Configuring Business Objects from Legacy Systems

Willem-Jan van den Heuvel, Mike Papazoglou, and Manfred A. Jeusfeld

INFOLAB, Tilburg University, PO Box 90153,
Tilburg 5000 LE, The Netherlands
wjheuvel@kub.nl, mikep@kub.nl, jeusfeldekub.nl

Abstract. In this paper we present a methodology, called binding Business Ap-
plications to LEgacy systems (BALES), that allows to blend modern business
objects and processes with objectified legacy data and functionality in order to
construct flexible, configurable applications, that are able to respond to business
changes in a pro-active way.

1 Introduction

As aresult of the growing turbulence in which modern organizations operate, the design
of information systems is faced with new challenges. The adaption and deployment
of information systems needs to be completed in the shortest possible time, amidst
changes, as the organizations and their constituting business processes tend to become
more complex every day [[1]]. Accordingly, most organizations are striving to respond to
rapid changes by creating modular business processes that can be quickly implemented
and re-engineered as the situation may demand [2]].

To meet the requirements of modern organizations, and get better reuse from soft-
ware, distributed business object computing is the preferred solution [3]]. Business ob-
jects can be the key building block in the re-engineered (process-oriented) enterprise as
they can realize domain business processes and default business logic that can be used
to start building applications in these domains. Furthermore, domain specific models
can be designed as business frameworks so that they can be easily extended and mod-
ified, e.g., SAP and IBM’s San Francisco business objects [4]]. These can be deployed
for integrated enterprise-wide applications that can be easily built upon distributed bro-
ker architectures such as CORBA. However, most contemporary enterprise information
systems are characterized by a rigid (technical) infrastructure and their heritage of data
to perform their primary processes. These systems are not able to keep abreast of the
rapid organizational and technological changes that occur in a business environment.
Such information systems ‘that significantly resist modification and evolution to meet
new and constantly changing business requirements’ can be defined as legacy systems
(3.

Over the years several strategies to deal with the legacy problem have been pro-
posed: access integration in place, the cold turkey (replace at once) and the gradual mi-
gration approach [6], [5]. Access/integration in place requires an environment in which
the legacy systems and new business components can coexist and cooperate. For that
purpose it uses technologies such as object wrappers [[7]]. Wrappers are used to objec-
tify legacy systems and expose interfaces over legacy transactions as well as provide
meta-data descriptions of legacy data [8]. Such wrapping solutions generally present
the following four drawbacks:

M. Jarke, A. Oberweis (Eds.): CAiSE’99, LNCS 1626, pp. 41-56] 1999.
(© Springer-Verlag Berlin Heidelberg 1999

42 Willem-Jan van den Heuvel, Mike Papazoglou, and Manfred A. Jeusfeld

1. The object wrapping solution views enterprises from the legacy perspective and
assumes that new applications may be developed in terms of legacy objects with
perhaps marginal adjustments to the legacy data and functionality. This assump-
tion is not realistic given that the legacy systems are geriatric systems that reflect
organizational requirements and objectives of a long time ago.

2. Because of the way that legacy applications are built and continue to be upgraded,
they do not only contain data divorced from a business context but they are also
seldom consistent with modern business objectives.

3. It is unlikely that this approach would survive in an increasingly fluid environment
where (unpredictable) organizational changes and business objectives require fre-
quent adjustment and enhancement of the legacy functionality.

4. Finally, and possibly more importantly, any viable long-term approach to mapping
between legacy and target systems must be methodology-oriented and be performed
on an ad hoc basis as the situation may demand.

In this paper we propose a methodology, called binding Business-Applications to
LEgacy Systems (BALES). The BALES methodology allows to blend modern business
objects and processes with legacy objects and processes to construct flexible applica-
tions. This methodology allows reusing as much of the legacy data and functionality
needed for the development of applications that meet modern organization requirements
and policies. This implies “adjusting” (or retrofitting) legacy data and functionality at
the enterprise modeling level. In particular, the BALES methodology allows to construct
configurable business applications on the basis of business objects and processes that
can be parameterized by their legacy counterparts. The goal of the BALES methodology
is to enable organizations to react at business induced changes in a manner that does
not disrupt enterprise applications or the business processes that underly them.

The remainder of this paper is organized as follows. In the next section, we present
the BALES methodology for linking business objects and processes to objectified legacy
data and functionality. In section B] we present a realistic example to illustrate the ap-
plication of the BALES methodology. Finally, section @ describes our conclusions and
future research directions.

2 A Methodology for Binding Business Application Objects and
Processes to Legacy Systems

Most of the approaches to integrate legacy systems with modern applications are de-
signed around the philosophy that data residing in a variety of legacy database systems
and applications represents a collection of entities that describe various parts of an en-
terprise. Moreover, they assume that by combining these entities in a coherent manner
with legacy functionality and objectifying (wrapping) them legacy systems can be read-
ily used in place. In this way it is expected that the complexities surrounding the modern
usage of legacy data and applications can be effectively reduced. Unfortunately, these
approaches do not take into account the evolutionary nature of business and the con-
tinual changes of business processes and policies. Although part of the functionality of
a legacy system can be readily used, many of its business processes and policies may
have changed with the passage of time.

