Policy-Based Resource Management

Yan-Nong Huan' and Ming-Chien Shan’

'Oracle Corporation, 600 Oracle Parkway, Redwood Shores, California 94065
yahuang@us.oracle.com
’Hewlett-Packard Laboratories, 1501 Page Mill Road, 1U-4A, Palo Alto,
California 94304, shan @hpl.hp.com

Abstract. This paper proposes a new method to handle policies in Resource
Management of Workflow Systems. Three types of policies are studied including
qualification, requirement and substitution policies. The first two types of policies map
an activity specification into constraints on resources that are qualified to carry out the
activity. The third type of policies intends to suggest alternatives in cases where
requested resources are not available. An SQL-like language is used to specify policies.
Policy enforcement is realized through a query rewriting based on relevant policies. A
novel approach is investigated for effective management of large policy bases, which
consists of relational representation of policies and efficient retrieval of relevant
policies for a given resource query.

Keywords. Workflow, Resource, Policy, Interval-Based, Query Rewriting.

1. Introduction

An information system is composed of a database system and one or many
applications manipulating the database. The database system is a common data
repository shared among multiple applications. Besides data, people sometimes move
components which seemly belong to applications into the database, so that multiple
applications can share common components. In other words, the common
components become part of the database’s semantics. Active databases are an
example of such kind, where dynamic characteristics of data are pushed down to the
database, so the data can always behave the same way no matter what applications
are.

We are interested in Workflow Management Systems (WFMS) [5], and particularly,
in Resource Management (RM) [6] of WFMS. A WFEMS consists of coordinating
executions of multiple activities, instructing who (resource) do what (activity) and
when. The ,,when part is taken care of by the workflow engine which orders the
executions of activities based on a process definition. The ,,who* part is handled by
the resource manager that aims at finding suitable resources at the run-time for the
accomplishment of an activity as the engine steps through the process definition.
Resources of different kinds (human and material, for example) constitute the
information system of our interest, their management consists of resource modeling
and effective allocation upon users’ requests. Since resource allocation needs to
follow certain general guidelines (authority, security, for example) - no matter who or
what application issues requests: so those general guidelines are better considered as
part of the resources’ semantics. That is the reason why we are interested in resource

M. Jarke, A. Oberweis (Eds.): CAiSE’99, LNCS 1626, pp. 422-428, 1999.
© Springer-Verlag Berlin Heidelberg 1999



Policy-Based Resource Management 423

policy management in RM. Resource policies are general guidelines every individual
resource allocation must observe. They differ from process specific policies which
are only applied to a particular process. The policy manager is a module within the
resource manager, responsible for efficiently managing a (potentially large) set of
policies and enforcing them in resource allocation.

We propose to enforce policies by query rewriting. A resource query is sent to the
policy manager where relevant policies are first retrieved, then either additional
selection criteria are appended to the initial query (in the case of requirement
policies) or a new query is returned (in the case of substitution policies). Therefore,
the policy manager can be seen as both a regulator and a facilitator where a resource
query is either ,,polished” or given alternatives in a controlled way before submitted
for actual resource retrieval. By doing so, returned resources can always be
guaranteed to fully comply with the resource usage guidelines.

1.1 Design Goals for the Policy Management

Technical issues involved in this study can be presented as the following set of design
goals.

1. A simple policy model allowing users to express relationships between an
activity and a resource that can be used to carry out the activity;

2. A Policy Language (PL) allowing users to define policies; PL must be easy to
use and as close as possible to SQL;

3. Resource query enhancement/rewriting: a major functionality of the policy
manager is to enforce policies by enhancing/rewriting the initial resource query;

4. Efficient management of policy base: retrieving relevant policies applicable to a
given resource query may become time-consuming when dealing with a large policy
base, strategies are to be devised to achieve good performance.

1.2 Paper Organization

The rest of the paper is organized in the following way. In Section El we give a brief
overview of our resource manager, with the purpose of showing how the present
research is positioned in its context. In SectionB, three types of policies for resource
management are presented and the policy language is illustrated with examples. Some
conclusive remarks are drawn in Section

2. Context

In this section, we briefly discuss the context of the present research.

