Towards an Object Petri Nets Model for
Specifying and Validating Distributed
Information Systems

Nasreddine Aoumeur* and Gunter Saake

Institut fiir Technische und Betriebliche Informationssysteme
Otto-von-Guericke-Universitdat Magdeburg
Postfach 4120, D-39016 Magdeburg
Tel.: ++449-391-67-18659, Fax: ++49-391-67-12020
{aoumeur |Saake}@iti.cs.uni-magdeburg.de

Abstract. We present first results towards a tailored conceptual model
for advanced distributed information systems regarded as open reactive
and distributed systems with large databases and application programs.
The proposed model, referred to as CO-Nets, is based on a complete inte-
gration of object oriented concepts with some constructions from seman-
tical data modeling into an appropriate variant of algebraic Petri Nets
named ECATNets. The CO-Nets behaviour is interpreted into rewrit-
ing logic. Particularly, it is shown how CO-Nets promote incremental
construction of complex components, regarded as a hierarchy of classes,
through simple and multiple inheritance (with redefinition, associated
polymorphism and dynamics binding). Each component behaves with re-
spect to an appropriate intra-component evolution pattern that supports
intra- as well as inter-object concurrency. On the other hand, we present
how such components may be interconnected, through their interfaces,
with respect to an inter-component interaction pattern that enhances
concurrency and preserves the encapsulated features of each component.
Moreover, by interpreting the CO-Nets behaviour into rewriting logic,
rapid-prototypes can be generated using rewrite techniques and current
implementation of the MAUDE language particularly. The CO-Nets ap-
proach is presented through a simplified Staff management system case
study.

1 Introduction and Motivation

Due to an ever-increasing in size and space of present-day organizations, both
system designers and users of information systems —that are intended to rep-
resent and then computerize accurately (the most part of) such realities— are
nowadays confronted by challenging problems. Indeed, while the size-increasing
has resulted in more and more complex and multi-layered systems those com-
ponents are loosely connected and behaving mostly in a true concurrent way,

* This work is supported by DAAD grant.

M. Jarke, A. Oberweis (Eds.): CAiSE’99, LNCS 1626, pp. 3813951 1999.
© Springer-Verlag Berlin Heidelberg 1999

382 Nasreddine Aoumeur and Gunter Saake

the space dimension is reflected by a high distribution of such systems over dif-
ferent (geographical) sites, where different forms of (synchronous/asynchronous)
communication are often required.

With the aim to master such challenging dimensions that go beyond the tradi-
tional information systems specification models — including, data-oriented mod-
els in general [EMS85|] [HK8T], process-oriented models (CCS [Mil89], Petri nets
[Rei85]) or even ’sequential’ object oriented (OO) models— recent research advo-
cates particularly the formal integration of the object paradigm with concurrency
as basic requirement for advanced conceptual modeling [FJLS96] [ECSD9S].

The great efforts undertaken in the last decade, towards providing the (con-
current) OO paradigm with theoretical underpining foundation, have forwarded
very promising OO formalisms. More particularly, OO foundations are based on
the algebraic setting in the general sense including HSOA [GD93]; DTL (Dis-
tributed Temporal Logic) [ECSD98] and rewriting logic [Mes92]. OO formalisms
based on (high level) Petri nets have also been proposed recently including:
OPNet [Lak95], CLOWN [BdC93], CO-OPNets [Bib97].

However, we claim that much work remains ahead and there is up-to now
no ideal approach that fulfills all the expected requirements. Indeed, besides a
sound formalization of OO concepts and constructions, an appropriate approach
for the distributed information systems should be, among others, appropriate
for validation /verification purpose and more or less easy to be understand to
non-experts users. Last but not least database aspects like views and queries are
also important.

On the basis of these motivations, we present in this paper the first results of
our investigation towards a suitable conceptual model, for specifying distributed
information systems, that fulfills (as more as possible) the above requirements.
The model, referred to as CO-Nets, is based on a complete and a sound integra-
tion of OO concepts and constructions into an appropriate variant of algebraic
Petri nets [Rei91] named ECATNets [BMB93]. The semantics of the CO-Nets
approach is expressed in rewriting logic [Mes92]. In some details, particular to
the CO-Nets approach are the following features:

— A clean separation between data —specified algebraically@ and used for de-
scribing object attributes (values and identifiers) and message parameters—
and objects as indivisible and uniquely identified units of structure and be-
haviour.