A critical challenge to building robust business applications is to be able to iden-
tify the reusable and modifiable portions (functionality and data) of a legacy system
and combine these with modern business objects in a piecemeal and consistent manner.
These ideas point towards a methodology that facilitates pro-active change management

Configuring Business Objects from Legacy Systems 43

of business objects that can easily be retrofitted to accommodate selective functionality
from legacy information systems. In the following we describe such a methodology that
takes into account these considerations. This methodology concentrates on parameter-
izing business objects with legacy data and functionality. However, the same methodol-
ogy can be successfully employed for coping with changes to existing business objects
and processes.

One important characteristic of business object technology, that also contributes to
the critical challenge described above, is the explicit separation of interface and imple-
mentation of a class. Business objects technology takes this concept a step further by
supporting interface evolution in a way that allows the interfaces of classes to evolve
without necessarily affecting the clients of the modified class. This is enabled by min-
imizing the coupling between business components. Client and server classes are not
explicitly bound to each other, rather messages are trapped at run-time by a semantic
data object that enforces the binding at the level of parameter passing semantics [[13]].
As we will see in the following, the BALES methodology thrives on this key feature of
business object technology.

2.1 The BALES Methodology

The BALES methodology, that is under development, has as its main objective to param-
eterize business objects with legacy objects (LOs). Legacy objects serve as conceptual
repositories of extracted (wrapped) legacy data and functionality. These objects, just
like business objects, are described by means of their interfaces rather then their imple-
mentation. A business object interface can be constructed from a legacy object interface
partition comprising a set of selected attribute and method signatures. All remaining in-
terface declarations are masked off from the business object interface specification. In
this way, business objects in the BALES methodology are configured so that part of their
specification is supplied by data and services found in legacy objects. A business object
can thus have a part that is directly supplied from some legacy data and services which
it combines with data and services defined at its own level. This means that business ob-
ject interfaces are parameterizable to allow these objects to evolve by accommodating
upgrades or adjustments in their structure and behavior.

The BALES methodology borrows ideas from the object-oriented application devel-
opment literature based on use cases [9)] and task scripts [14]. It also combines ideas
from event-driven business process (re-)engineering [[15], with concepts from the area
of enterprise modeling [[L1], [[L6]. BALES presents some similarities with contemporary
approaches in the field of Enterprise Resource Planning (ERP) package development,
e.g., the San Francisco-project of IBM [4]. Lastly, BALES draws on recent research to
workflows and interoperability, e.g. [30].

The core of the BALES-methodology comprises the three phases (see fig.[T)): for-
ward engineering, reverse engineering and meta-model linking. To illustrate the BALES
mapping methodology a simplified example is drawn from the domain of maintenance
and overhaul of aircrafts (see fig. [Il). This example was inspired from building block
definitions that we currently help develop at the Department of Defense in the Nether-
lands [17]. The upper part of this figure illustrates the results of the forward engineering
of the business domain (phase 1) in terms of workflows, business processes and business
objects. As can be seen from this figure the enterprise model is enacted by a Request-
Part workflow which comprises three business processes: Request, Prognosis and Issue.
The Request-Part workflow is initiated by a maintenance engineer who requests parts
(for maintaining aircrafts) from a warehouse. A warehouse manager can react in two
different ways to such a request.

44 Willem-Jan van den Heuvel, Mike Papazoglou, and Manfred A. Jeusfeld

Enterprise

WorkFlow
Workflow “Request-Part” T

Forward
1 ;Y Engineering

Process Request broanost . ‘ (Enterprise
Components eques ioghcsis p Issue Model)

. Maint
Blil)SlneSS Part®,) (Warehouse Elr:‘gienr:::‘ce
Object
] I Linking
I';egacy Material Purchase Reverse
rocesses Regquirements Planni Requisition Engineering
v (Legacy
Materidl Model)
Leqacy Part Plant arehouse) (Stock Master
Object Planni

Fig. 1. Developing an enterprise model by means of reusing legacy processes and ob-
jects.

Firstly, the manager can directly issue an invoice and charge/dispatch the requested
products to the requester. In this case, the workflow will use information from the Re-
quest process to register the maintenance engineer’s request in an order list. This list
can be used to check availability and plan dispatch of a specific aircraft part from the
warehouse. The Request process uses the business (entity) objects Part and Warehouse
for this purpose. Subsequently, the workflow initiates the Issue process (see fig.[1). The
Issue process registers administrative results regarding the dispatching of requested part
and updates the part inventory record by means of the Part-Stock business object. The
business object Request_Part_Control is an auxiliary control object used during the ex-
ecution of the workflow to store and control the state of the running business processes.
If the requested part is not in stock then an Order-Part workflow is triggered (not shown
in this figure). This workflow then orders the requested parts to fulfill the request of the
Request Part workflow.

Secondly, in case of an ‘abnormal’ request, for example if the customer informs
the warehouse manager about a large future purchase, the manager may decide to run
a prognosis. This process scenario first registers the request information provided by
the Request business process and runs a prognosis on the basis of the availability and
consumption history of the requested part. The Prognosis process uses information from
the Part and Warehouse business objects for this purpose. After the prognosis has ran
successfully the part can be reserved. If the results of the process Prognosis are negative,
as regards future availability of the requested aircraft part, the workflow Order-Part is
activated.

