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Abstract. Data collections are distributed at many different sites and stored in
numerous different database management systems. The industry standard
CORBA can help to alleviate the technical problems of distribution and
diverging data formats. In a CORBA environment, data structures can be
represented using the Interface Definition Language IDL. Manually coding a
server, which implements the IDL through calls to the underlying database, is
tedious. On the other hand, it is in general impossible to automatically generate
the CORBA server because the IDL is not only determined by the schema of
the database but also by other factors such as performance requirements. We
therefore have developed a method for the semi-automatic generation of
CORBA wrappers for relational databases. A declarative language is presented,
which is used to describe the mapping between relations and IDL constructs.
Using a set of such mapping rules, a CORBA server is generated together with
the IDL. Additionally, the server is equipped with a query language based on
the IDL. We have implemented a prototype of the system.

1  Introduction

Integration of data from multiple, distributed and autonomous data sources is a
challenging problem in many domains. Semantic and technical heterogeneity is
common and data structures are often complex and evolve over time. The field of
Molecular Biology can serve as an example. Historic development and organizational
obstacles have prevented the definition and proliferation of standards, leaving end
users confronted with an overwhelming diversity in data formats, query languages
and access methods. Several proprietary systems like SRS [4] and Entrez [15] have
been developed for the integration and distribution of molecular and genomic data. A
Biologist nowadays has to find an access method to the desired data source, typically
on the WWW. Then he has to understand and use the interface, e.g. by typing in
keywords in a form, and finally he has to analyze the results, for instance by parsing
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HTML pages. Evolving data structures on the other hand, leave the developers of user
interfaces with the tedious task of keeping their Web sites up-to-date.

Clearly, this approach will not be able to cope with the increasing complexity,
diversity and amount of data. Several research groups, e.g. [14], have therefore started
to apply CORBA to alleviate some of the problems described. CORBA [10], [16], as
a middleware platform, has many advantageous features: it offers language, location
and platform transparency, which means that clients such as analysis programs and
visualization tools can access remote information as if they were local objects. In a
CORBA environment, data can be represented using the Interface Definition
Language (IDL). This allows clients to work with domain-specific data structures and
permits a flexible combination of data sources with different visualization and
analysis tools [7].

In this scenario, a CORBA server has to implement a mapping between database
structures and their IDL representation. Usually, this mapping is implemented
manually: the developer first specifies appropriate IDL definitions, lets the IDL
compiler generate the skeletons, and then adds the necessary implementation, mainly
code to access the database through a database gateway such as JDBC. However,
implementing a new CORBA server for each application and maintaining it in the
presence of evolving IDL definitions and database schemas is tiresome. Furthermore,
it is completely unclear how ad hoc queries can be supported in such a setting.

Another possibility is the automatic generation of IDL and CORBA server based
on the schema of the underlying database. But such an IDL is normally not what we
need for our concrete application. One reason is that in order to allow for the
interoperation of independently developed clients and servers it is advantageous to
agree on a common IDL [1].  Another reason is - as detailed in chapter 3 - that there
are many different ways to represent data in IDL. The different representations have
different advantages and disadvantages, and can significantly influence the
performance of a distributed system. The IDL is therefore highly application specific
and cannot be derived from a database schema only.

In this paper, we describe a system that offers a partial solution to these problems
for the case of relational databases. Many major and minor data collections in
molecular biology, like EMBL [17] or IXDB [9], utilize a relational database
management system. Furthermore, relational databases provide a powerful view
mechanism, which can be exploited to facilitate the mapping task. This also allows
for a higher degree of independence between the CORBA server and the schema of
the database.

The central idea of our approach is to automatically generate the server source
code based on a set of rules, which describe the mapping from a relational schema to
a target IDL. The generated server implements a query language, which is purely
based on the IDL definitions. Therefore, the user does not need to know the schema
of the relational database. The server can either be used directly, or the code can be
exploited as a skeleton for further customizations.

The following example, depicted in Figure 1, will be used throughout the text. The
schema represents a very simple model of a genome map. A genome map has a name,
the name of the represented chromosome and a set of markers (e.g. genes). Each
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marker has a name, a position on the map, and the information indicating whether the
marker belongs to the framework of the map or not.

