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Abstract 

Most of the widely used object-oriented languages, such as C++. Java and Samlltalk. 

use single-receiver dispa tch. Jn single-receiver dispat ch, the code for a particular 

message expression is deterrnined by the dynamic type of the receiver object and the 

static signature of the message. In contrast, there are object-oriented languages, like 

CLOS, Cecil and Dylan that use multi-method dispatch. In multi-method dispatch, 

the code for a message expression is determined a t  run-tirne by the name of the 

message and the dynamic types of al1 message arguments, including the receiver 

object. 

Multiple Row Displacement(MRD) is a new dispatch technique for multi-method 

languages. It is based on cornpressing an n-dimensional table using an extension of the 

single-receiver row displacement mechanism. This thesis presents the new algorithm 

and provides experimental results that compare it with implementations of existing 

techniques: compressed n-dimensional tables, look-up automata and single-receiver 

projection. MRD has the fastest dispatch performance and uses comparable space 

to these other techniques. This thesis also discusses how to apply MRD in statically 

typed and non-statically typed languages. 
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Chapter 1 

Introduction 

Object-oriented languages can be separated into single-receiver languages and rnultà- 

method languages. Single-recezuer languages use the dynamic type of a dedicated 

receiver object in conjunction with the method name to determine the method to 

execute a t  run-time. Multi-method languages [6] use the dynamic types of one or 

more arguments' in conjunction with the method name to determine the method to 

execute. In single-receiver languages, a call-site can be viewed as a message send 

to the receiver object. In multi-method languages, a call-site can be viewed as the 

execution of a behavior on a set of arguments. The run-time determination of the 

method to invoke at a call-site is called method dzspatch. Note that languages like 

C++ and Java that allow methods with the same name but different static argument 

types are not performing actual run-time dispatch on the types of these arguments; 

the static types are simply encoded within the method name at compile tirne. For 

example, consider two Java methods, A.alpha(Integer) and d.alpha(Float), defined 

in a class A. The Java names of these two methods are different, since they are 

alphalnteger and alpha Float respectively. 

Since most of the commercial object-oriented languages are single-receiver lan- 

guages, many efficient dispatch techniques have been invented for such languages [21]. 

However, rnulti-method dispatch is more suitable to some methods than single-receiver 

dispatch. For example, the operator '+' can be considered as add(Number1, Mumber2). 

If A h n b e r l  is an integer? and Nurnber2 is a Boat number, dispatching on the 

type of Numberl  by single-receiver dispatch returns add(Integer, Integer) ,  while 

In the rest of th& thesis, 1 will assume that dispatch occurs on ail arguments. 

1 



ucltl(lnteyer. Floclt) shoiild be returned. In façt there miIl be four diffèrent rnetliotls 

tliat iniplenieiit udd: ucld(Intryc.r. Irrteger). a<ld(Integer. Float).  a&( Floc~t. I l i  t r g c r )  

and add( Flout. Flout).  l fariy ot her numerical operators also neecl the estra e sp rmive  

powcr of multi-rnethocls. 

IIulti-iiirthocl tlispatch is also very iisefiil in niany graphical user interhce opera- 

t ions. For csiirnple. the niet hoc1 drag-and-drup(.soi~rce. tnrget ) can bc cspresseti niore 

dficieritly by miilti-rriethocl dispatch. The source object could be a circle. rectangle. 

or otlier risual coniponerit. The target object could bc a ciln\-as. bromser. or ot1it.r 

(lisplq-irig- conipuricrit. Iri this case. bot h the type of the .suilr*cf ul>jcct ancl t tir1 t y p ~  u l  

the ttiryet object niust be coiisiclered to perform the actiial opcration. lfulti-rnct h l  

disparch proricles thc corivenieiicc. Tliere ;ire sonie ni~iiti-mrtliod larigiiagrs i r i  1isi1. 

siicli ;is Cecil [Tl. CLOS [SI. i d  Dylan [4]. Ho~vcvcw. The- ;ire riot as popiilar as .Java 

or C++. 

Sincc rtiiilti-iiirtliods are not siipportetl in any popiilar corrirriercial I i i r ig~~agw it is 

~ i o t  tliWy to (mvi~ lco  iiscass to sivitch langiiagr. jist to i i s r  t i i i i l t  i-trii~tkiods. I t  is ;dso riot. 

iliisy tm cwiiviricr1 1;rrigii;igc. c l i + p m  ;incl irtipltbrri(i~itors t o  tist o i i d  vsisti iig 1;iiigii;tgos 

to support riiul ti-nictliotls. siiice r i i d  t i-rrietlioti dispatcli is slomc.r tliari siriglc-rrwiwr 

tlispiitch. Tlic iicccptarict: of rriiilti-rricthod lariguagcs cleprrids un  hstcr  dispatc4i 

illgorithnis aritl fastclr iiiadiincs. 