Configuring Business Objects from Legacy Systems 45

The lower part of the picture [I} represents the result of the reverse engineering
activity in the form of two processes (wrapped applications and related database(s))
Material Requirements_Planning and Purchase Requisition. These processes make use
of five legacy objects to perform their operations. Moreover, figure [1 indicates that
the enterprise workflow draws not only on “modern” business objects and processes,
but also already existing (legacy) data and functionality to accomplish its objectives.
For example, business processes such as Request and Issue on the enterprise model
level are linked to the legacy processes Material_ Requirements_Planning and Pur-
chase_Requisition as indicated by means of the solid lines. This signifies the fact that
the processes on the business level reuse the functionality of the processes at the legacy
model level. The same applies for business objects at the enterprise model level such
as Part, Part-Stock and Stock-Location which are parameterized with legacy objects. In
this simplified example we assume that problems such as conflicting naming conven-
tions and semantic mismatches between the enterprise and legacy models have been
resolved. A solution to this problem can be found in [[L8]].

Figure [represents the individual steps and (intermediate) milestones during the
three main phases of the BALES methodology. These are described in the following
subsections.

1. Enterprise Model 2. CDL-Specification 3. Map CDL to Meta-CDL Enterprise Model

Instans
tiate

Forward Engineering Phase

/BN Cross
= o= mappable

o a3 constructs
=

Linking Phase

7. Query Model to find 8. Define BOs and
Potentially Mappable Constructs processes
in terms of
. . LOs & processes
Reverse Engineering Phase in CDL

|Instan-

tiate O @ -
- V O
4. Reverse Eng. Model 5. COL-Specification 6. Map COL to Meta-COL Legacy Model

Fig. 2. The BALES methodology.

2.2 Forward Engineering the Business

The forward engineering phase transforms a conceptual enterprise model into CDL and
maps this CDL definition to a Meta-CDL-Model which serves as a basis for comparison

46 Willem-Jan van den Heuvel, Mike Papazoglou, and Manfred A. Jeusfeld

between business and legacy enterprise models. This phase comprises the following
activities which correspond to steps 1, 2, and 3 in fig.[2

1. Enterprise Modeling:
The forward engineering activity starts with the construction of an enterprise
model. The enterprise model reveals the activities, structure, information, actors,
goals and constraints of the business in terms of business objects, processes and
workflows (that can be defined in terms of each-other), and is typified by the enter-
prise workflow in the upper part of fig.[Il
As can be seen in this figure, the enterprise model is structured by means of
a layered enterprise architecture. This architecture comprises four layers: the
(atomic) business objects, business processes, business workflows and business
policies/goals. Business objects provide a natural way for describing application-
independent concepts such as product, order, fiscal calendar, customer, payment
and the like. A business process is used to define a set of interrelated activities that
collectively accomplish a specific business objective, possibly, according to a a set
of pre-specified policies. The purpose of this layer is to provide generic business
processes in terms of business object services. The workflow layer assigns activ-
ities to actors according to the state of each process in progress and moves the
process forward from one activity to the next. Lastly, the policy layer constitutes
the business policies in terms of subsequently the workflow, process and/or busi-
ness objects. An elaborated description of the enterprise framework can be found
in [12].

2. CDL-Specification of the Enterprise Model:
The interface descriptions of the business objects and processes need to be con-
structed on the basis of the enterprise model.
To formally describe the interfaces of business objects we use a variant of CDL that
has been developed by the OMG [[19]. CDL is declarative specification language —a
superset of OMG IDL, ODGM Object Definition Language (ODL) and the ODGM
Object Query Language — that is used to describe composite behavior of commu-
nities of related business objects. A specification in CDL defines business object
interfaces, structural relationships between business objects, collective behavior of
related business objects and temporal dependencies among them [19]. An object
defined using CDL can be implemented using any programming language as long
as there exists a CDL mapping for that language, e.g., Java and Smalltalk. Practical
experiences with use of the CDL can be found in [20].

3. Instantiating the Meta-CDL Enterprise Model:
After the interfaces of both the business objects and processes have been specified
in CDL, the CDL specifications are instantiated to a Meta-CDL Enterprise (Busi-
ness) Model. This model depicts the instantiations of the CDL enterprise model
components. It thus illustrates how the CDL and model specific constructs are re-
lated to each other, and provides information about their types. The CDL meta-
modeling step is used as basis to infer how the constructs found in a Meta-CDL
Enterprise Model can be connected to (viz. re-use) related constructs found on the
Legacy Model (see section2.4). In summary, the Meta-CDL-Model serves as an
‘independent’ canonical model to which the forward as well as the reverse engi-
neered CDL models will be linked, superimposed, and compared in order to ascer-
tain which (portions of) legacy processes and objects can be reused at the enterprise
model level. In this way, it is possible to parameterize enterprise model business
processes and objects with related legacy business processes and objects.

Configuring Business Objects from Legacy Systems 47

2.3 Reverse Engineering the Legacy System

In the second phase of the BALES-methodology, we represent the legacy objects and
processes in terms of CDL and link them to a Meta-CDL Legacy Model. The activities
during the reverse engineering phase are similar to those performed during the forward
engineering phase. The following activities, which correspond to steps 4, 5 and 6 in fig.
Rl can be identified:

1. Reverse Engineered Model:
The reverse engineered model represents the wrapped legacy data and functionality.
To construct the legacy objects we rely on techniques that combine object wrapping
and meta-modeling with semantic schema enrichment [23]], [24]].
The legacy object model comprises a distinct legacy object and legacy process layer
in the Enterprise Framework (see bottom part of fig. [I)).