GenomeMap Marker
markers

Boolean

frameworkMarker
positionnamechromosomename

String StringString
Float

Fig. 1. Example schema for genome maps and markers.

The following IDL is one possibility to represent this schema. The genome map is
represented by an interface, while markers are represented by structs. This has the
advantage, that the application can download all markers belonging to a map with
only one remote method invocation.

module Example {

    struct Marker {
    string name;
    float position;
    boolean frameworkMarker;
  };

  typedef sequence <Marker> Markers;

  interface GenomeMap {

    readonly attribute string name;
    readonly attribute string chromosome;
    readonly attribute Markers markers;

  };

}; // End of module Example

The rest of the paper is organized as follows. The architecture of the system is
described in section 2, the mapping language is presented in section 3,  query
possibilities of the system are examined in the section 4,  related work and further
issues are discussed in section 5 and 6.
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2 Architecture

Figure 2 depicts an overview of the architecture of the system. The process of
generating a CORBA wrapper is as follows: The first step is to decide what IDL
optimally serves the application. Then one or more IDL views can be defined using
our specialized language. The view definitions describe the mapping between IDL
constructs on one side and tables and columns on the other side. Using these rules, a
generator creates both a CORBA server and a file with the implemented IDL. The
generated IDL can be used to implement a CORBA client for this server.

Mapping
Definition IDL

CORBA

Server

CORBA

Client

Generator

SQL

generates

gene-

rates

ORBRDBMS

Fig. 2. Architecture

The client can query the server using a query language, which is based on the
generated IDL. The queries are translated to SQL queries using the definitions of the
mapping language. The results are then translated back in the required IDL
representation and returned to the CORBA client.

3 Mapping of a Relational Schema to IDL

We can distinguish between approaches that use CORBA only for the infrastructure
of the system, treating data objects and queries basically as strings or bit-streams, and
others that also model the data itself in IDL. While the former is for instance followed
by [3], we adopt the latter possibility. The main advantage of this solution is the
reduced impedance mismatch. The ultimate goal is that clients can be developed
based purely on the automatically generated stubs, without having to decode bit-
streams or strings into domain objects.
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There are a number of different possibilities to represent data in IDL. For example
it is possible to model database entries either as structs or as interfaces. Both
approaches have advantages and disadvantages. Interfaces can resemble a conceptual
data model very naturally, but are often too slow since every method invocation goes
over the network. Structs in contrast are copied by value and then accessed locally.
Structs are therefore more suitable for bulk data transfers. On the other hand, structs
neither support inheritance nor associations. If such concepts are used, they need to be
circumscribed. This can for instance occur if an extended entity-relationship model is
used as the starting point for the IDL development. The optimal representation of a
relational schema in IDL is strictly application dependent. To offer maximum
flexibility, our system supports both structs and interfaces.

We will first present the concepts of the mapping language and its grammar, then
we give an example, and finally we discuss the generated IDL of the CORBA server.

3.1. The Mapping Language

In this section we describe a high-level language, which can define mappings between
relations and columns on one side and different IDL types on the other. The IDL is
completely specified by the mapping definitions. To facilitate the task, we restrict the
language to the most often used constructs of IDL: modules, the basic types long,
float, string, boolean, the constructed type struct, the template type sequence, and
interfaces. Interfaces are restricted to read-only attributes. To keep the mapping
language simple and without loss of generality we assume that relational views can be
used to get closer to the needed IDL. This means that mapping possibilities, which
can be expressed by a relational view are not considered here. More specifically:

• Every simple type in the IDL (long, float, string, boolean,) is represented directly
by one table attribute. No null-values are permitted.

• All single-valued members (attributes) of a struct (interface) can be found in the
same table.

• Multi-valued members (attributes) of a struct (interface) are stored in a different
table, which is connected to the base table by foreign keys.