Tlierc. arc. tliree rnajor ciitegories of rnerliotl tlispatch: seclrch-based. cache-basrd 

and tuble-lmsed. The sirriplest scarch-basetl technique is callecl method lookup. ivliicli 

Imks in a clictionary basetl on the message name and dynarnic arg-iirnent types. If a 

riiatcti is not foiind. it looks in othcr dictionaries basecl ori super-types of t h  argutricrit 

types. It keeps lookirig until a method is found. If no methocl is foiind an w o r  is 

reportetl. -1 cache-based tcchriiclue looks in either a glol~al or local caclic a t  thc tinic 

of tlispatch to determine if the rnethod for a partictilar call-site lias alreacfy beeri 

determinecl. If it has been determined. that method is used. Otherwise. a cache- 

miss technique is used to compute the niethocl? which is then cachecl for subsequent 

eseciitions. .A tuble-buse& teclinique pre-determines the rnethod for every possible call- 

site. and rccords these metliods in a table. At dispatch-tirne. the rnetliod nanie and 

clynamic argument types Form an index into this table. This thesis fociises exclusivel~ 

on table-based techniques. The advantage of using table-based techniques is that  they 



have constant dispatch time. In addition, even when cache-based techniques are used, 

table-based techniques can be effectively used for cache-misses. 

This thesis presents a new multi-method table-based dispatch technique. It uses 

a time efficient n-dimeosional dispatch table that is cornpressed using an extension 

of a space efficient row displacement mechanism. Since the technique uses multiple 

applications of row displacement, it is called Multiple Row Displacement and wi11 

be abbreviated as MRD. MRD works for methods of arbitra- arity. Its execution 

speed and mernos utilization are analyzed and compared to other multi-method 

table-based dispatch techniques. 

The rest of this thesis is organized as follows. Chapter 2 introduces some notation 

for describing multi-method dispatch. Chapter 3 reviews existing single-receiver and 

multi-method dispatch techniques. Chapter 4 presents the new multi-method table- 

based technique. Chapter 5 shows the data structures used to impiement the new 

algorithm. Chapter 6 presents time and space results for the new technique and 

compares it to existing techniques. Chapter 7 presents future work and conclusions. 



Chapter 2 

Terminology for Multi-Method 
Dispat ch 

2.1 Notation 

Tliv riut,iitio~i in tliis tliesis originatctl mith tlie tlispatcli tearri at the Cniwrsity i ~ t '  

Alberta. Expression 2.1 shows the form of a k-arity multi-niet hod call-sitcl. E d i  

argunient. O, .  represerits an object. and lias a n  associatcd ~ n u n i t c  t;qpe. TL = t , ~ p ( u ~  ). 

L r t  'fl rcprcwnt a typr liierixrchy. ;inci 1x1 bc thc tiiimbor of rypw in the kiicrarc:liy. Ici 

'H. c w l i  type hiis a typc riiinibcr. nirm(T). -4 clircctc.cl si~pertype fdye esists hrtwvti 

type T, ancl typc? T, if T, is a direct subtype of Tt.  which is cleriotd as T, 4 1 Tt .  I f  T, 

cari be reaclietl frotri T, II?* following orle or rriore siiprrtypr cvlgc~s. T, is a sid)t ! /pt~ of 

TL. dcrioted as T, + TL. 

Ir1 the sirigle-rcceivt~r tlorriairi. Expressiori 2.1 can be written as Espressiori 2 . 2  

ibkthod tlispotch is the ruri-time determinat ion of' a met hod to invoke at a call-site. 

When a method is definecl, each argument, oi. has a specific static type. Tz .  Hoivever. 

at a call-site, the dynamic type of each argument c m  either be the static type. TL. 

or any of its subtypes, {TIT 5 Ti}. For example, consider the type hierarchy and 

rnethod definitions in Figure Z.l(a). and the code in Figure 3.l(b). The static type of 

anA is A. but the dynaniic type of anA c m  be either A. 3 or C. In general. the clytiamic 



The subscript besidt the type is the 
type numkr. niun(77. 

A a d ;  
if( . . .  1 

anA = new A ( ) ;  
else if ( . . . 

anA = new B O ;  
else 

ad = new C O ;  

(a) Type Hierarchy (b) Code Requiring hlethod Dispatch 

Figure 3.1: An example hierarchy and program segment requiring niethod dispatch 

type of an object at  a call-site is not known until run-time, so method dispatch is 

necessary. 