2. CDL-Specification of the Legacy Model:
The interfaces of the legacy objects and processes are described by CDL in the
same way as we explained for business processes and objects.

3. Instantiating the Meta-CDL Legacy Model:
After the CDL-descriptions of the legacy components are available the legacy CDL
specifications are instantiated to a Meta-CDL Legacy model much in the same way
that we described for the enterprise model.

2.4 Link Phase of the CDL Meta Models

The CDL descriptions of both the forward- and backward-engineered models have to
be connected to each other in order to be able to ascertain which parts of the legacy
object interfaces can be re-used with new applications. To achieve this, we represent
both business and legacy CDL specifications in a repository system. The repository
system has a CDL meta model which is capable of representing the CDL constructs
and the CDL upgrades that we introduced for representing legacy object interfaces and
their components. The advantage of this repository approach is that the content of the
repository, viz. Meta-CDL Models, is subject to automated analysis, mainly by means
of queries. For this purpose we utilize the ConceptBase system [22]] because it has
an advanced query language for abstract models (like the CDL meta model) and it
uniformly represents objects at any abstraction level (data objects, model components,
modeling notations, etc.).

The underlying representation language of ConceptBase is Telos [21]. Telos has a
frame syntax to represent classes and objects. An equivalent representation is in form
of directed graphs. The content of a ConceptBase repository is subject to queries. The
query language is based on deductive rules. In the frame syntax, queries have the form:

QueryClass <query-name> isA <class>
retrieved attribute
<attr-name> : <Class>
parameter
<param-name>: <Class>
constraint
<con-name>: <membership-conditions>
end

48 Willem-Jan van den Heuvel, Mike Papazoglou, and Manfred A. Jeusfeld

Meta-CDL-Model
(Businesss and Legacy)

CDL-Model
AP Pr .
iprcesin (Businesss
Material_Redquirements_Planning and
Request_Part_Contral Tt Lurer
tPart_ MPRProcessFeatt) Legacy)

PrognoseFrocessin

consumptionPeriod

plantD

#{Exf

f
TotalExptectConsQuantityinPeriod

Fig. 3. A snapshot of ConceptBase graph browser containing the Business and Legacy
Meta-CDL Models.

The interpretation of a query are all instances of the super class (1s2) which ful-
fill the membership condition. The system will include the retrieved attributes in the
answer. If parameters are specified, the user can call a query with values for the pa-
rameters. Parameters may appear in the membership condition which itself is a logical
formula.

Figure Bl shows an excerpt of the abstract representation of business and legacy
objects displayed by the ConceptBase graph browser. The upper half shows the
Meta-CDL-Model, i.e. the meta classes to represent CDL constructs. Note the dis-
tinction between business object types (BOType) and legacy object types (LOType).
The lower half displays an excerpt of the result of the instantiations of CDL rep-
resentations to Meta-CDL models for business and legacy objects. Note that Mate-
rial_Requirements_Planning is classified as legacy object type whereas Prognosis is
instantiated as business object (BOType).

After the CDL descriptions of the forward and reverse engineered models have been
instantiated to their respective Meta-CDL-Models, the two models can be superimposed
and compared (see fig. B). The following two tasks need to be performed in succession
in oder to be able to link legacy objects to business objects.

1. Query the Model to find Potentially Mappable Components
During this task queries are used to infer potential legacy components that may be
connected to business components. For instance, we can identify business object

Configuring Business Objects from Legacy Systems 49

attributes and/or operations that can be constructed out of legacy object attributes
and/or operations. In [25]] ConceptBase is successfully deployed for solving a simi-
lar problem. Telos queries are used to retrieve exact or partial matches of signatures
of requested components that are stored in a repository. As argued in [25], most
queries will lead to a partial solution, since it is unlikely that two interfaces will
match exactly. This type of querying is useful for combining signatures of legacy
operations with operations of business objects. However, it raises type safety issues
that will be addressed in section 4]
2. Specify Business Objects in CDL in terms of Legacy Objects

The legacy constructs that are returned by the query answers above are subse-
quently substituted in the CDL business object specifications obtained in step 2
of the forward engineering phase, see fig.[2] For this purpose we have extended the
CDL language with a special linking operator ‘X — Y’, where X represents some
source construct (for example a Meta-CDL construct for business Operation, see
fig. @). Y denotes the target construct (e.g., a Meta-CDL legacy Operation) which
corresponds to a reused operation from the Meta-CDL legacy model.

The BALES methodology results in a CDL specification of business objects and
processes in terms of their related legacy counterparts. The mapping statements can be
easily adjusted to satisfy new market requirements by, for example, accommodating
new packages such as ERP solutions [[10], [4].

In the next section, we will illustrate the BALES activities and milestones in terms
of the aircraft maintenance and overhaul example that we presented earlier.