— The modeling of simple and multiple inheritance, with possibility of meth-
ods overriding, is achieved in a straightforward way using subsorts and an
appropriate ’splitting and recombination’ axiom (inherent to the CO-Nets
semantics) of the object state at a need. In the sequel, a hierarchy of classes
will be referred to as a component.

— For capturing the notion of a class, rather as a module, we distinguish be-
tween local, and hence hidden from the outside features (as a part of the
object state as well as some messages) and external, observed and possibly

! Using ordered sorted algebra(OSA).

Towards an Object Petri Nets Model 383

modifiable from the outside features. The local behaviour of each module is
ensured by an appropriate intra-component evolution pattern that enhance
intra- as well as inter-object concurrency, while the interaction between dif-
ferent (external features of) modules follows an inter-component commu-
nication pattern that enhance concurrency and preserve the encapsulated
features of each module.

— The CO-Nets semantics is interpreted in rewriting logic that is a true-
concurrent operational semantics allowing particularly rapid-prototyping us-
ing concurrent rewriting techniques in general and current implementation
of the MAUDE language specifically.

The rest of this paper is organized as follows: In the second section we infor-
mally introduce the simplified staff management case study. In the third section,
using this case study and without entering into technical details (that can be
found in [Aou99)]), we show how the CO-Nets approach allows for specifying (in-
dependent) templates and classes. The fourth section deals with the semantics
aspects of the CO-Nets approach. In the next section, we introduce how more
advanced abstraction mechanisms, with mainly inheritance and interaction, are
modeled in the CO-Nets. Some concluding remarks are given in the last section.

For the rest of the paper we assume the reader is familiar with some basic
ideas of algebraic Petri nets and rewriting techniques. Good references for these
topics are [EMS5], [Rei91] for the algebraic setting and algebraic Petri nets, and
[D.790), Mes92] for rewriting techniques. We use for algebraic descriptions an OBJ
notation [GWMT92]. Moreover, due to space limitation, a deep introduction to
the ECATNets model can be found in [Aou99]

2 The Staff Management Case Study

This section presents a simplified form of a general case study dealing with a staff
management more tailored to the (Algerian) universities staff systems [Aou89].
The staff management we consider concerns the employees-career management
and the employee payment system; however, due to space limitation we present
only the first system. Depending on their different functionalities, we find three
classes of employees: The lecturer (and the researchers), the administrators and
the technical and security staff. For sake of simplicity, we abstract away from
this difference, and only deal with their common characteristics.

According to the ’states’ through which can pass each employee, the staff
management system can be informally described as follows:

— Each person, verifying some conditions like the (minimal) age, the required
degree (or necessary formation), etc, can apply for a job at the university. The
minimal information that should be provided in this case are: the name, the
surname, the birth-day, the diploma, the address, his/her familiar situation
and so forth. If (s)he is accepted as a new employee (i.e. if there is sufficiently
budget items corresponding to the inquired function and the administrative
committee estimate this recruitment positively), (s)he becomes an employee

384 Nasreddine Aoumeur and Gunter Saake

(as probationer) at the university. In this case some further information is
systematically added like the function, the reference number (for uniquely
identifying each employee), the department name to which (s)he is appointed
and the recruitment date.

— After some period that go from nine months to two years and only if the
employee have had in this (probation) period no caution, (s)he is appointed
as a titular; in which case, further informations will be added like the number
of rungs (initialized by 1), (administrative) responsabilities if any, etc. Also,
we note that each titular employee may progress (with one unit) in the rung
after a period that go from one to three years.

— Each employee, on probation or titular, can go on a leave; where, two kinds
of leaves are possible: regular leaves, that are granted to all employees, with
a fixed, same period and date (generally, at the beginning of July for 45
days). The exceptional leave such as sick leave necessitates in addition to
the period and the date, the matter of such leave.

— After some professional misconducts, the employee may be subject to disci-
plinary measures that go from salary diminution or a warning to a complete
dismissal.

— Each employee may leave temporary or completely the university when nec-
essary. Partial leaves are for example scientific leave to another university
(for researcher) or improvement leave (for the administrators and lecturers).
The complete leaves, are for example resignation, pensioned off, etc.

3 CO-Net: Template and Class Specification

This section deals with the modelling of the basic concepts of the object oriented
paradigm, namely objects, templates and classes. We first present the structure
or what is commonly called the 'object’ signature templates [EGS92|, then we
describe how ’specification’ templates and classes are specified.