Although multi-method languages might appear to break the conceptual mode1 

of sending a message to a receiver, this idea can be maintained by introducing the 

concept of a product-type. A k-arity product-type is an ordered list of k types denoted 

by P = TL x T2 x ... x Tk. The induced k-degree product-type graph, k 2 1, denoted 

Xk,  is implicitly defined by the edges in U. Nodes in ?tk are k-arity product-types, 

where each type in the product-type is an element of 'H. Expression 2.3 describes 

when a directed edge exists from a child product-type P, = T: x Tf x ... x T '  to a 

parent product-type P, = T,' x T; x ... x qk, which is denoted Pj i L Pi. 

The notation Pj i Pi indicates that P, is a sub-product-type of Pi, which irnplies 

that P, can be reached from Pj by following edges in the product-type graph 7 f k .  

Figure 2.2 presents a sample inheritance hierarchy H and its induced 2-arity product- 

type graph, XZ. Three 2-anty methods ( T ~  to yJ) for behavior y have been defined on 

U2 and associated with the appropriate product-types.l Note that for real inheritance 

hierarchies, the product-type hierarchies, 'U2, X 3 ,  .. ., are too large to store explicitly. 

'The method 74 in the dashed box is an implicit inheritance conflict definition, and will be 
evpIained later. 



Therefore, it is essential to define all product-type relationships in terms of relations 

between the original types, as in Expression 2.3. 

An Inheritance Hierarchy, H: The 2-arity product-type *ph, H? 

1 h B  BxA 

Method Definitions on H': 
BxB ( CxA 

\ /' 
cxc 

Figure 2.2: An Inheritance Hierarchy, X, and its induced Product-Type Graph 7i2 

Next, I define the concept of a behavior. A behavior corresponds to a generic- 

function in CLOS and Cecil, to the set of methods that share the same signature 

in Java, and the set of methods that share the same message selector in Smalltalk. 

Behaviors are denoted by B:, where k is the arity and o is the name. The maximum 

a i t y  for al1 behaviors in the system is denoted by K. Multiple methods can be 

defined for each behavior. A method for a behavior named o is denoted by O,. If the 

static type of the ith argument of oj is denoted by T', the list of argument types can 

viewed as a product-type, d m ( o j )  = Tt x TZ x ... x Tk. With multi-method dispatch, 

the dynamic types of al1 arguments are needed. 

2.2 Inheritance Conflicts 

Section 2.1 defines subtype and supertype relationship between types in an inheritance 

hierarchy. If each type in an inheritance hierarchy is allowed to have a t  most one 

immediate supertype, as in Figure S.3(a), this hierarchy is called a single inheritance 

hierarchy. On the other hand, if types are allowed to  have more than one immediate 

supertype, as in Figure 2.3(b) and (c), this hierarchy is called a multiple inheritance 



hierarchy. 

Figure 2.3: Single Inheritance and Multiple Inheritance 

In single-receiver languages with multiple inheritance, the concept of inhentance 

conj-lict arises. In general, an inheritance conflict occurs a t  a type T if two different 

methods of a behavior are visible (by following different paths up the type hierarchy) 

in supertypes T,  and Tj .  For example, if two methods, .L :: a and C :: a, are defined 

for the type hierarchy in Figure 2.3(c), then there will be an inheritance conflict for 

behavior a at  type D. Since D is a subtype of C, C :: a is visible to type D. At the 

same time, D is a subtype of B, which in turn is a subtype of il. therefore -4 :: cr is 

also visible to type D. This situation is called an inheritance conflict. 

Most languages relax this definition slightly. .Assume that n different methods of 

a behavior are defined on the set of types 7 = {Tl ,  ..., T,), where T 5 Ti, ..., T,. 
Then, the methods defined in two types, Ti and Tj in 7, do not cause a conflict in T, 

if 4 T,, or T,  4 T,, or {3 Tk E 7 1 Tk + S, & Sk + T,} . .As described in the last 

paragraph, an inheritance conflict occurs at type D, if .4 :: a and C :: ut are defined 

for the type hierarchy in Figure 2.3(c). However, after the relaxation, no inheritance 

conflict results, since type C is a subtype of .I. That is, C :: a will be selected over 

J :: ci!. 

