
M. Jarke, A. Oberweis (Eds.): CAiSE’99, LNCS 1626, pp. 451-455, 1999.
ª Springer-Verlag Berlin Heidelberg 1999

Component Criteria for Information System Families

Stan Jarzabek

Department of Computer Science, School of Computing
National University of Singapore

Lower Kent Ridge Road
Singapore 119260

stan@comp.nus.edu.sg

Abstract. In this paper, we discuss component technologies in the context of
information system (IS) families. An IS family is characterized by common re-
quirements, shared by all the family members, and variant requirements that
may differ across family members. Many variant requirements are non-local,
i.e., they cannot be confined to a single system component, on contrary, they
affect many components in complex ways. An effective generic architecture for
an IS family should provide means to handle anticipated and unexpected vari-
ant requirements and support evolution of the family over years. In the paper,
we illustrate problems that arise in supporting IS families and describe a ge-
neric architecture that includes global, cross-component structures to deal with
changes during customization and evolution of an IS family.

1 Introduction

An information system (IS) family comprises similar information systems. A family
may address a coherent business area (such as payroll or customer order processing)
or a certain problem area (such as task management or failure detection). Members of
an IS family share common characteristics, but also differ in certain variant require-
ments. A systematic way to support an IS family is to implement common and variant
functions within a generic architecture and then develop individual information sys-
tems by customizing and extending the architecture. Many variant requirements for IS
families are non-local, i.e., they affect many system components. An effective generic
IS architecture should help developers in handling non-local variant requirements.
Furthermore, to support evolving business, a generic IS architecture itself must
evolve by accommodating new requirements. For the long-term success of an archi-
tecture, methods and tools should be provided to keep the complexity of a growing
architecture under control. In practice, customizations and evolution of IS family
architectures appear to be difficult tasks.

In recent years, Component-based Software Engineering (CBSE) and Distributed
Component Platforms (DCP) [6] have received much attention. Component-based
systems are built out of autonomous, independently developed runtime components.
By conforming to the DCP’s interoperability standards, functionality of a component-

452 Stan Jarzabek

based system can be extended either by adding new components to the system or by
replacing a certain component with another one, providing richer functionality. Bi-
nary components can be customized using the introspection facility [6]. Component
technologies promise to better facilitate reuse and improve software development and
maintenance productivity.

In this paper, we shall discuss component technologies in the context of IS fami-
lies. In our experience, generic IS architectures based on runtime components may
not provide sufficient support for customization and evolution. We shall illustrate the
problem with an example from our project and outline a possible remedy to the
problem.

2 Related Work

The concept of program families was first discussed by Parnas [7] who proposed
information hiding as a technique for handling program families. Since then, a range
of approaches have been proposed to handle different types of variations (for exam-
ple, variant user requirements or platform dependencies) in different application do-
mains. Pre-processing, PCL [8], application generators [3], Object-Oriented frame-
works [5], Domain-Specific Software Architectures [9], frame technology [2] and,
most recently, distributed component platforms – they all offer mechanisms for han-
dling variations that can be useful in supporting IS families.

A software architecture is described by a set of components, externally visible
properties of components and component relationships [1]. The rationale for most of
the architectures we build is to facilitate reuse – with possible modifications, we wish
to reuse an architecture in more than one project. Therefore, most of the architectures
really underlie system families rather than a single system. A number of authors ad-
vocate clear separation of a construction-time software architecture from it’s runtime
architecture [1,2,4]. The major concern of construction-time architectures is flexibil-
ity, i.e., the ability to customize components to meet variant requirements of products
and the ability to evolve the architecture over time to meet changing needs of the
business environment. Issues of interest in runtime architectures include allocation of
functions to components, deciding which logical components should be packaged into
a single executable, parallel execution of components, data communication, invoca-
tion of services between components, overall control and synchronization. A generic
IS architecture is a software construction-time architecture for supporting an IS fam-
ily. In a generic IS architecture, some of architecture components may be optional,
incomplete or missing. During customization, developers select components and
customize them to accommodate specific variant requirements to be implemented in
the target information system.

