiology specialists
of different disciplines (social scientists, doctors, health data administrators) are
to be provided with intuitive facilities for comfortable, exploratory data analysis.

Most available OLAP-tools (cf. [2]) concentrate on powerful statistical and
data management operations and facilities for data visualization, but do hardly
support management of this analysis process as a whole by providing the user
with an overview of what he has done so far and by offering possibilities to
manipulate this exploration history. In this paper, the idea of a dataflow-based
visual analysis environment called VIOLA (VIsual On-Line data Analysis envi-
ronment) will be proposed to deal with this subject (see Sect. ).

Corresponding to available tools, existing multidimensional data models (see
[B] for a survey) restrict themselves to the database point of view. Additionally,
in many cases their design is strongly influenced by the idea of a relational im-
plementation. They provide powerful operations to construct complex database
queries, but do not take further steps of data analysis into account.

What we claim is to model the datacube as a data structure for both database
queries and further processing. Thus, this paper introduces the data model
MADEIRA (Modelling Analyses of Data in Epidemiological InteRActive stud-
ies) which

— is independent of a physical (relational) database implementation,

— provides enough information about measures and categories to facilitate in-
telligent and sensible selection and application of analysis methods to given
datasets (especially for, but not restricted to epidemiology), and

— builds a framework for a data analysis environment, which combines different
analysis procedures visually and thus keeps track of the whole process of an
analysis session — both for complex pre-designed reports and (even more
important) for ad-hoc data exploration.

In Sect.[3, some basic ideas, structures and operations of MADEIRA will be
defined in order to give a solid foundation of the subsequent two sections 4 and
Bl These are supposed to show how the idea of dataflow-programming based on
a formal logical data model is able to enhance the power and usability of existing
OLAP-tools in an “intelligent” way. Different aspects of implementing basic data
analysis operations are discussed: execution of visual queries, selection of meth-
ods, examples of visual control structures, and interactive data visualization.
Section [ discusses some related approaches to multidimensional data modelling



Modelling Multidimensional Data 151

and visual programming in data analysis. Finally, Sect. [ gives a short summary
and points out some ideas for future work.

2 A Dataflow-Based Visual Data Analysis Environment

What is a suitable data analysis environment and what are efficient tools and user
interfaces for “good” data analysis? Hand [4] considers a sensible distribution
of subtasks between human user and computer-based tools the main goal of
performing “intelligent” data analyses. Each one of these two should be able
to concentrate on his respective strength: the data analyst on his creativeness,
his ability to recognize complex structures and to develop new hypotheses —
the computer on management and preparation of data and methods and on
processing complex calculations efficiently and systematically.

Visualization of information provides the basic opportunity of integrating the
human analyst into the process of data analysis. Especially combined with flexi-
ble facilities of modifying parameters and presentation modes as well as selection
of data and calculated measures, suitable graphics reveal hidden structures of
information. Insights gained in this way lead to new hypotheses and further
investigations under new points of view — resulting in an refining analysis cycle.

Many existing tools for data analysis (like SAS, SPSS, or also OLAP-tools)
leave the management of this process itself to the user. Thus, he might easily
get lost in the course of calculations and produced datasets, not knowing exactly
how we got his results and how they relate to the base data. An intelligent system
for data analysis should not only provide the user with routines for calculation
and visualization, but should also give access to the complete course of a data
analysis session to make results interpretable and reproducible and to simplify
comparative modifications and repetitions of an analysis sequence.

According to the outstanding role of visualization, dataflow-based visual pro-
gramming [5] is a suitable paradigm to fulfill these requirements by visualizing
the whole process of an analysis. The analysis system VIOLA is supposed to
implement this concept in the context of OLAP. Different building-blocks, rep-
resenting data sources and methods of data analysis, management, and visualiza-
tion, are interconnected in a dataflow-chart corresponding to calculations of in-
termediate results. Exploratory data analysis is performed by changing datasets
or selecting subsets, by interactively modifying parameters of methods, exchang-
ing methods for similar ones, or expanding the flowchart by further analysis
steps [6]. Processing multiple datasets “in parallel” in one node facilitates flexi-
ble reusage and modification of common analysis sequences on multiple datasets
and ensures comparability of the respective results. This might additionally be
supported by introducing hierarchical subnets of analysis steps.