2.1 Architecture

Two main components exist in our Resource Manager (Figure 1. One is the resource
manager per se, responsible for modeling and managing resources; the other is the
policy manager allowing the user to manage policies. Three interfaces are offered,
each obviously requiring a different set of access privileges. The policy language
interface allows one to insert new policies and consult existing ones. With the
resource definition language interface, users can manipulate both meta and instance



424 Yan-Nong Huan and Ming-Chien Shan

resource data. Finally, the resource query language interface allows the user to
express resource requests. Upon receiving a resource query, the query processor
dispatches the query to the policy manager for policy enforcement. The policy
manager first rewrites the initial query based on qualification policies and generates a
list of new queries. Each of the new queries is then rewritten, based on requirement
policies, into an enhanced query. The enhanced new queries are finally sent to the
resource manager for resource retrieval. In the cases where none of the requested
resources is available, the initial query is re-sent to the policy manager which, based
on substitution policies, generates alternatives in the form of queries. Each of the
alternative queries is treated as a new query, therefore has to go through both
qualification and requirement policy based rewritings. Then, the policy manager once
again sends a list of resource queries to the resource manager. If no relevant resources
are found against the rewritten alternative queries, notify the user of the failure. Bear
in mind that substitution policies should not be used transitively.

2.2 Resource and Activity Models

A role is intended to denote a set of capabilities, its extension is a set of resources
sharing the same capabilities. In this regard, a role can be seen as a resource type. The
resource hierarchy shows resources organized into roles whilst the activity hierarchy
describes the classification of activity types.

Language Language Language

L

— > S
Policy <—[PolicyManager][ResuurceManager}—> Resource
Base / Base

A ctivity/Resource
Schem a

‘ Policy

Resource Query HResource D efinition

Figure 1: Architecture

[Figure 2]shows an example of resource and activity hierarchies. A resource type as
well as an activity type is described with a set of attributes, and all the attributes of a
parent type are inherited by its child types. In addition to the resource classification,
the resource manager holds relationships among different types of resources.

Two possible relationships between resources are exemplified in[Figure 3] Note that,
like attributes, relationships are inherited from parent resources to child resources.
Views may be created on relationships to facilitate query expressions. For example,
ReportsTo(Emp, Mgr) is defined as a join between BelongsTo(Employee, Unit) and
Manages(Manager, Unit) on the common attribute Unit.



Policy-Based Resource Management 425

Resource

T

Unit Employee Hardware Software
Engineer Adm Computer Peripheral

Programmer Analyst Manager Secretary

Resource Hierarchy
Activity

\

Management Engineering
Decision Organization Design Programming
Approval Printing

Activity Hierarchy

Figure 2: Resource and Activity Classifications

Belongs
To

Resource

Figure 3: Entity-Relationship Model of Resources

2.3 Resource Query Language

Users can use the resource query language (RQL) to submit resource requests to the
resource manager. The language is composed of SQL Select statements augmented
with activity specifications.

Select ContactInfo
From Engineer

(Where Location = ‘PA’ -

For Programming Qualify Progmmr.ner
W ith NumberOfLines = 35000 And Location = ‘Mexico’ For Engineering
Figure 4: Initial RQL Query Figure 5: Qualification Policy

The query in requests Contactlnfo of Engineer located in ‘PA’, for activity
Programming of 35,000 line code and of location ‘Mexico’. Since a resource request



426 Yan-Nong Huan and Ming-Chien Shan

is always made upon a known activity, the activity can and should be fully described;
namely, each attribute of the activity is to be specified.

3. Policy Model and Language

Three types of policies are considered: qualification policies, requirement policies
and substitution policies.

3.1 Qualification Policies

A qualification policy states a type of resources is qualified to do a type of activities.
The policy in Figure 5 states the resource type Programmer can do the activity type
Engineering. Sinceresources and activities are partially ordered, we allow qua-
lification policies to be inherited from parent resources or activities to their children.
Consider a general qualification policy ,,Qualify R for A, what this policy really
means is any sub-type resource of R (including R itself) is qualified to do any sub-
type activity of A (including A itself). All qualification policies in the policy base are
Or-related, and they obey the Closed World Assumption (CWA). Namely, if the
policy in Figure 5 is the only policy in the policy base, we may assume no resource
types other than Programmer can do activity Engineering.

3.2 Requirement Policies

A requirement policy states that if a resource is chosen to carry out an activity with
specified characteristics, the resource must satisfy certain conditions. Therefore, it
expresses a necessary condition for a resource type and an activity type. All
requirement policies in the policy base are And-related.

Here are examples of requirement policies:

Require Programmer Require Employee

W here Experience > 5 Where Language = ‘Spanish’
For Programming For Activity

W ith NumberOfLines > 10000 W ith Location = ‘Mexico’

Figure 6: Requirement Policies

The first policy in states that if a Programmer is chosen to carry out activity
Programming of more than 10,000 line code, it is required that the Programmer have
more than 5 year experience.