3.1 Template Signature Specification

The template signature defines the structure of the object states and the form
of operations that have to be accepted by such states. Basically, in the CO-Nets
approach, we follow the general object signature proposed for MAUDE [Mes93].
That is to say, object states as regarded as terms —precisely as a tuple— and
messages as operations sent or received by objects. However, apart from these
general conceptual similarities, and in order to be more close to the aforemen-
tioned information system requirements, the OO signature that we propose can
be informally described as follows:

— The object states are terms of the form (Id|atry : vali, ..., atry : valg,at_bsy :
vall,...,at_bsy : vall); where Id is an observed object identity taking its
values from an appropriate abstract data type OId; atry,..,atry are the
local, hidden from the outside, attribute identifiers having as current values

Towards an Object Petri Nets Model 385

respectively valy, .., vali. The observed part of an object state is identified by
at_bsy, ...,at_bss and their associated values are valf, ..val’,. Also, we assume
that all the attribute identifiers (local or observed) range their values over
a suitable sort denoted Ald, and their associated values are ranged over the
sort Value with OId < Value (i.e. OId as subsort of Value) in order to
allow object valued attributes.

— In contrast to the indivisible object state proposed in MAUDE that avoid
any form of intra-object concurrency, we introduce a powerful axiom, called
’splitting / recombination’ axiom permitting to split (resp. recombine) the
object state out of necessity. As will be more detailed later, this axiom, that
can be described as follows: (Id|attrsl|§, attrss) = (Id|attrsy) @ (Id|attrss),
allows us in particular, first, to exhibit intra-object concurrencyt’l Second,
it provides a meaning to our notion of observed attributes by allowing sep-
aration between intra- and inter-component evolution (see later). Third, it
allows us to simplify drastically the conceptualization of the inheritance.

— In addition of conceiving messages as terms —that consists of message’s
name, the identifiers of the objects the message is addressed to, and, possibly,
parameters— we make a clear distinction between internal, local messages
and the external as imported or exported messages. Local messages allow for
evolving the object states of a given class, while the external ones allow for
communicating different classes using exclusively their observed attributes.

All for all, following these informal description and some ideas from [Mes93],
the formal description of the object states as well as the classes structures, using
an OBJ |[GWM™92] notation, takes the form presented in figure [T}

Remark 1. The local messages to a given class Cl have to include at least the
two usual messages: messages for creating a new object state and messages for
the deletion of an existing object; we denote them respectively by Ade; and
Dli¢y.

Ezample 1. As informally described, each employee (on probation) have to be
characterized, at least, by his name (shortly, Nm), surname(Sn), birthday(Bd),
address(Ad), diploma(Dp), function(F'¢) and recruitment date(Dr). Hence, w.r.t.
our state structure, the employee structure takes the form (Id|Nm : N;,Sn :
Si,Bd : Bi,Ad : Ai,Dp : Dpi,FC : Fi,D’f' : DTZ'>; where Ni,Si,Bi,Ai,Dpi,D’f'i
are the actual values of the attributes and Id is a logical identity represent-
ing the employee reference number. Besides this state structure, the main op-
erations (regarded as messages) that we consider are: the departure on leave,
Lv(Id, Dt, Pd, Mt), where Id is the identity of the concerned employee, Dt the
date, Pd is the period and Mt is the matter. The sanction operation, Sc(Id, Mt,

2 attr; stands for a simplified form of atr;i : val;1, ..., atryk : vali,.

3 In the sense that two messages sent to the same object and acting on different
attributes can be performed (i.e. rewritten) parallely by splitting the two parts using
this axiom.

386 Nasreddine Aoumeur and Gunter Saake

Dg), with Mt as the matter and Dg is the kind of the sanctiord. Also, we give
the possibility for an employee to change his/her address, Chg(Id, Nad), with
Nad as a new address. With respect to the operation of leave, first we associate
another message for controlling the respective (date of) return to the work; sec-
ond we introduce a new attribute denoted as Lv that indicates if an employee
is on leave or not. Similarly, we add a new attribute Sc that keeps the sanction
information.

obj Object-State is

sort AId .

subsort 0Id < Value

subsort Attribute < Attributes

subsort Id-Attributes < Object

subsort Local-attributes External-attributes < Id-Attributes

protecting Value 0Id AId .

op _:._ : AId Value — Attribute

op _,_ : Attribute Attributes — Attributes [associ. commu. Id:nil]

op (|-) : 0Id Attributes — Id-Attributes

op -® .- : Id-Attributes Id-Attributes — Id-Attributes
[associ. commu. Id:nil]

vars Attr: Attribute ; Attrs;, Attrss: Attributes ; I:0Id .