In our application domain, data exchanged between nodes of an analysis net-
work are multidimensional datacubes. The next section will define some parts of
a formal logical data model for datacubes and their processing in order to con-
tinue the idea of defining steps of a data analysis process explicitly and making
results of an analysis session exactly interpretable.
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3 The Multidimensional Data Model MADEIRA

The following considerations have been of great importance for the design of the
data model MADEIRA as a framework for a visual data analysis environment
and discriminate this model from existing ones:

— In order to guarantee intuitive usability of VIOLA, MADFEIRA is restricted
to one main data structure, namely a multidimensional datacube, and its
components. Microdata do not play a significant role in MADEIRA.

— The most important operation for navigation in datacubes is aggregation.
In order to support aggregation as good as possible,

e semantics, especially “disjointness” and “completeness” of categories
(e. g. all cities of a state do not cover the whole state),
e aggregation levels and hierarchies of categories, and
e aggregation functions being applicable to a datacube
need to be modelled explicitly. This is also of great importance for integra-
tion of data from different data sources and for consideration of set-valued
category instances as is sometimes necessary.

— Various metadata, especially object domains described by macrodata as well
as detailed type descriptions of measures have to be integrated into the model
to allow exact operator definitions and dataset descriptions for user informa-
tion. Thus, MADFEIRA stresses the aspect of semantic data definition and
usage of this knowledge in data processing, whereas most existing multidi-
mensional data models are restricted to the mere syntax of datacubes.

— By applying statistical functions to datacubes, complex measures are cal-
culated, which often cannot be further aggregated to higher levels without
accessing the base data. In order to be still able to facilitate efficient and
interactive data navigation and also for reasons of flexibility, data of different
aggregation levels must be combinable in one datacube.

In the following, we will at first define categories and dimensions as basic
elements for classifying base data; afterwards dataspaces representing macro-
data, which are described by summary and category attributes, are introduced.
Finally, aggregation and restriction of dataspaces are formally modelled.

For a set M, let 2M denote the set of all subsets of M and INM the set of all
multisets on M. Let a.a; denote a component of a structure a = (ay,...,an).

3.1 Categories and Dimensions

Let O be a set of OBJECTS to be considered in a data analysis (e.g. persons,
tumours, etc.) and F be a set of FEATURES, such that each o € O is described by
a subset of F (e.g. persons by sex, age, residence or tumours by some medical
attributes). In the following, a subset O C O generally represents a kind of
object-oriented concept (e.g. “all persons”), whereas inst(O) C O denotes a
particular instance of analysed objects.

Instances of features are described by CATEGORIES (e.g. Hamburg, 1998, or
male), which are elements of a set C. C is partitioned into a set DO C 2¢ of
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pairwise disjoint DOMAINS (e. g. region, time, age, etc.), such that each feature
f € F is described by categories of one unique domain Dy € DO — let Fp
denote the set of all features described by categories of domain D. We will
consider categories some kind of logical statements or predicates over features
and objects.

Oy and Oy . denote the sets of objects in O which are describable by feature
f or for which category ¢ € Dy holds for f, respectively. We write “o ¢ ¢” if
0 € Oy ; e.g. if a person z lives in Germany, “2 Fresidence Germany” holds.

Two categories ¢y, co of one domain D are called EQUIVALENT (“c; = ¢o”) if
Vf e Fp: O = Of.,. Analogously, SUBSUMPTION of categories (“cq is finer
than (subsumed by) ¢2”, “c1 < ¢2”) is defined as Vf € Fp: Oy, C Of,. 1
and co are said to be RELATED (“cil|c2”) if ¢1 < ¢o or vice versa. In a similar
way, also disjunction (“ci V ¢p” satistying Oy ¢ ve, = Of.c, UOf.c,), conjunction
(“c1 A o), and negation (“—c”) of categories are defined intuitively. Finally, we
call two categories DISJOINT with respect to a feature f and a set of objects O
(“Cl Lﬁo 02”) ifOnN Of,cl N OﬁcQ = 0.