Given that both the set of resources and the set of activities are partially ordered, the
scope of a requirement policy can stretch over resources and activities which are sub-
types of the resource and the activity explicitly mentioned in the policy. For example,
the second policy in requires the Employee be Spanish speaking if (s)he is
engaged in activity Activity located in Mexico. Since both Employee and Activity
have sub-types in their respective hierarchies , the policy is actually
applicable to any pair of resource and activity as long as the resource is a sub-type of
Employee (including Employee itself) and the activity is a sub-type of Activity



Policy-Based Resource Management 427

(including Activity itself). This gives a great deal of flexibility to expressing
requirement policies. The syntax of a general requirement policy is as follows:

Require R Substitute Engineer
W here Location = ‘PA”’
Where <Where> By Engineer
For A W here Location = ‘Cupertino’
. . For Programming
With  <With> W ith NumberO fLines < 50000
Figure 7: General Requirement Policy Figure 8: A Substitution Policy

There, R is a resource type and A is an activity type. <Where> is a SQL where clause
which can eventually include nested SQL select statements. <With> is a restricted
form of SQL where clause in which no nested SQL statements are allowed. Some
more complex policy examples follow,

Require Manager

Require Manager W here ID = (

[Where 1D = ( Select Mgr
Select Mgr From ReportsTo
From ReportsTo Where level = 2

Start with Emp = [Requester]

Where Emp = [Requester] Connect by Prior Mgr= Emp

)
For Approval )
(With  Amount < 1000

For Approval
W ith Amount> 1000 And Amount < 5000

Figure 9: Complex Requirement Policies

Both policies in [Figure 9| relate resource Manager to activity Approval. The first
states that if the amount requested for approval is less than $1,000, the authorizer
should be the manager of the requester. The second policy (a hierarchical sub-query
is used) requires that the authorizer be the manager’s manager if the requested
amount is greater than $1,000 and less than $5,000. Two points are worth
mentioning,
1. Nested SQL statement can be used to construct more complex selection criteria.
2. Attributes of the activity can be referenced in constructing selection criteria. To
distinguish an attribute of the activity from that of the resource, the former is
enclosed between [ and ]. In the examples of Requester is an attribute
of activity Approval.

3.3 Substitution Policies

A substitution policy is composed of three elements: a substituting resource, a
substituted resource and an activity; each eventually augmented with descriptions. It
states that the substituting resource can replace the substituted resource in the
unavailability of the latter, to carry out the activity. Multiple substitution policies are
Or-related. The policy in states that Engineers in PA, in their unavailability,
can be replaced by engineers in Cupertino to carry out activity Programming of less
than 50,000 line code. Similar to the requirement policy, the scope of a substitution
policy can stretch over resources and activities which are sub-types of the substituted



428 Yan-Nong Huan and Ming-Chien Shan

resource and the activity mentioned in the policy. Therefore, the policy in
may eventually be applicable to a query looking for a Programmer for activity
Programming.

4. Conclusion

We studied several issues related to resource policies in Workflow Systems. A policy
language was proposed allowing users to specify policies of different types. To
enforce the policy, a resource query is first rewritten based on relevant policies,
before submitted to the resource manager for actual retrieval. The originality of the
present work is on the resource policy model, the policy enforcement mechanism and
policy management techniques including relational representation of, and efficient
access to, a large policy set. A prototype was implemented in Java on NT 4.0, with
experimental policies managed in an Oracle database.

References

[1] M. Blaze, J. Feigenbaum and J. Lacy, ,,Decentralized Trust Management*, Proc.
of IEEE Symposium on Security and Privacy, Oakland, CA, May 1996.

[2] C. Bufler, ,,Policy resolution in Workflow Management Systems®, Digital
Technical Journal, Vol. 6, No. 4, 1994.

[3] C. Bufler and S. Jablonski, ,Policy Resolution for Workflow Management
Systems®, Proc. Of the Hawaii International Conference on System Sciences,
Maui, Hawaii, January 1996.

[4] Desktop Management Task Force, ,,Common Interface Model (CIM) Version 1.0
(Draft)*, December 1996.

[5] J. Davis, W. Du and M. Shan, ,,OpenPM: An Enterprise Process Management
System*, IEEE Data Engineering Bulletin, 1995.

[6] W. Du, G. Eddy and M.-C. Shan, ,Distributed Resource Management in
Workflow Environments®, Proc. of Database Systems for Advanced
Applications (DASFAA), Melbourne, Australia, April, 1997.



	Introduction
	Design Goals for the Policy Management
	Paper Organization

	Context
	Architecture
	Resource and Activity Models
	Resource Query Language

	Policy Model and Language
	Qualification Policies
	Requirement Policies
	Substitution Policies

	Conclusion