In frame technology [2], a software construction architecture consists of a hierar-
chy of generic components called frames. A frame is a text (written in any language,
such as, for example, IDLÔ or JavaÔ) with breakpoints. Frames can be adapted to
meet variant requirements of a specific system by modifying frame's code at break-
points. Frames are organized into frame hierarchies and all the modifications needed

 Component Criteria for Information System Families 453

to satisfy given variant requirements can be traced from the topmost frame in the
hierarchy, called a specification frame. A frame processor is a tool that customizes a
frame hierarchy according to directives written in the specification frame and assem-
bles the customized system.

Boca [5] provides a meta-language to define business semantics as a central part of
the construction-time architecture. Business components such as customers, orders,
employees, hiring and invoicing are specified in the meta-language, separately from
the runtime program characteristics. A meta-language provides means for maintaining
integrity of requirements for a system family during customization and evolution.
Boca supports synthesis of component-based runtime systems from business and
implementation-specific component layers. A construction architecture makes it pos-
sible to separate business concerns from platform concerns.

3 A Generic IS Architecture Based on Runtime Components

Consider a family of Facility Reservation Systems (FRS). Members of the FRS family
include facility reservation systems for offices, universities, hotels, recreational and
medical institutions. There are many variant requirements in the FRS domain: In
some cases, an FRS should allow one to define facility types (such as Meeting Room
and PC) and only an authorized person should be allowed to add new facility types
and delete an existing facility type; some FRSes may allow one to view existing res-
ervations by facility ID and/or by reservation date.

During runtime, we want FRSes to consist of three tiers, namely user interface,
business logic and a database. Each of these tiers is a component that consists of
smaller components, implemented according to standards of the underlying platform
(for example, EJBÔ or ActiveXÔ). Suppose we decide to manage an FRS family in
terms of runtime components, using one of the available visual environments. A de-
veloper should be able to selectively include variant requirements into a custom FRS.
To achieve this, all the anticipated variant requirements should be implemented
within the relevant components. Most often components affected by variant require-
ments span all three tiers. A developer might use an introspection facility [6] to cus-
tomize components. He or she would set component property values to indicate
which reservation viewing methods are needed in a target FRS. After customization,
components would reveal only the required functions. In the situation of an IS family,
this scenario may not work well. Each family member we build will have to include
implementation of all the variants, even though some of these variants will never be
used. As more and more variants are implemented, components will grow in size.
Also, keeping track of how variants affect components must be taken care by devel-
opers. Adding new unexpected requirements to the FRS family is not easy, either. If
the source code for components affected by new requirements is not available, there
is no simple way to implement a new requirement. Developers may need to re-
implement affected components, as components cannot be extended in arbitrary ways
without the source code. If the source code for relevant components is available,
developers could use either inheritance or a suitable design pattern to create new

454 Stan Jarzabek

components that would address the new requirement. Visual environments built on
top of DCPs support the former solution and some support the latter one (see, for
example, the San Francisco framework http://www.ibm.com/Java/SanFrancisco,
chapter 8 “Application Development methodology”). While this method of address-
ing new requirements is sufficient in the rapid application development situation, it
presents certain dangers in the context of generic architectures for IS families. Over
years of evolution, an architecture may be affected by many new requirements. Im-
plementation of new requirements will add new components (or new versions of old
components) to the architecture. As certain requirements may appear in different
combinations – we may end up with even more components. As a result, our archi-
tecture may become overly complex and difficult to use. These components, growing
in size and complexity, have to be included into any information system built based
on the architecture, independently of whether the options are need or not. In long-
term, accumulative result of this practice is likely to be prohibitive.