Whereas subsumption is intended to consider general finer-coarser-relation-
ships between categories (e.g. “Hamburg < Germany” in the region domain),
disjointness needs to be related to single features and object-sets to enable also
modelling of set-valued features (with almost no categories being disjoint).

Aggregation levels define groups of categories being typically used together in
an analysis for classifying objects described by them. If modelled explicitly, most
existing data models (e. g. [7]) consider categories of one level being “of the same
granularity”. Although covering typical cases (e.g. “all counties of Germany”)
this approach is to restrictive, e. g. when modelling five-year age-groups with one
group “75 and older”. Rather often single categories belong to different levels
of one domain, e. g. cities belong both to a community and a ward level of the
region domain. Thus, we only claim a level not to contain related categories.
(Furthermore, for single-valued features all categories of a level are disjoint.)

Definition 1 (Aggregation levels). An (AGGREGATION) LEVEL le = (D, ()
on domain D is given by a finite, non-empty set dom(le) = C C D satisfying
V1 # co € dom(le): ¢1 f ca. Lp is the set of all levels on domain D.

A relation on levels of one domain can easily be derived from subsumption
on categories. This relation focuses on providing sensible aggregation paths from
finer to coarser levels. Thus, categories of the higher level must in each case be
completely disaggregated on the lower one. Furthermore, we distinguish cases in
which not a complete level, but just a single category of a level is partitioned
(as also proposed in [R]):

Definition 2 (A relation on levels). A level le is said to be FINER than level
le’ (le <tle’, cf. Fig.[l) if

1. 3¢ €le’: ¢ =\/dom(le) (just one category disaggregated) or
2. Ve’ € dom(le’): ¢ = \/{c € dom(le)|c = '} (complete level le’ disaggregated)
— distinguishing two subcases:
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Fig. 1. Example of a category hierarchy on regions

(a) \/ dom(le) = \/ dom(le’), i.e. the levels are “equivalent”, or
(b) this is not the case, i. e. the finer level covers a larger range.

To ensure completeness of disaggregation for a category ¢/, categories sub-
sumed by ¢ with semantics “¢/, not otherwise specified” will frequently be in-
troduced in the finer level.

A dimension on domain D primarily defines a category hierarchy of levels
covering that part of D which is of interest for the respective application domain.

Definition 3 (Dimensions and category hierarchies). A DIMENSION d =
(D, L, leg) on domain D is defined by

— a finite set L C Lp of levels and
— a ROOT LEVEL leg € L satisfying dom(leg) = {co} and Vie € L: Ve €
dom(le): ¢ < ¢o (co corresponds to a value “all”).

Relation “Q” restricted to L is called CATEGORY HIERARCHY of d.

Figure [T outlines a graph-based representation of a category hierarchy on
regions showing the respective categories only on state-level. Furthermore, Cases
(1), (2a), and (2b) in Definition Pl are marked — with “Hamburg” and “Lower-
Saxony” being subdivided in different ways and “finest region units” existing for
both of these states.

The sense in defining category hierarchies shall be summarized in the context
of using them in a dataflow-based analysis environment: They

1. define typical aggregation paths in multidimensional databases with respect
to one category attribute,

2. provide groups of categories aggregating completely to another category, and

3. guarantee disjointness of categories (for single-valued features).

Thus, they facilitate correct handling of macrodata — many approaches to sum-
marizability (cf. [9]) and automatic aggregation are made much easier by con-
sidering categories statements on features.
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3.2 Multidimensional Dataspaces

Macrodata define multidimensional dataspaces, the dimensionality of which is
described by category attributes and which contain fact data described by sum-
mary attributes in their cells.

Similar to dimensions defining possible values for category attributes, mea-
sures define types of summary attributes:

Definition 4 (Measures). A MEASURE m = (T, F) is defined by a set T of
possible measure values (e. g. the natural or real numbers, often supplemented by
some null-values) and a number of calculation functions defining how m can be
derived from different measures. In detail, F' is a set of pairs, each consisting of a
set of source measures {mq,...,my} and a function f: IN™a DX xma Ty

An example of a measure is the incidence rate with type “real” and calcula-
tion from “case count” and “person years” by division and weighting with m
—in this case, function f is just defined for value-sets with only one element pair.
Another example would be the age-standardized rate, which aggregates over a
set of age-specific case and population data in a weighted sum.