eql (I|attrsi) @ (I|atirss) = (I|attrsy,attrsa)

eq2 (I|nil) = I endo.

obj Class-Structure is
protecting Object-state, s-atri,...,s-atr,, s-argii,i,.., S-argmu,ii,
.,S-argil,1,...,S"argil, i1
subsort Id.obj < 0Id .
subsort Mes;;, Mes;2,...,Mes;; < Local Messages
subsort Mes.;, Mesca,...,Mesce < Exported_Messages
subsort Mes;;, Mes;2,...,Mes; < Imported_Messages

sort Id.obj, Mes;;, . . . ,Mesj
(* local attributes *)
op (latry:_, ..,atry:_) : Id.obj s-atr; ...s-atry

— Local-Attributes.

(* observed attributes *)

op (_|atrbs: :, ...,atrbsy :) : Id.obj s-atbs; ...s-atbsy
— External-Attributes.

(* local messages *)

op ms;1: s-argp,1 ...sS—argp 1 — Mesp

(* export messages *)

Op MmSe1: S—argei,1 ...S8-argel,el — Mese

(* import messages *)

Oop ms;1: sS-arg;1,1 ...sS-arg,;1 — Mes;
endo.

Fig. 1. The template signature specified in an OBJ notation

4 With the convention that Dg = 1 corresponds to a warning and Dg = 2 to a complete
dismissal.

Towards an Object Petri Nets Model 387

Respecting the general template schema described above, the employee template
may be described as follows:

obj employee is
extending Class-structure .
protecting nat string date .
sorts Emp LV SC CHG PYM RET .
subsort Local-Emp Observed-Emp < Emp .
subsort Id.emp < 0Id .
(* Hidden attributes *)
op (|Dr:_ Ad: ,Dp:_Lv:_Sc:_): Id.emp date
string string bool nat—Local-Emp.
(* Observed attributes (by the payment system) *)
op ({Nm:_,Sn:_Bd:_Fc:_):
Id.emp string string date string — Observed-Emp.
(* Local messages *)
op Lv : Id.emp date nat string — LV .
op Sc : Id.emp string nat — SC .
op Chg : Id.emp string — SC .
op Ret : Id.emp date — RET .
(* Exported messages *)
op Py : Id.emp string nat — PYM .
endo.

3.2 Template and Class Specification

On the basis of the template signature, we define the notion of template specifi-
cation as a CO-Net and the notion of class as a marked CO-Net. Informally the
associated CO-Net structure, with a given template signature, can be described
as follows:

— The places of the CO-Net are precisely defined by associating with each
message generator one place that we called 'message’ place. Henceforth, each
message place have to contain message instances, of a specific form, sent to
the objects (and not yet performed). In addition to these message places,
we associate with each object sort one ’object’ place that has to contain the
current object states of this class.

— The CO-Net transitions reflect the effect of messages on the object states to
which they are addressed. Also, we make distinction between local transitions
that reflect the object states evolution and the external ones modeling the
interaction between different classes. The requirements to be fulfilled for
each transition form are given in the subsection below. The input arcs are
annotated by the input conditions, while the output arcs are labelled by the
created tokens. Both inscriptions are defined as multisets of terms respecting
the type of their input and /ot output places—the associated union operation
is denoted by .

— Conditions may be associated with transitions. They involve attribute and /or
message parameters variables.

388 Nasreddine Aoumeur and Gunter Saake

Ezxample 2. For the staff management system that we consider here we have
just the employee class. Following the above class definition, the CO-Net de-
scribing this class is composed of an object place denoted by Emp containing
the employee state and of five message places denoted by Leav, Punish and
Chyg, return and del corresponding respectively to the (go on)leave, (being)
punished, change of the address, the return from a leave and possibly the fire.
The effect of each message is described by a transition that takes into account
just the relevant attributes. For example, the message Chg(Id, Nad) that allows
to change the address of an employee identified by Id enters into contact with
just the address component of this employee state. This is possible only due to
the ’splitting / recombination’ axiom. Following this, the CO-Net representing
the employee class is depicted in figure Bl The symbol ¢ denotes () as in the
ECATNets model [BMB93], and it means that the invoked tokens should not to
be deleted.