3 Putting Things Together

3.1 Forward Engineering

In the following, we will explain the forward engineering phase in a step-by-step man-
ner according to what we have outlined in section

1. Enterprise Modeling:
During this phase the enterprise model is constructed as already explained in sec-
tion 2.1]

2. CDL-Specification of the Enterprise Model:
The enterprise model represented in fig. [serves as a starting point to specify
the business object/process in CDL. We shall give an example of a CDL specifi-
cation involving a business object with interesting dynamic behavior, namely the
Request_Part_Control in fig. [2l Detailed descriptions of the CDL syntax can be
found in [[19].
This CDL specification describes the interface of the business control object Re-
quest_Part_Control (see fig. [1)) and shows that this business object encapsulates
three business processes: Request, Prognosis and Issue. As can be seen from the
CDL specification, the Request_Part_Control object is related to the Part, Main-
tenance_Engineer and Warehouse business objects. This business object can be in
three states: ‘initial’, ‘processing’ or ‘handled’. The business process Request can
change the state of the business object Request_Part_Control from ‘initial’ to ‘pro-

50

Willem-Jan van den Heuvel, Mike Papazoglou, and Manfred A. Jeusfeld

cessing’ on the basis of the incoming event request. Likewise, the Prognosis and
Issue process can change the state of this control object, as described in section 2.1}

#include metamodel.cdl

entity Request_Part_Control {
// cdl description of the control object "request part_control"
// this object comprises all three business processes and registers
// the state of them (initial, processing or handled) .
// static aspects
attribute workflow_ID, state_description, active Process;
relationship for Many Part inverse requested_in;
relationship by One Maintenance_Engineer inverse requests;
relationship from Many _Warehouse inverse has;
// dynamic aspects
state {initial, processing, handled}

process Request {
// process description here
}; # end str

}; # end process Request

process Prognosis {
attribute consumptionHistory, consumptionPeriod, expectedSpecialSale,
totalExpectedConsQuantityinPeriod;
relationship of Many Parts inverse has;
relationship for Many Warehouse inverse has;
event register expected;
event register exptected_stock;
void forecast (in partID, in stockID, in warehouseID, in consumptionPeriod,
in consumptionHistory) ;
void manualReorderPointPlanning (in artID, in stockID, in warehouseID) ;
}; # end process Prognosis

process Issue_Part {
attribute quantityRequest;
event issue;
apply StateTransitionRule IssueProcessing {
trigger = {issue}
source = processing
target = handled
}; # end str
}; # end process Issue
}; # end entity Request_Part_Control

3. Instantiating the Meta-CDL Enterprise Model:

In this step, the CDL definitions given above are instantiated to a Meta-CDL-Model
representing the enterprise. The Meta-CDL-Model is stored in the ConceptBase
tool as already explained (see fig.[3)), and can be reused each time the Meta-CDL
Enterprise/Legacy Model need to be instantiated. The Meta-CDL model represents
all CDL modeling constructs such as business objects and business processes and
their constituents as already explained.

The next step is to to link the forward engineered model Request-Part to its CDL-
Meta-Model in order to be able to map it later on to its reverse-engineered counter-
part.

The Telos specification that follows is a textual representation of the graphical ele-
ments of the ConceptBase graph browser depicted in fig.

Prognosis in Process with forecast in Operation with
partof owner
x : Request_Part_Control o : Prognosis
Fofeatures usedAttrib
f1 : consumptionHistory; al : partID;
£2 : consumptionPeriod; a2 : stockID;
£3 : ExpectedSpecialSale; a3 : warehouseID;
f4 : totalExptectConsQuantityinPeriod; a4 : consumptionPeriod;
£5 : manualReorderPointPlanning; a5 : consumptionHistory
f6 : forecast end
end

The two Telos frames above define features and operations of the process Prognosis
as part of the BO Request_Part, and an operation forecast that is executed during
this process (forecasting is used to determine the future consumption of a part).
These are specified as instances of the Meta-CDL class Process and the Meta-
CDL class Operation, respectively (see fig.[3). In fig.[3 it is shown that the forecast
operation uses the attributes like partID, warehouselD,stockID, consumptionPeriod
ConsumptionHistory to perform its objectives. In section 3.3 we will show how

3.2

3.

Configuring Business Objects from Legacy Systems 51

the signature of this operation can be parameterized with components of a legacy
operation signature.

After the Telos frames that are generated on the basis of the forward engineered
CDL-descriptions and connected to the Meta-CDL-Model, we can proceed with
the second phase in the BALES methodology: the Reverse Engineering Phase.

Reverse Engineering

. Reverse Engineered Model:

During this step the reverse engineered model is constructed as already ex-
plained in the previous. Reverse engineered legacy processes such as Mate-
rial_Recourse_Planning (MRP) and Purchase_Requisition and wrapped objects like
Part, Plant, Warehouse, etc., are represented in the reverse engineered model as
shown in fig. [Il The legacy process Material_Recourse_Planning is used to deter-
mine the requirements for parts at a maintenance location.

. CDL-Specification of the Legacy Model:

We can now provide a CDL-specification on the basis of the reverse engineered
model. As an example we use the interface of the legacy object Warehouse, see
bottom part of fig. 2] whose interface is described below in CDL.

As can be seen from this example the legacy object Warehouse encapsulates the
legacy process Material _Requirements_Planning. This legacy process can be used
to plan all the part requirements in the warehouse. For this purpose it uses the
legacy operation forecastDetModel. The definitions in the LO Warehouse will sub-
sequently be used as a basis to construct the interface of the business object Ware-
house.