Summary attributes are “instances” of measures related to a specific object-
set and defining aggregation functions for aggregating summary data to coarser
levels or categories.

Definition 5 (Summary attributes). A SUMMARY ATTRIBUTE sa = (m, O,
f5m £288Y) on measure m is defined by

— the set of objects O described by sa,

— a (partial) SUMMARY FUNCTION f$'™: 20 — m.T defining the calculation
of sa-values for subsets of O,

— a family of (partial) AGGREGATION FUNCTIONS (f{%5") rer oco with f355":
IN™TXPr T, i.e. measure values for given categories c1,...,cn are
aggregated to a value related to the category c =c1 V...V cy.

sa is called SUMMARIZABLE w.r.t. feature f and object-set O if f{75" is
total, it is called DISJOINT SUMMARIZABLE if this function is defined for all sets
of pairwise disjoint categories.

Obviously, f5"™ and f?88" have to be consistent — we do without a formal
definition of this relation here.

Definition 6 (Category attributes). A CATEGORY ATTRIBUTE ca= (O, f,C)
is defined by a set of objects O described by a feature f and a set dom(ca) = C' C
Dy of categories describing f. Let CA denote the set of all category attributes.

Note that categories of an attribute are not restricted to one aggregation
level as is often the case in existing data models.

Now we are able to define dataspaces describing macrodata:
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Definition 7 (Dataspaces). A DATASPACE ds = (O, CA, sa) is defined by the
underlying object-set O, a set CA = {caq, ... can} of category attributes describ-
ing different features and a summary attribute sa satisfying sa.O = O = ca.O
for all ca € CA.

The instance of a dataspace is given by an object-set inst(O) C O and a total
function fs*: dom(cai) x ... x dom(ca,) — sa.m.T. This function is derived
from the summary function 5™ of sa — we leave out the details here.

Let DS denote the set of all dataspaces.

An example of a dataspace are population data (summary attribute “average
yearly population count”) by time and region (category attributes) with popu-
lation count being disjoint summarizable (by addition) over all features except
for those relating to the time dimension.

3.3 Aggregation and Restriction of Dataspaces

Aggregation and restriction are the two most important operations on multidi-
mensional dataspaces. Due to preparing definitions in the previous sections, we
are able to unite these two neatly in one single operation, namely derivation.
At first, derivation of categories will be introduced, describing how categories
are composed of other ones. Based on this composition of categories along one
dimension, complete dataspaces can be aggregated from finer ones by grouping
values of the respective measure using the associated aggregation function.

Definition 8 (Derivation of categories). A category ¢’ in domain D is said
to be DERIVABLE from a set C C D of categories if 3Co C C: ¢ = \/ Co. If
categories of C. are even pairwise disjoint, then ¢’ is called DISJOINT DERIVABLE
from C (w.r.t. a feature f € Fp and an object-set O).

Definition 9 (Derivation of dataspaces). DERIVATION of one dataspace
from another is defined by a (partial) function f3: DS x CA — DS. Given
a dataspace ds = (O, CA, sa) and a category attribute ca’ describing feature f,
fd7(ds, ca’) = ds’ is defined (“ds’ is DERIVABLE from ds”) if

1. cd’.O =0,

2. dca € CA: ca.f = f,

3. dom(ca’) C dom(ca) (only restriction, no aggregation needed) or sa is sum-
marizable over f and O, and

4. all categories in ca’ are derivabld] from dom(ca).

In this case, ds' = (O, (CA\ {ca}) U {ca’}, sa) with its instance satisfying
Ve € dom(ca’): f™Y(...,c .00 = sa. PR ({(F ™. eyl ) 0) e € Cud)

over the same object-set inst(O) as ds (with Cr — not necessarily unique — as in
Definition [8 and f™* denoting the instance of ds).