The Employee Class

<ElSc:S+1>

<E|Lv: True>
<E | Ly : False>

\ <E|Ad: Nd>

<E | Ad:D>

<el | Nm:nl,Sn:sl,..,Iv:F,Se:0> EMP

<E|Lv: True>

<ck,Nm:nk,Sn:sk,...,Lv:T,Se:1>

<E I Lv : True>

<E | Lv : False> <E|Sc:S>

Lv(E,Dt,Pr)

Return

rt(ei,dti)

Rg Lv

date=July

Lv(E,July,45)

rt(ep.dtp)

RY(E,Dtr)

<E Ly : False>

Fig.2. The Employee Class Modeled as CO-ATNet

4 CO-Nets: Semantical Aspects

After highlighting how CO-Nets templates, as description of classes, are con-
structed, we focus herein on the behavioural aspects of such classes. That is,
how to construct a coherent object society as a community of object states and
message instances, and how such a society evolves only into a permissible society.
By coherence it is mainly meant the respect of the system structure, the unique-
ness of object identities and the non violation of the encapsulation property.

Objects Creation and Deletion. For ensuring the uniqueness of objects iden-
tities in a given class denoted by Cl, we propose the following conceptualization:

1. Add to the associated (marked) CO-Net (modeling a class) a new place
of sort Id.obj and denoted by Id.Cl containing actual objects identifiers of
object states in the place CI.

Towards an Object Petri Nets Model 389

2. Objects creation is made through the net depicted in the left hand side of
figure Bl The notation ~, borrowed from the ECATNets model, captures
exactly the intended behaviour (i.e. the identifier Id should not already be
in the place Id.Cl). After firing this transition, there is an addition of this
new identifier to the place Id.Cl and a creation of a new object, (Id|atry :
ing, ..., atry :ing), with ing, ..., in; as optional initial attributes values.

Fig.3. Objects Creation and Deletion Using OB-ECATNets

Evolution of Object States in Classes. For the evolution of object states
in a given class, we propose a general pattern that have to be respected in
order to ensure the encapsulation property—in the sense that no object states
or messages of other classes participate in this communication — as well as the
preservation of the object identity uniqueness. Following such guidelines and in
order to exhibit a maximal concurrency, this evolution schema is depicted in
Figured], and it can be intuitively explained as follows: The contact of the just
relevant parts of some object states of a given Cl, —namely <]1\attrsl i
(I |attrsy)— with some messages ms;1, .., MSip, MS;1, .., Ms;jg—declared as local
or imported in this class— and under some conditions on the invoked attributes
and message parameters results in the following effects:

— The messages ms;1, .., MS;p, MS;1, .., MS;q vanish;

— The state change of some (parts of) object states participating in the commu-
nication, namely I, .., I5;. Such change is symbolized by attrs.,, .., attrs),
instead of attrssy, .., attrsg;.

— Deletion of the some objects by explicitly sending delete messages for such
objects.

— New messages are sent to objects of Cl , namely ms},q, .., ms},., msiy, .., ms’;

15 ITE

Rewriting Rules Gouverning the CO-Nets Behaviour In the same spirit
of the ECATNets behaviour, each CO-Net transition is captured by an appro-
priate rewriting rule interpreted into rewrite logic. Following the communication
pattern in figure 6, the general form of rewrite rules associated with this intra-
component interaction model, takes the following form:

5 attrs; is simplified notation of atr;1 : val;1, .., atri : val.

390 Nasreddine Aoumeur and Gunter Saake

Ms
(I1|attrs1) @ .. ® (I |attrsy) °°
‘ mi
obj

SJl Ms.

Conditions on attributes vdlues e 'ia

and messages parameters

ms’
il

ms’, o ms~
5 my %

(Isylattrsl,) @ . @ (Is,lattrsl) @ (I, lattrs;) @ - & (I, lattrs;)

M§ b Msllr

1

Fig.4. The Intra-Class CO-Nets Interaction Model.

T:(Msi1,msin) @ ..0 (MSip, msip) @ (Msj1,msj1) ® .. @ (Msjq, msjq)Q
(obj, <Il\attr51> D .. ® (Ix|attrsg)) = (Msp1,msh;) ® ... ® (Ms},,.,ms},.)®
(Msj1,ms};) ® .. ® (Ms,,ms},) @ (obj, (Ls1]attrsy,) & .. © (Lst|attrsy, @
(I, |attrs;,) @ .. ® (I; |attrs;,))
if C’onditions and M(Adc;) =0 and M(Dle;) =0

Remark 2. The operator ® is defined as a multiset union and allows for relating
different places identifiers with their actual marking. Moreover, we assume that
® is distributive over @ i.e. (p, mt; & mtz) = (p, mt1) ® (p, mte) with mty, mis
multiset of terms over ¢ and p a place identifier. The condition M (Ad¢;) = 0 and
M(Dl¢;) = 0, in this rule, means that the creation and the deletion of objects
have to performed at first: In other words, before performing this rewrite rules the
marking of the Ad¢; as well of the Dl places have to be empty. Finally, noting
that the selection of just the invoked parts of object states, in this evolution
pattern, is possible only due to the splitting /recombination axiom—that have
to be performed in front and in accordance with each invoked state evolution.