// Definition of the legacy entity: Warehouse

[keys={orderID}] entity Warehouse {
relationship ordered_for Many Part inverse ordered by;
relationship has Many Plant inverse of;

attribute int plantID;
[required] attribute String warehouse name, warehouse_address, warehouse place;
state ordering{initial, planning, planned}

// Definition of the Material Requirements Planning business process
process Material_ Requirements_Planning {
// the relations of the process object, with other components
relationship of References Part;
relationship for References Plant;
relationship in References Warehouse;

// the dynamic behavior

event register_expected;

event start_long_term_planning;
event start_stat_analysis;

// Methods to implement MRP
// forecast stock on basis of deterministic planning
void forecastDetModel (in partID, in stockID, warehouselID,
in consumptionPeriod, in consumptionHistory) ;
// forecast stock on basis of consumption based planning
void planProduct (in artID, in stockID, in warehouselID) ;

// state transition rule of MRP

apply StateTransitionRule ProgProcessing {
trigger = {register_exp_stock}
source = processing
target = handled

}; # end str

}; // end process Material Requirements_Planning
}; // end Warehouse entity

Linking the CDL specifications to the Meta-CDL Legacy Model:

After the CDL definitions are included in the ConceptBase repository, they are in-
stantiated to the appropriate legacy components in the Meta-CDL Legacy-Model.
For example, the legacy object Warehouse is instantiated from the Meta-CDL
Legacy Modeling construct L_Entity. Another example is the legacy process Ma-
terial_Requirements_Planning that is represented as instance of the legacy process

52 Willem-Jan van den Heuvel, Mike Papazoglou, and Manfred A. Jeusfeld

construct L_Process, see fig. [l This object would look like as follows in Telos
frame syntax:

L_Process Material_Requirements_Planning with Operation forcastModelDet with
partof owner
X : Warehouse o : Material_Requirements_Planning

Fofeatures usedAttrib
£1: consumptionPeriod; al : partID;
£2: consumptionHistory; a2 : warehouseID;
£3: STR_ProgProcessing; a3 : stockID;
f4: forecastModelDet a4 : consumptionPeriod;
end a5 : consumptionHistory

end

The above two Telos frames depict the legacy components Mate-
rial_Recourse_Planning and forcastDetModel as instantiations of the
Meta-CDL constructs L_Process and Operation, respectively. The Mate-
rial_Recourse_Planning legacy process features two attributes (ConsumptionPeriod
and ConsumptionHistory), a state-transition rule (called STR_ProgProcessing) and
a method (forecastDetModel).

After both the forward and reverse engineered CDL descriptions have been speci-
fied by means of the Meta-CDL-Model in ConceptBase, the actual linking of business
objects and processes to legacy objects and processes can take place.

3.3 Parameterizing: Specifying BOs via Cross-Interface Linkages

This phase indicates that business objects like PartStock (a business object that de-
scribes the statues of a part at the warehouse) and StockLocation (the location of the
warehouse where the parts are physically stored, e.g., a shelve) are partly implemented
by means of the legacy object Stock, see fig. [Il. Hence, the interfaces of the business
objects such as PartStock and StockLocation can be partially constructed by connecting
them to the interfaces of the legacy object Stock. In reality there will also be a need
to define auxiliary objects that are required to adjust the structure and behavior of the
legacy objects to what is expected at the BO level. However, this procedure will not be
discussed further in this paper due to reasons of brevity.

To parameterize BOs with legacy objects the following two tasks need to be per-
formed in succession.

Query to find potentially mappable components: The first task in the linking phase
consists of identifying potential legacy constructs that can be linked to related busi-
ness constructs. We will illustrate the process of linking LO interfaces to BO inter-
faces by means of a ConceptBase query. The query (‘OpWithSameAttributes’ that
is a specialization of the class Operation) results in a set of operations that share
one or more attributes have an identical signature.

QueryClass OpWithSameAttributes isA Operation with
retrieved attribute
owner : LOType
parameter
proto_op : Operation
constraint
con:
$ (forall a/AttributE (this usedAttrib a) ==>
(proto_op usedAttrib a))
and
(forall b/AttributE (proto_op usedAttrib b) ==>
(this usedAttrib b)) $
end

Essentially the query determines those operations in the repository which are
owned by a legacy object type and have the same signature (used attributes) as

Configuring Business Objects from Legacy Systems 53

the operation provided as parameter proto_op (signifying a prototypical object).
The operation supplied as parameter to the query belongs to a business opera-
tion described in a Meta-CDL Business Model. This implies that we are look-
ing for a legacy operation to match a business operation. A call OpWithSameAt-
tributes(forecast/proto_op] of this query may yield the following result, which in-
dicates a match between the BO operation forecast and the legacy operation fore-
castDetModel.

forecastDetModel in OpWithSameAttributes [forecast/proto_op] with
owner
fmdet_owner : Material Requirements_Planning
end

As can be seen from the above result the legacy operation forecastDetModel is a
candidate to implement the forecast business object operation. The answers ob-
tained by queries are first checked against some simple type-safety criteria (men-
tioned below) and are also validated by an analyst to resolve semantic mismatches
at the operation level. After successful validation, the interfaces of the forecast and
forecastDetModel can be inter-linked.