L If all categories are disjoint derivable from dom(ca), disjoint summarizability of sa
is sufficient in (3).
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Derivation of dataspaces is the basic operation in navigating through multi-
dimensional databases and will be investigated in detail in the next section.

In this section, fundamental concepts of MADEIRA have been introduced.
We had to skip over many interesting details of the model, as for example

— more than one summary attribute per dataspace,

— more than one object-set (and feature) described by an attribute,
— multiple object-sets, playing certain roles for summary attributes,
— null-values, set-valued features, and

— further basic operations on dataspaces (union, join, etc.),

but the ideas described so far will be sufficient to show in the remainder of this
paper how this underlying data model can be used to define and improve basic
data analysis facilities of VIOLA.

4 Interactive Data Processing Based on MADFEIRA

Interplay of the data model MADFEIRA and visual dataflow-based analysis in VI-
OLA is essential for describing analysis sessions to the user: The latter provides
him with the exact calculation history of (intermediate) results and the former
describes the respective meaning of data values by measure definitions, repre-
sented object-sets, and their classification by categories modelled independently
of a specific dataspace in dimensions and category hierarchies.

But also the definition of the visual programming language provided by VI-
OLA and internal data processing are significantly influenced and supported by
the design of MADEIRA. In the following, some examples and corresponding
ideas will be outlined without formalizing all details but using and motivating
the concepts of MADEIRA.

4.1 Flexible Data Management

In view of the fact, that navigation in dataspaces, searching for “interesting”
subspaces, and comparing subsets of a dataspace amounts to a substantial part
of exploratory data analyses, flexible data management support is of crucial
importance. Different useful variants of derivation as introduced in Definition
should be used to define operators (i.e. types of derivation nodes) of VIOLA
supporting typical navigation steps in a kind of visual query language.

Figure[Z shows some examples of deriving dataspaces from a one-dimensional
spatial dataspace and visualizing the respective results in different ways. The
numbers of derivation operators correspond to the types of derivation intro-
duced below. Three spatial aggregation levels are used: communities < wards <
regional prosperity (defining groups of wards with similar average income).

A derivation node (parameterized with a category attribute ca’) applies
fder(-, ca’) to any dataspace ds to be processed, with ca’ being defined by
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derivation (5)

grouping by average-income

Fig. 2. Instances of derivation in visual queries

a feature f of an object-set O,

— the corresponding category attribute ca of ds (if existing),

— one of the following five node types (cf. Fig. 2), and

— (in Case 2 to 5) a set of categories C' C Dy (e.g. a complete level),

such that dom(ca’) =

.V dom(ca) (complete aggregation of one attribute to a total).

. C' (“pure” derivation).

. {d € C"| ¢ derivable from dom(ca)} (only (disjoint) derivable categories).

. dom(ca) N{c € Dy |c <\ C'} (restriction to categories subsumed by C”).

. AAV{c € dom(ca) | c 2 '} | ¢ € C'} (non-complete (as opposed to Case 2)
grouping to categories in C").

T W N —

This list and the corresponding implementation is, of course, open for further
instances of derivation.

Thus, we see how explicit modelling of levels and categories (their disjointness
and equivalence) on the one hand and summary attributes with differentiated
aggregation functions on the other allow intelligent and — above all — automatic
aggregation of macrodata.

4.2 Selection of Analysis Methods

Graph nodes in VIOLA representing statistical analysis functions are determined
by the calculated measure m (cf. Definition []). Thus, selection of necessary and
suitable input data for a node is given by the calculation functions m.F'.
Correspondingly given a dataspace with a summary attribute for measure
m1, the out-port of the respective graph node may be connected to a node
representing measure m if m.F contains a tuple (M, -) satisfying my € M. Ad-
ditionally, further members of M define further input measures, i. e. dataspaces
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Fig. 3. Calculation of rates from case and population data

needed to calculate m (see the example in Fig. B). VIOLA should help the user
to find suitable corresponding graph nodes.