Example 3. By applying this general form of rule, it is not difficult to generate
the rules corresponding to the employee class (depicted in figure[2).

LEAVE E:(Emp, (E|Lv : False)) ® (Leav,lv(E, Dt, Pr))
= (Emp, (E|Lv : True)) ® (Leav,lv(E, Dt, Pr)ﬂ

RETURN :(Emp,(E|Lv : True)) ® (Leav,lv(E, Dt, Pr)) ® (Return,rt(E, Drt)) =
if (Dtr — Dt < Pr) then (Emp, (E|Lv : False))
else (Emp, (E|Lv : False)) ® (Punish, Pnsh(E, 1))

PUNISH :(Emp, (E|Sc: S)) ® (Punish,pnsh(E, Dg))
= if(S+1>30r Dg=2)
then (DEL,del(E)) else (Emp, (E|Sc: S + 1))

5 The label corresponds to the transition identifier.

" The leave message has not to be deleted in order to use it for controling the corre-
sponding return.

8 When the employee does not respect the Period of leave (s)he is punished.

Towards an Object Petri Nets Model 391

CHG :(Emp, (E|Ad : D)) ® (Chg, chg(E, Nd) = (Emp, (E|Ad : Nd))

RG_LEAYV : (Emp,(E|Lv : False))
= (Emp, (E|Lv : True)) ® (Leav,lw(E, July, 45)) if Date = July

Remark 3. In this application we have the possibility for exhibiting intra-object
concurrency. This is the case for the messages Lv, Sc and Chg that can be
performed at the same time, when they are sent to the same employee.

5 CO-Nets: More Advanced Constructions

So far, we have presented only how the CO-Nets approach allows for conceiving
independent classes. In what follows, we give how more complex systems can be
constructed using advanced abstraction mechanisms, especially inheritance and
interaction between classes. However, due to the space limitation only the simle
inheritance case and the interaction pattern (without an illustrative example)
would presented.

5.1 Simple Inheritance

Giving a (super) class Cl modeled as a CO-Net, for constructing a subclass
that inherits the structure as well as the behaviour of the superclass Cl and
exhibits new behaviour involving additional attributes, we propose the following
straightforward conceptualization.

— Define the structure of the new subclass by introducing the new attributes
and messages. Structurally, the new attributes identifiers with their value
sorts and the message generators are described using the eztending primitive
in the OBJ notation.

— As object place for the subclass we use the same object place of the superclass;
which means that such place should now contains the object states of the
superclass as well as the object states of the subclass. This is semantically
sound because the sort of this object place is a supersort for objects including
more attributes.

— As previously described, the proper behaviour of the subclass is constructed
by associating with each new message a corresponding place and constructing
its behaviour (i.e. transitions) with respect to the communication model of
figure [@ under the condition that at least one of the additional attributes
has to be involved in such transitions.

Remark 4. Such conceptualization is only possible because of the splitting /
recombination operation. Indeed this axiom permits to consider an object state
of a subclass, denoted for instance as (Id|attrs, attrs’) with attrs’ the additional
attributes (i.e. those proper to the subclass), to be also an object state of the
superclass (i.e. (Id|attrs)). Obviously, this allows a systematic inheritance of the

392 Nasreddine Aoumeur and Gunter Saake

structure as well as the behaviour. The dynamic binding with polymorphism
is systematically taken in this modeling. Indeed, when a message is sent to a
hierarchy of classes we can know only after the firing of the associated transition
to which class in the hierarchy the concerned object belong.