Parameterize: The results of the queries to find potentially mappable components are
used to create the interface specifications of the business objects. For this purpose
we use the initial CDL specification for business objects (step-3) as described in fig.
Rl where we connect business component specifications with references to equiva-
lent (mappable) legacy component specifications that we identified by means of
querying. An example of such a mapping is given below:

process Prognosis {

attribute consumptionHistory, consumptionPeriod, expectedSpecialSale

totalExpectedConsQuantityinPeriod;

event register expected;

event register exptected_stock;

// Mapping of forecasting method to legacy process component MRP

this.forecast --> Warehouse.Material Requirements_Planning.

forecastDetModel (in partID, in stockID, in warehouseID,
in consumptionPeriod, in consumptionHistory);

void manualReorderPointPlanning (in int artID, in stockID, in warehouseID);

}; # end process Prognosis

This example defines the business object operation forecast in terms of the legacy
operation Material_Requirements_Planning which is embedded in the business ob-
ject by means of the linking operator —-.

In many cases it would be possible for methods at the business object level to be
passed methods found at the legacy level as arguments or return legacy level functions
as results. It is convenient to view such BO methods as higher order functions as they
can accept legacy functions as parameters or return functions as results. This issue raises
type safety problems as we may get runtime errors if we pass and subsequently invoke
an inappropriate function from a high order function.

To ensure type safety on method arguments and method results we require the use
of argument contravariance (expansion) and result covariance (restriction). Method re-
sults are said to covariant — they vary in the same way as function types. Result types
must be more specific for the function type to be more specific. Conversely, argument
types are said to contravariant - they vary in the opposite way as the function type. Ar-
gument types must be more general for the function type to be more specific [26]. We
can informally explain this as follows. Assume we expect a function or method f to
have type t; — to, where t; are its arguments and ¢ its results. Therefore, we consider
t; arguments as permissible when calling f. Now assume [actually has type t| — t}
with ¢; < ¢/, where < is a special operator denoting a subclass to superclass relation-
ship. Then we can pass all the expected permissible arguments of type ¢; without type

54 Willem-Jan van den Heuvel, Mike Papazoglou, and Manfred A. Jeusfeld

violation; f will return results of type t; which is permissible if ¢, < ¢o because the
results will then also be of type t2 and are therefore acceptable as they do not introduce
any type violations. The subject of type safety regarding the parameterization of BOs
by legacy counterparts is currently under research scrutiny.

4 Conclusions and Future Research

Enterprises need flexible, modular business processes that can easily be configured to
meet the demands of business and technology changes. When developing applications
based on business objects and processes it is important to address two factors: (a) re-
quirements for change so that business information systems can evolve over time, and
(b) the linking of business objects with legacy information systems. The common aim
of these two requirements is the ability to combine new and existing (legacy) business
components within a running application. In both cases there is a need for the added
business components to interoperate seamlessly with components present in the current
execution environment. This should happen without the risk of disrupting the applica-
tion or business process it models, thus, facilitating the graceful, incremental, evolution
of complex systems.

In this paper we have described the BALES (binding Business Application objects
to LEgacy Systems) methodology that we are currently developing. This methodology
has as its main objective to inter-link parameterizable business objects to legacy objects.
Legacy objects serve as conceptual repositories of extracted (wrapped) legacy data and
functionality. These objects are, just like business objects, described by means of their
interfaces rather than their implementation. Business objects in the BALES methodol-
ogy are configured so that part of their implementation is supplied by legacy objects.
This means that their interfaces are parameterizable (or self-describing) to allow these
objects to evolve by accommodating upgrades or adjustments in their structure and be-
havior.

The results that we have presented are core results in nature. Extensions are needed
in several directions to guarantee a practical methodology. For example, problems with
regard to granularity need to be solved in a more efficient manner. As can be observed
by the ‘Request-Part’ enterprise workflow, in section[3], the granularity of the legacy sys-
tem was higher than that of the business model counterpart. Currently, we use simple
decomposition techniques to solve this problem. In addition to this, problems in connec-
tion with type safety need to be further investigated. In its current form the methodology
does not provide yet mechanisms to bind organizational policies to business processes
and objects. Research work reported in [[16]] and [[28] seems to be particularly useful for
this purpose. Lastly, the evolution of business processes can be compared to software
components configuration management [29]. We plan to combine some of the ideas
that have been developed in this area with the approach presented herein to in order to
accommodate pro-active behavior in our mapping methodology.

References

[1] D.A. Taylor. Business Engineering with Object Technology. John Wiley and Sons, Inc.,
New York, 1995.

[2] M. Hammer and J. Champy. Re-engineering the Corporation: A Manifesto for Business
Revolution. Harper Collins, New York, 1993.

(3]

(22]

(23]

(24]

(25]

[26]

Configuring Business Objects from Legacy Systems 55

M.L. Brodie. “The Emperor’s Clothes are Object-Oriented and Distributed” in M.P. Pa-
pazoglou and G. Schlageter, editors, Cooperative Information Systems: Trends and Direc-
tions, Academic Press, 1998.

S. Abinavam and et al. San Francisco Concepts & Facilities. International Technical
Support Organization, IBM, February 1998. SG24-2157-00.

M. L. Brodie and M. Stonebraker. Migrating Legacy Systems: Gateways, Interfaces and
the Incremental Approach. Morgan Kaufman Publishing Company, 1995.