This concept of method selection might be improved by defining a type hier-
archy on measures which would allow to group elements of m.F. Furthermore,
weighting of applicability distinguishing more levels than just “yes” or “no”
might be introduced. This extends VIOLA to a simple knowledge-based system
giving advice which methods are better applicable to a given dataspace than
others. For example, some statistical procedures perform “better” on continuous
data (measures) than on discrete data or vice versa.

Selection of visualization functions might be supported in a similar way. Ad-
ditional inclusion of a dataspace’s category attributes (their features and dimen-
sions) in rating applicability would be very valuable here, e. g. for specifying that
maps are only applicable to spatial data or that certain charts afford one-, two-
or three-dimensional data. Finally, VIOLA is easily extended with new analysis
components by defining a new type of graph node, a new measure and the ways
of calculating it from existing measures.

4.3 Caching and Further Query Optimization

Data processing in VIOLA is demand-driven. After determining the descrip-
tions (given by summary and category attributes) of requested dataspaces for
all nodes of a dataflow-net by propagating descriptions of queries from data
sources through all network branches, the calculation of dataspace instances is
controlled by output nodes propagating data requests back to the data sources.

Each graph node corresponds to a cache entry in working memory which
makes available dataspaces for more efficient processing of further calculations
in different parts of a network or even different analysis sessions. Definition [
provides a semantic description of a cache entry. Before requesting input data
due to the network specification and afterwards calculating the result of a node,
the cache is searched for dataspaces from which the desired dataspace is derivable
(cf. Definition @)). Thus, also cache admission and replacement strategy base on
a measure of “generality” of dataspaces, describing how many other (typically
requested) dataspaces are derivable from a cache entry.

Definition and types of derivation as introduced in Sect. 1] also permit
combining subsequent data management procedures in a single derivation step
(and dataspace traversal) even w.r.t. different features. Moreover, data source
nodes might incorporate subsequent data management steps in a single query
unless intermediate results are needed.
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Different data source nodes relating to the same database can be processed
in a single database query which extends all requested dataspaces to a common
“superspace” from which single results can be derived, if necessary.

Summing up, cache management and optimization lead to a transparent
transformation of a data analysis graph specified by a user into another network
more efficiently processed. This facilitates efficient query processing as multiple
queries can be processed in combination, but also poses new questions of how to
handle interactive network modifications. Their translation into transformations
and extensions of the cache-based derivation graph in an “intelligent” way must
combine the paradigm of “dataflow-based visual queries” with known techniques
for query optimization.

4.4 Control Structures

MADEIRA also supports control structures allowing for more complex sequences
of data analyses. In this paper, we just want to mention loops describing repet-
itive processing of groups of calculations on different subspaces of a dataspace,
e. g. for automatic report generation or incidence monitoring. A “loop counter”
can be defined by

— a set of features and respective dimensions,
— an aggregation path consisting of a sequence le; <. .. <1le, of related levels,
— or a level le specifying a set of categories,

the elements of which are used as parameters of a derivation operator in different
loop iterations. Besides conditional branching, this defines a simple (especially
always terminating), but useful operator supporting typical routine tasks and
enhancing the strictly sequential data processing in existing OLAP-tools.

5 Interactive Graphics

Section 1] emphasized the importance of data management and navigation in
multidimensional dataspaces for performing data analysis flexibly and effectively.
This section will propose a different way of implementing these operations aiming
at active integration of the user into the exploration process (cf. [10]).

Similar to the idea of visual programming centering around interactive ma-
nipulation of the whole process of data analysis, special concepts of interacting
with analysis results are needed. Tables and graphics must not only constitute
final products, but should also serve as a starting point for further comparative
and deepening analyses.