Example 4. As informally described, the titular employees have to be modeled
as a subclass of the already modeled (probationer) employee class. So, in ad-
dition of being an employee (who can go on leave, etc), a titular employee can
receive an increasing of his/her rung and can have some administrative respon-
sibilities. More precisely, following the aforementioned step, we present hereafter
the structure as well as the associated CO-Net modeling both classes.

obj titular is
extending employee-with-recruitment
sort titular, ADV, ADM, TIT, FRM .
op (_|Rg:_,Adm:_): Id.emp nat string — Local-titular
(* Local messages *)
op Tit : Id.emp — TIT.
op Adv : Id.emp — ADV .
op Frm : Id.emp — FRM.

endo.
The Employee (Super) Cla;
The Inherited RCP
Behaviour ZelNm:nl, Sninl,...Lv:T,Sc:0>
Cep|Nm:np,Sn:np.....Fr:F Rg: | Adimp> <E | St:T, Jr.Dr, Sc = 0, Dtr : Dac, Dav: Dac, Rg:1,Frm:F:
W,_/
The Titular Finploy (Sub) class
<E | St:P, Dr:D, Sc:S> Tit
<E | Dav:Dt,Sc:S, Rg:R> E | Frm:F, Dtt:Dt>
Adv ES Tit(E,T)
Frm
] Se=0nDDg |
Frm(E)
AVE) gyET) Es(E,T)
[e [s=0n@eDan>270 | [Eise] pe> 1 vear]
T <E | Frm:T, Dtt:Dt>
<E | Dav:Dt,Sc:S, Rg:R%
<E | Dav:Dt,Sc:S, Rg:R + 1> <E | Frm:F, Dtt:Dt>

Fig. 5. The Titular Employees as a Subclass of the employee Class

5.2 Interaction between Classes

For interacting independent components, first, we should take into consideration
the fact that the internal evolution of each component is ensured by the intra-
component evolution pattern specified in figure @l Second, we should ensure the

Towards an Object Petri Nets Model 393

encapsulation property, that is to say, the internal part of each object state
as well as the local messages have to be hidden from the outside; thus only
those explicitly declared as observed attributes and external messages have to
participate in such inter-component communication.

More precisely, as depicted in figure [6] this inter-component interaction may
be made explicit as follows: The contact of some external parts of some objects
states namely (I |attrs_obs)..(Ii|attrs_oby), that may belong to different classes
namely Ci, ..., C,, with some external messages ms;1, .., msip, ms;j1, .., MS;q de-
fined in these classes and under some conditions on attributes values and pa-
rameters messages results in the following:

— The messages ms;1, .., MS;p, MSj1, .., MSiq vanish;

— The state change of some (external parts of) object states participating in the
communication, namely 51, .., I;;. Change is symbolized by attrs’,, .., attrs’,
instead ofattrsgy,., attrss. The other objects components remain unchanged
(i.e. there is no deletion of parts of objects states).

— New external messages (that may involve deletion/creation ones) are sent to

objects of different classes, namely msj,,, .., msj,,., ms’y, .., ms/,.

(I11lattrsy 1) @ ... © (I g, lattrsy g) Ms

L) "
ms
(I 1lattrsm, 1) @ o ® (I o lattrs, p) ms
a, a
o Conditions on attributes values
<Il,atobsl:val)> and messages parameters

‘ mt
T Um1lattrs 1) & . @ (I k,, \att'rs;n)k) 5, \—m—T
I1 q1lattrs! D...e attrs’ . .
(I1,11 1,1) (I kq | e

1,k

<Ilatobsivall> e @

Fig. 6. The Interaction General Model Between classes

6 Conclusion

We proposed an object Petri nets based conceptual model for specifying and val-
idating distributed information systems. The model called CO-Nets is a sound
and complete combination of OO concepts and constructions in the ECATNets
framework: An algebraic Petri net model mainly characterized by its capability
of distinguishing between enabling conditions and destroyed tokens. The seman-
tics of the CO-nets is expressed in rewriting logic allowing us to derive rapid-
prototypes using concurrent rewriting in general and the MAUDE language more
particularly. Some key features of the CO-Nets approach for specifying complex
and distributed information systems are: First, the straightforward modeling of
simple and multiple inheritance with the possibility of overriding. Second, the
characterization of two communication patterns: an intra-component model for

394 Nasreddine Aoumeur and Gunter Saake

evolving object states in a hierarchy of classes with the possibility of exhibiting
intra-object as well as inter-object concurrency and an inter-component commu-
nication model for interacting different components that promotes concurrency
and preserve the encapsulated features of each components.

The different aspects of the CO-Nets approach have been explained through
a simplified but realistic case study dealing with typical staff management sys-
tem. This case shows, among other, that the CO-Nets conceptual model, with
its different abstractions mechanisms, is well suited for dealing with complex
distributed information systems applications.

Our future work is to confirm the appropriateness of the CO-Nets for speci-
fying complex distributed and cooperative information systems by leading more
complex case studies. Also, we plan for formally integrating property-oriented
verification models following mainly the work in [Lec96].