Views
The top-level construct of the mapping language is the view definition. A view has a
name and is associated with a table and the mapping for an IDL type, which is either a
struct or an interface (xxx_mp in the grammar means: mapping definition for xxx).
Different views can use the same IDL types based on different tables.

view ::= (view <view_name>
          table <table_name>
          <interface_mp> | <struct_mp>)
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Interfaces
The mapping definition for interfaces specifies first the IDL name of the interface
together with all interface names from which it inherits. All interface names are
scoped to specify the appropriate IDL module. The extended interfaces are merely
necessary to define the IDL type - they do not affect the mapping. Especially they do
not imply any set inclusion properties between different views represented by these
interfaces. Then the primary key for the table is given. The key is necessary to allow
the CORBA object adapter to keep track of the connection between object references
and database entries. For each attribute, the attribute name and the mapping for the
attribute type is given. All attributes have to be specified here, including those
inherited from other interfaces.

interface_mp ::= (interface <scoped_interface_name>
                  extends (<scoped_interface_name>*)
                  keys (<column_name>*)
                  (<attribute_name> <data_type_mp>)+)

Structs
For every struct the scoped struct name is specified as well as the mapping for each
member. Since structs are passed by-value, there is no need for keys.

struct_mp ::= (struct <scoped_struct_name>)
               (<member_name> <data_type_mp>)+)

Data Types
The type of an attribute or struct member is either a basic type or an object reference
or a struct or a sequence.

data_type_mp ::=   <basic_type_mp>
                 | <reference_mp>
                 | <struct_mp>
                 | <sequence_mp>

Basic Types
Every type mapping is defined in the context of a table. All basic types are directly
represented by one of the table’s columns. The only exception is the type boolean,
which does not exist in some relational databases. In this case it is necessary to give
additionally the value which represents true.

basic_type_mp ::=  (boolean <column_name> <true_value>)
                 | (long    <column_name>)
                 | (float   <column_name>)
                 | (string  <column_name>)



                                                    Constructing IDL Views on Relational Databases           261

References
This type represents object references. The corresponding interface has to be defined
in a separate view. In this case it is necessary to specify the connection between the
current table and the table of the referenced view. This is done by giving the primary /
foreign keys of the two involved tables.

reference_mp ::= (reference <view_name>
                  keys (<column_name>+)
                       (<column_name>+))

Sequences
The data, which belongs to a sequence, is multi-valued and therefore stored in a
different table. Again we have to specify the connecting columns of the two tables. In
the case where the subtype is an object reference, it is sufficient to give the view
name instead of a complete reference mapping as described above. The reason is that
the connecting columns are already specified in the sequence mapping. Since
sequences are ordered it is additionally necessary to specify an order-by-clause.

sequence_mp ::= (sequence <scoped_sequence_name>
                 table <table_name>
                 keys (<column_name>+) (<column_name>+)
                 <sequence_type_mp>
                 order_by <order_by_clause>)

sequence_type_mp ::=   <struct_mp>
                     | <sequence_mp>
                     | <basic_type_mp>
                     | <view_name>

3.2 Example

The example is based on the schema and IDL given in the introduction. We define a
mapping using the tables of the relational schema depicted in Figure 3. The attribute
map_id in the table map_markers is the foreign key of the table maps.

Table: map_markers

map_idpositionid fw

Table: maps

chromosomeid

Fig. 3.  Relational schema.
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The mapping definition directly reflects the nested interface-sequence-struct structure
of the IDL given in section 1. Note that in the opposite case, where a struct contains a
reference to an interface, the interface would be defined in a separate view.  Also note
that the nesting of IDL modules does not have to be the same as the nesting of the
mapping language. For example, it is possible that a struct contains another struct
from a completely different module.

 ( view GenomeMaps
  table maps
  ( interface Example::GenomeMap
    extends ()
    keys (id)
    ( name (string id) )
    ( chromosome (string chromosome) )
    ( markers
      ( sequence Example::Markers
        table map_markers
        keys (id) (map_id)
        ( struct Example::Marker
          ( name (string id) )
          ( position (float position) )
          ( frameworkMarker (boolean fw T) ) )
        order_by position
      )
    )
  )
)