Dynamic queries [I1] provide a simple, but powerful example to meet these
requirements. They enable the user to restrict dataspaces interactively during
inspection of results, e.g. using sliders over certain dimensions (or features).
This is simply implemented by data management nodes as introduced in Sect. [Z.T]
(typically of, but not restricted to type (4) or — using appropriate visual grouping
operators — (5)) which propagate their results in real-time. This kind of really
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Fig. 4. Linking two charts in a dataflow-programme

interactive navigation facilitates flexible search for interesting subspaces and thus
adds a further “dimension” to usually only one- or two-dimensional charts.
Based upon dynamic queries, linking of different charts dynamically relates
two or more visualization results with each other instead of relating data man-
agement and visualization (see e.g. [12]). A typical instance of linking is linked
highlighting: Subspaces of a dataspace selected in one chart (usually by a sub-
set of one category attribute’s elements) are highlighted in another chart that
shows a dataspace derived from the former (or a common ancestor). Figure H
outlines an exemplary implementation in a dataflow-chart: A dataset with case
data classified by year of diagnosis and age is visualized in two charts, one af-
ter aggregation over each dimension. Selection of age-groups in the first chart
highlights the respective shares of cases in all age-groups in the time chart.
Implementations of this concept in existing data analysis systems (e. g. S-Plus
or SAS-Insight) are often restricted to linking between charts that show parts of
the same dataspace. Besides, they allow no intermediate statistical calculations.
Modelling linking in a dataflow-based visual analysis environment as outlined
in Fig. [ provides much more flexibility and can be defined neatly. In terms of
Sect. [£], the chart serving as the “source” of linking just provides a “normal”
data management node with the set C’ of categories to define the category
attribute for derivation. This node anew can process an arbitrary dataspace with
a category attribute related to the respective feature. Furthermore, the user is
free to carry out further calculations before visualizing the linked dataspace.

6 Related Work

During the last few years, several approaches to modelling multidimensional data
have been proposed (cf. [3]). Most of them are based on a relational implemen-
tation of macrodata in star schemes. Powerful operations, also incorporating
microdata, especially support queries on very large business databases which
make use of various statistical analysis functions.
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In contrast to those, this contribution is intended to define a formal frame-
work of an interactive environment for data analysis which is closely oriented
to the “pure” multidimensional model and implements statistical functions by
separate operations outside (but via types of calculated measures related to) the
core data model. This tool primarily aims at supporting epidemiological studies
on “medium-sized” databases with up to some million cases.

One focus of this work is to neatly define categories and category hierarchies
as an indispensable foundation of structured and semantically definite navigation
on dataspaces. A similar modelling approach (yet not considering interactive
navigation) is found in [7].

Tools implementing dataflow-based visual programming in data analysis are
mainly found in the domains of image processing and scientific information visu-
alization (e.g. IBM Data Explorer [13] or AVS [14]). However, interactive explo-
ration and intelligent processing of multidimensional databases is possible with
restrictions only: typical OLAP-operations are not explicitly provided, immedi-
ate database support including caching mechanisms is missing, and interactive
graphics are not available.

Another similar approach is the project IDEA [15], which also designs an
environment for database-supported data exploration, but without taking special
requirements of handling multidimensional data into account.

7 Summary and Future Work

In this paper, some basic elements of a visual data analysis environment based
on a formal multidimensional data model have been introduced.

Visual language and formal model cooperate and complete one another in
making data analyses exactly comprehensible. The dataflow-view provides the
user with an appropriate overview of an analysis session and aims at easy opera-
tion and intuitive exploration, whereas the data model (especially the formal rep-
resentation of category hierarchies, measures and aggregation functions) serves
an exact definition of data semantics as well as correct and partially automatic
application of analysis methods.

However, several tasks are still subject to future work:

— incorporation of even more semantic metadata for better user support,

— complete implementation of MADFEIRA, possibly based on an existing data
warehousing or OLAP tool, which provides efficient management of multi-
dimensional data,

— integration of MADEIRA into a dataflow programming language using some
kind of formal workflow modelling,

— elaboration and implementation of the ideas introduced in Sect. @ and B, and

— evaluation of all concepts within an epidemiological information system for
the cancer registry of Lower-Saxony and (later on) in similar domains —
especially w.r.t. acceptance among typical user groups, e. g. epidemiologists.

2 Parts of the data model are already successfully implemented and used in routine
analysis, processing relational base data stored in an ORACLE database. Further-
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The crucial task in system design will be to provide an environment which

helps the user to concentrate on the exploratory data analysis process itself, to
interact with data and methods directly, and not primarily to operate a tool.
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