References

[Aoug9) N. Aoumeur. Réalisation d’'un Systeme de Gestion du Personnel de
I’Université. Memoire d’Ingenieur, Institut d’Informatique, Université
D’Oran, 1989.

[Aou99] N. Aoumeur. Towards an Object Petri Net Based Framework for Modelling
and Validating Distributed Systems. To appear as Preprint, Fakultét fiir
Informatik, Universitdt Magdeburg, 1999.

[BAC93] E. Battiston and F. de Cindio. Class Orientation and Inheritance in Modu-
lar Algebraic Nets. In Proc. of IEEE International Conference on Systems
and Cybernetics, pages 717-723, Le Touquet, France, 1993.

[Bib97] Biberstein, O. and Buchs, D. and Guelfi, N. CO-OPN/2: A Concurrent
Object-Oriented Formalism. In Proc. of Second IFIP Conf. on Formal
Methods for Open Object-Based Distributed Systems(FMOODS), pages 57—
72. Chapman and Hall, March 1997.

[BMB93] M. Bettaz, M. Maouche, Soualmi, and S. Boukebeche. Protocol Speci-
fication using ECATNets. Reséaux et Informatique Répartie, 3(1):7-35,
1993.

[DJ90] J. Dershowitz and J.-P. Jouannaud. Rewrite Systems. Handbook of The-
oretical Computer Science, 935(6):243-320, 1990.

[ECSD98] H.-D. Ehrich, C. Caleiro, A. Sernadas, and G. Denker. Logics for Spec-
ifying Concurrent Information Systems. In J. Chomicki and G. Saake,
editors, Logics for Databases and Information Systems, chapter 6, pages
167-198. Kluwer Academic Publishers, Boston, 1998.

[EGS92] H.D. Ehrich, M Gogolla, and A. Sernadas. Objects and Their Specification.
In M. Bidoit and C. Choppy, editors, Proc. of 8th Workshop on Abstract
Data, volume 655 of Lecture Notes in Computer Science, pages 40-66.
Springer-Verlag, 1992.

[EM85] H. Ehrig and B. Mahr. Foundamentals of algebraic specifications 1 : Equa-
tion and initial semantics. EATCS Monographs on Theoretical Computer
Science, 21, 1985.

[FJLS96] B. Freitag, Cliff B. Jones, C. Lengauer, and H. Schek, editors. Object Ori-
entation with Parallelism and Persistence. Kluwer Academic Publishers,
1996.

[GDY3]

[GWM+92]

[HKS87]

[Lak95]

[Lec96]

[Mes92]

[Mes93]

[Mil89)]
[Rei85]
[Rei91]

Towards an Object Petri Nets Model 395

J.A. Goguen and R. Diaconescu. Towards an Algebraic Semantics for the
Object Paradigm. In Proc. of 10th Workshop on Abstract Data types,
1993.

J.A. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.P. Jouannaud.
Introducing OBJ. Technical Report SRI-CSL-92-03, Computer Science
Laboratory, SRI International, 1992.

R. Hull and R. King. Semantic Database Modelling : Survey, Applications,
and Research Issues. ACM Computing Surveys, 19(3):201-260, 1987.
Lakos, C. From Coloured Petri Nets to Object Petri nets. In Proc. of
16th Application and Theory of Petri Nets, volume 935 of Lecture Notes
in Computer Science, pages 278-287. Springer-Verlag, 1995.

U. Lechner. Object Oriented Specification of Distributed Systems in the
p-Calculus and Maude. In J. Meseguer, editor, Proc. of the First Inter.
Workshop on Rewriting Logic, volume 4. Electronic Notes in Theoretical
Computer Science, 1996.

J. Meseguer. Conditional rewriting logic as a unified model for concur-
rency. volume 96 of Theoretical Computer Science, pages 73-155, Noord-
wijkerhout, Netherlands, 1992.

Meseguer, J. A Logical Theory of Concurrent Objects and its Realization
in the Maude Language. Research Directions in Object-Based Concur-
rency, pages 314-390, 1993.

R. Milner, editor. Communication and Concurrency. Prentice Hall, 1989.
W. Reisig. Petri Nets : An Introduction. Springer-Verlag, 1985.

W. Reisig. Petri Nets and Abstract Data Types. Theoretical Computer
Science, 80:1-30, 1991.

	Introduction and Motivation
	The Staff Management Case Study
	CO-Net: Template and Class Specification
	Template Signature Specification
	Template and Class Specification

	CO-Nets: Semantical Aspects
	CO-Nets: More Advanced Constructions
	Simple Inheritance
	Interaction between Classes

	Conclusion