A. Umar. Application (Re)Engineering: Building Web-based Applications and Dealing
with Legacies. Prentice Hall, New Jersey, 1997.

R.C. Aronica and D.E. Rimel Jr. “Wrapping your Legacy System”, Datamation, 42(12):83—
88, June 1996.

P. Robertson. “Integrating Legacy Systems with Modern Corporate Applications”, Com-
munications of the ACM, 50(5):39-46, 1997.

I. Jacobson, M. Griss, and P. Jonsson. Software Reuse: Architecture, Process and Organi-
zation for Business Success. Addison Wesley, 1997.

T. Curran, G. Keller, and A. Ladd. SAP R/3 Business Blueprint: Understanding the Business
Process Reference Model. Prentice-Hall, New-Jersey, 1998.

A. W. Scheer. Business Process Engineering: Reference Models for Industrial Enterprises.
Springer-Verlag, 1994.

M.P. Papazoglou and W.J. van den Heuvel. “From Business Processes to Cooperative
Information Systems: An Information Agents Perspective”, in M. Klusch, editor, Intelligent
Information Agents, Springer-Verlag, Feb. 1999.

P. Eeles and O. Sims. Building Business Objects. John Wiley & Sons, New York, 1998.

I. Graham. Migrating to Object Technology. Addison-Wesley Publishing Company, Work-
ingham, England, 1994.

1. Jacobson and M. Ericsson. The Object Advantage: Business Process Re-engineering
with Object Technology. ACM Press, Addison-Wesley Publishing Company, Workingham,
England, 1995.

E. Yu. Modeling Strategic Relationships for Process Engineering. PhD thesis, University
of Toronto, 1994.

Department of Defense Netherlands. “Methodiek voor het inrichten van de infor-
matievoorziening op basis van bouwstenen ten behoeve van het ministerie van defensie”,
Technical Report, Defense Telematics Organization, 1997.

M.P. Papazoglou and S. Milliner. Content-based Organization of the Information Space in
Multi-database Networks”, in B. Pernici and C. Thanos, editors, Procs. CAISE’98 Conf.,
Pisa, Italy, Springer-Verlag, 1998.

Data Access Technologies. Business object architecture (BOA) proposal. BOM/97-11-09,
OMG Business Object Domain Task Force, 1997.

W. Hordijk, S. Molterer, B. Peach, and Ch. Salzmann. “Working with
Business Objects: A Case Study”, OOPSLA’98 Business Object Workshop,
http://jeftsutherland.org/oopsla98/molterer, October 1998.

J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis. “Telos: Representing Knowledge
about Information Systems”, ACM Transactions on Information Systems, 8(4):325-362,
1990.

M.A. Jeusfeld, M. Jarke, H.W. Nissen, and M. Staudt. “ConceptBase: Managing Con-
ceptual Models about Information Systems”, in P. Bermus, K. Mertins, and G. Schmidt,
editors, Handbook on Architectures of Information Systems. Springer-Verlag, 1998.

M.P. Papazoglou and N. Russell. “A Semantic Meta-modeling Approach to Schema Trans-
formation”, In CIKM-95: Int’l. Conf. on Information and Knowledge Management, Balti-
more, Maryland, 1995.

M.P. Papazoglou and W.J. van den Heuvel. “Leveraging Legacy Assets”, to appear in
M. Papazoglou, S. Spaccapietra, Z. Tari, editors, Advances in Object-Oriented Modeling,
MIT-Press, 1999.

S. Chen. Retrieval of Reusable Components in a Deductive, Object-Oriented Environment.
PhD thesis, RWTH Aachen, Information Systems Institute, 1993.

B. Meyer. Object-Oriented Software Construction. Prentice-Hall, Englewood Cliffs, 1994.

56

[27]

(28]

[29]

[30]

Willem-Jan van den Heuvel, Mike Papazoglou, and Manfred A. Jeusfeld

J. Mylopoulos. “Conceptual modeling and Telos”, in P. Loucopoulos and R. Zicari, editors,
Conceptual Modeling, Databases and Case: an Integrated View on Information Systems
Development, J. Wiley, New York, 1992.

P. Kardasis and P. Loucopoulos. “Aligning Legacy Information Systems to Business Pro-
cesses”, in B. Pernici and C. Thanos, editors, Procs. CAISE’98 Conf., Pisa, Italy, Springer-
Verlag, 1998.

M. Jarke, M. A. Jeusfeld, A. Miethsam, and M. Gocek. “Towards a Logic-based Reconstruc-
tion of Software Configuration Management”, 7th Knowledge-Based Software Engineering
Conference. IEEE Computer Society Press, Los Alamitos, California, 1992.

Leonid Kalinichenko. “Workflow Reuse and Semantic Interoperation Issues”, in: Workflow
Management Systems and Interoperability (A. Dogag, L. Kalichenko, M.T. Ozsu and A.
Sheth eds.), NATO ASI Series, Springer, 1998

	Introduction
	A Methodology for Binding Business Application Objects and Processes to Legacy Systems
	The {em BALES} Methodology
	Forward Engineering the Business
	Reverse Engineering the Legacy System
	Link Phase of the CDL Meta Models

	Putting Things Together
	Forward Engineering
	Reverse Engineering
	Parameterizing: Specifying BOs via Cross-Interface Linkages

	Conclusions and Future Research