3.3 The Generated IDL

Given the mapping definitions in section 3.2, a set of IDL definitions can be
automatically generated. The first part of this IDL represents the data as specified in
the mapping language. In our example it is identical with the IDL given in the
introduction. The second part specifies the API for the database itself and defines
methods for querying and data retrieval. This works as follows: The Evaluator
interface has a get method defined for each view. The client can specify here a where-
clause similar to SQL queries (see next section). The evaluator returns a reference to
an iterator. Again, there is a separate iterator specified for each view. The iterator has
a next method, which returns object references or structs of the type defined in the
view. Additionally there are methods count and next_n to allow the client to optimize
the data retrieval. For our example the following IDL is generated:

module Views {

  exception NoMoreElements {};
  exception InvalidQuery {};
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interface Iterator {
    boolean more();
    void close();
  };

  typedef sequence<Example::GenomeMap> GenomeMapSeq;

  interface GenomeMaps: Iterator {
    Example::GenomeMap next() raises(NoMoreElements);
    GenomeMapSeq next_n(in long n);
  };

  interface Evaluator {
    long count(in string viewName, in string where)
         raises (InvalidQuery);
    GenomeMaps get_GenomeMaps(in string where)
               raises (InvalidQuery);
  };

}; // End of module Views

Note that the count method can be used for all views implemented by the server
whereas each get method is defined for only one view.

4 Queries

Our approach maps a relational schema into IDL, thereby alleviating the infamous
impedance mismatch between application code and relational database. Query results
are always represented by a predefined type, either structs or object references. This is
naturally achieved by class specific get methods and iterators as described above.
Using this approach, we can avoid the usage of the generic IDL type any. Anys are
less efficient for the data transfer and inconvenient to use in client programs.
However, using fixed result types inevitably restricts the query power, as arbitrary
joins and projections have to be disallowed. In practice this restriction is of little
significance and shared by many other applications such as digital libraries.

The get methods of the Evaluator interface takes as input parameter a string, which
is comparable to a SQL where-clause. The predicates of the query are formulated
using attribute names and member names of the IDL interfaces and structs. Client
code depends therefore only on the IDL and is immune against most schema changes
in the database.
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4.1 The Query Language

We introduce the language informally using some examples. Conditions on basic
types can be specified using the predicates ‘<’, ‘>’, ‘<=’, and ‘>=’. Predicates can be
combined using ‘and’, ‘or’ and ‘not’. If a member or attribute contains a sequence
then the quantifiers ‘exists’ and ‘all’ can be used. Queries can contain nested
subqueries to specify embedded structs or referenced objects.

Examples:
We assume that a view for markers exists for the IDL in the main example. The
following where-clauses could be specified in the get_Markers method. Note that in
this case structs and not object references would be returned. If, as in Q4, several
member conditions are specified, then all conditions have to be true.

Q1: “All markers“
Æ  ““

Q2: “The markers with the name ‘RH2345’ and ‘RH5432’ “
Æ (name (or ‘RH2345’ ‘RH5432’))

Q3: “All markers except the marker with the name ‘RH2345’  “
Æ (name (not ‘RH2345’))

Q4: “All non-framework markers with a position greater than 100“
Æ (frameworkMarker false) (position (> 100))

Q5: “All markers with a position between 20 and 30“
Æ (position (and (>= 20) (<= 30)))

For the view GenomeMaps, as defined in the last section, the following queries are
possible. The GenomeMap attribute markers contains a sequence of structs. At this
place the quantifiers exists and all can be used. Inside the quantifier a specification for
the struct has to be given, which is a list of member conditions as in Q1-Q5.

Q6:  “All maps which contain the marker with the id ‘RH3456’ “
Æ (markers (exists (name ’RH3456’)))

Q7: “All maps which contain only framework markers“
Æ (markers (all (frameworkMarker true)))

4.2 Query Mapping

The translation of our query language to SQL is based on the mapping rules. As these
rules always associate each struct or interface with one table, this translation is fairly
straightforward. Nested queries are translated to nested SQL statements using the
predicate ‘in’. We give the translation of queries Q2 and Q6 as examples. Again we
assume the relational schema in 3.2.
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Q2: select distinct id, position, fw from map_markers
    where id=‘RH2345’ or id=‘RH5432’

Q6: select distinct id from maps
    where id in (select map_id from markers
                 where id=’RH3456’))

Note, that in Q2 all information on the markers is retrieved whereas in Q6 only the
key. The reason is that in Q2 a struct is returned, which has to contain all data, while
in Q6 only an object reference is returned.

5 Related Work

We are not aware of any other project that follows our track of generating CORBA
servers and IDL based on a set of declarative mapping rules. However, a number of
research areas share problems. For instance, mapping relations to IDL interfaces is
related to object-relational mapping (e.g. [12], [18], [20]). The mapping step,
consequently called “semantic enrichment“ in [6], can in general not be automated
because the relational schema simply does not carry the necessary information.
Hence, the mapping rules must be specified by a human operator, as done in our
approach.