4 A Construction-Time Extension of a Runtime Architecture

An architecture based on runtime components does not allow us to exploit software
flexibility to its fullest potential [2]. We can alleviate the problems discussed in the
last section by designing a generic IS architecture based on construction units that
facilitate change better than runtime components. A generic architecture should make
it clear how to handle variant requirements and provide a systematic way of extend-
ing IS family with new unexpected requirements. While runtime components must be
complete executable units, construction units of a generic architecture may be
parametarized by variant requirements and may require pre-processing before they
can be compiled. Furthermore, construction units may be incomplete in the sense that
we may encapsulate different aspects of a system such as business logic, platform-
dependencies (e.g., event handling code), etc., in separate units. A proper tool will
automatically apply a composition operation to combine required construction units
into components of a custom system. In the above scenario for supporting an IS fam-
ily, the emphasis is shifted from ready to use components to the process that produces
components from construction units on demand. We think this is essential to keep the
complexity of the architecture under control. By studying the customization process
for anticipated variant requirements, developers can also better understand how to
deal with unexpected requirements that arise during system evolution.

Frame technology [2] directly supports most of the above concepts. It forms a con-
struction environment for managing system families, in particular, it can be applied to
component-based systems. In our domain engineering project, we designed a generic
FRS architecture as a hierarchy of frames, where frames correspond to components of
the FRS runtime architecture. We extended a frame hierarchy with an explicit model
of commonalties and variations in the FRS domain, and with a Customization Deci-
sion Tree (CDT). A CDT helps understand customizations that lead to satisfying
variant requirements. Nodes in the CDT correspond to variant requirements. A script
attached to a CDT node specifies customizations of a generic architecture for a given

 Component Criteria for Information System Families 455

variant requirement. Frame processing is based on a composition operation that can
be applied at different levels of abstraction. Before applying a frame processor, we
assemble customization scripts from the CDT into a specification frame. The frame
processor interprets the specification frame to produce a custom software system,
according to a blueprint of its component-based runtime architecture.

5 Conclusions

In the paper, we discussed problems that arise when we base a generic architecture for
an IS family on runtime components. As customizations and evolution of an IS family
most often affect many runtime components, it is better to base a generic IS architec-
ture on construction units that are designed for the purpose of dealing with changes.
Construction units should be parameterized by variant requirements and should parti-
tion the implementation space into cohesive, manageable parts that can be combined
into custom components using a composition operation and a suitable tool.

Acknowledgments

Thanks are due to Cheong Yu Chye who implemented a generic architecture for the
FRS family. I am indebted to Paul Bassett for letting us use the Netron's product Fu-
sion for our projects.

References

1. Bass, L., Clements, P. and Kazman, R. Software Architecture in Practice, Addison-
Wesley, 1998

2. Bassett, P. Framing Software Reuse - Lessons from Real World, Yourdon Press, Prentice
Hall, 1997

3. Batory, D et al. “The GenVoca Model of Software-System Generators,” IEEE Software,
September 1994, pp. 89-94

4. Digre, T. “Business Component Architecture,” IEEE Software, September/October 1998,
pp. 60-69

5. Johnson, R. and Foote, B. “Designing Reusable Classes,” Journal of Component-Oriented
Programming, June 1988, Vol.1, No.2, pp. 22-35.

6. Krieger, D. and Adler, R. “The Emergence of Distributed Component Platforms,” IEEE
Computer, March 1998, pp. 43-53

7. Parnas, D. “On the Design and Development of Program Families,” IEEE Trans. on Soft-
ware Eng., March 1976, p. 1-9

8. Sommerville, I. and Dean, G. "PCL: a language for modelling evolving system architec-
tures," Software Engineering Journal, March 1996, pp.111-121

9. Tracz, W. Collected overview reports from the DSSA project, Technical Report, Loral
Federal Systems – Owego. (1994).

	Introduction
	Related Work
	A Generic IS Architecture Based on Runtime Components
	A Construction-Time Extension of a Runtime Architecture
	Conclusions
	Acknowledgments
	References