The translation of object-oriented queries into a query against a semantically
equivalent relational schema is covered in depth in [5] and [13]. The approach of [5]
is similar to ours in that they also assume that each (object-oriented) class is
represented by exactly one (relational) table. However, our query language is only a
subset of theirs, as we do not treat path expressions. [13] considers extensional
relationships in inheritance hierarchies by mapping the translation into DATALOG
programs, which are used as a mediator between the query and the database. In
contrast, for our mapping we do not require nor guarantee any relationships between
extents of interfaces that are in a specialization relationship.

Another related research area is the integration of database systems in a CORBA
framework. [8] discusses several design issues in this context, including the
consequences of using structs or interfaces for object representation. They clearly
point out that it is in general very difficult to achieve full relational query power
through CORBA, mainly due to the static type system. The OMG itself has
contributed to this area through the “Object Query Service Specification“ [11].
However, as detailed in [8] and [19], this specification has severe pitfalls, and, to our
knowledge, has not been implemented by any of the commercial ORB vendors. For
instance, it does not support any representation of domain objects on the CORBA
level.
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There are only few commercial tools available, which support the generation of
CORBA access layers for relational databases. For example Persistence TM1 defines
an object-oriented schema on top of a relational schema. A programming library is
generated which makes the data accessible through a set of C++ classes. Additionally
the tool can generate a CORBA server, which maps the OO schema into IDL and uses
the library to access the database. The main problem with this tool is the limited
influence the developer has in the choice of the generated IDL. It is purely interface-
based with no support for struct-based representations, which are essential to ensure
sufficient performance. Hence, in real-life applications, it is necessary to change the
generated CORBA server to a great degree by hand. But these changes are not visible
for the query processor. A similar approach is taken be the OPM project [2]. We
believe that our method is a more direct and flexible way of achieving a CORBA
interface to an existing relational database.

6 Discussion

We have presented a method for the semi-automatic generation of CORBA wrappers
for relational databases. Compared to the two other major approaches – hand-coding
or completely automatic generation – our system offers many advantages. CORBA
views can be defined easily, allowing many applications to share data, each with its
own IDL. It is straightforward to generate redundant IDL definitions, for instance
containing both a struct and an interface for the same data. This leaves it to the client
application to choose the most convenient access method.

The server is equipped with a query language, which can express complex
conditions. Usage of this query language does not require any knowledge of the
schema of the underlying database, but is entirely based on the IDL itself. The client
code is therefore completely independent of schema changes, provided that the
mapping rules are adjusted. Although, it is clear that our query language can only
express a limited set of queries, it proved to be sufficient in our application domain.

Using a set of mapping rules, the system generates JAVA source code for the
server. We have chosen this compilation strategy for several reasons. Firstly, it offers
a considerably better performance compared to an interpretation of the rules at run-
time. Secondly, the code can be used as a template for further customizations. Finally,
it allows the usage of skeleton code generated by the IDL compiler, which
significantly simplifies the code generation task. The disadvantage is that every
change in the mapping rules requires the regeneration of the server. However, the
choice between interpretation and compilation is an implementation detail, which
does not touch the principal of our approach.

Some problems remain when specifying a query based on IDL definitions.  They
stem from the fact that IDL was designed to specify an API and not to model data. An
example is the usage of inheritance. If an interface A specializes an interface B then a

                                                          
1 http://www.persistence.com
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query against B does not necessarily return a superset of the same query against A.
Such a behavior can be enforced using the mapping language and appropriate
relational views, but it is not visible from the IDL alone. Other problems can occur
when the requirements for querying are not identical to the requirements for data
retrieval. For instance we might not want to retrieve the information indicating
whether a marker belongs to the framework of a map but still be able to use it in a
query. These problems would vanish if we use the schema and query language of the
underlying relational database and IDL merely represents query results. The
disadvantage would be that then the user has to know the relational schema, the IDL
and the mapping between the two.

Future investigations will go into extensions of the mapping language.  For
example we will include a possibility to express simple inheritance on structs through
the use of unions. We also aim to improve the query language by adopting a more
SQL like syntax.
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