Inheritance conflicts can also occur in multi-method languages, and are defined 

in an analogous manner. A conflict occurs when a product-type can see two different 

method definitions by looking up different paths in the induced product-type graph 

TL x T2 x ... x Tk. Interestingly, inheritance conflicts can occur in multi-method lan- 

guages even if the underlying type hierarchy, 3, has single inheritance. For example, 



in Figure 2.2, the product-type B x C  has an inheritance conflict, since it can see two 

different definitions for behavior y (m in AxC and 7 2  in BxB).  For this reason, an im- 

plicit conflict method, y,, is defined in BxC as shown in Figure 2.2. Similar to single- 

receiver languages, relaxation can be applied. Assume that n methods are defined in 

product-types P = { P l ,  ..., P,,), and let P 4 Pl, ..., P,. Then, the methods in Pi and 

P, do not conflict in P if Pi 4 Pj, or P, + P,, or (3 Pk E P 1 Pk 4 Pi k Pk 4 Pj) . 
In multi-method languages, it is especially important to use the more relâued defi- 

nition of an inheritance conflict. Othenvise, a large number of inheritance conflicts 

would be generated for almost every method definition. 

2.3 Reflexive versus Non-Reflexive Environment 

-4 program is running in a non-reflexive environment, if al1 types and methods are 

defined before the execution of the program. Hence, no types or methods can be 

changed during execution. Programs written in C++ are running in a non-reflexive 

environment. On the other hand, a progam is running in a reflexive environment, if 

the type hierarchy and method definitions can be changed during progam execution. 

Programs written in Smalltalk, Prolog and CLOS are running in a reflexive environ- 

ment. The situation in Java is more complicated since limited reflexive compabilities 

were added in the latest release. 

In a reflexive environment, three categories of changes can happen during program 

execution: (1) add or drop a type, (2) link or unlink a type to another type, (3) add, 

delete, or change a method. Cache-based dispatch techniques do not work very well in 

a reflexive environment. A small change (e.g. linking two types) in the environment 

rnay require the entire cache to be rebuilt from scratch. This removes the advantage 

of using a cache. Some table-based dispatch techniques allow their tables to evolve 

incrementally as the environment evoives [22]. Ot her table-based dispatch techniques 

must rebuild the entire set of tables when a change occurs. In either case, since the 

environment needs access to the table for the changes, no dispatch can occur when 

the tables are being modified. 

Reflexivity is a complicated problem, which requires further study. Therefore, this 

thesis concentrates on dispatch in a non-reflexive environment only. 



2.4 S tat ically Typed versus Non-Stat ically Typed 

Some programming languages (C++, Java, Eiffel) require each variable to be declared 

with a static type. These languages are called statically typed languages. Other 

languages (Smalltalk, CLOS) which do not declare static types for variables. are 

called non-staticalS t yped languages. In statically typed languages, a type checker 

can be used at compile-time to ensure that al1 call-sites are type-valid. A call-site is 

type-valid, if it has either a defined method for the message or an implicitly defined 

conflict method. In contrast, a call-site is type-invalid, if dispatching the call-site will 

lead to method-not-understood. For example, the static type of the variable anil is 

;L in Figure 2.l(b). The dynamic type of an.4 can be either A, B or C, since B and 

C are subtypes of -4. Since the message a is defined for type A, no matter what its 

dynamic type is, anrl can understand the message a. Therefore, the type checker 

can tell at compile-time that the call-site anAct ( )  is type-valid. Consider another 

variable a D  with static type D. A cd-si te  aD.a() would be type invalid since no 

method for a is defined on D. The type checker would find a t  compile-time that the 

call-site a Da() is type-invalid, and return a compile-time error. 

In statically typed languages with implicitly defined conflict methods, no type- 

invalid call-site will be dispatched during execution. However, in non-statically typed 

languages, call-sites may be type-invalid. -4s will be shown in Section 3.2.3, any 

dispatch technique that uses compression may return a method for a different behavior 

due to selector aliasing. Therefore, in non-statically typed languages, an extra check 

must be made to ensure that the computed method is applicable for the dispatched 

behavior. This check must also ensures that the dynamic type of each argument is 

a subtype of the declared static parameter type in the method. For non-statically 

typed languages, the Multiple Row Displacement dispatch technique introduced in 

t his thesis must perforrn this extra check. 



Chapter 3 

Exist ing Dispatch Techniques 

-4s mentioned in the introduction, there are three categories of method dispatch: 

search-based, cache-based and table-baçed. There is only one viable search- based 

single receiver dispatch technique called method lookup. Method lookup searches 

the method dictionaries for the behavior, O, starting from the receiver's type, and 

going up the inheritance chain, until a method for o is found. However, rnethod 

lookup is very time inefficient. Smalltalk and Java use method lookup, but only 

as a cache-miss technique. Cache-based techniques have been extensively used in 

single-receiver languages, like Smalltalk [20]. Cache-based single-receiver dispatch 

techniques are described in Section 3.1. Many t ime-efficient single-receiver table- 

based dispatch techniques are also available, and they are presented in Section 3.2. 

They have been ignored in most commercial implementation due to large memory 

requirements. However, as the price of memory gets lower, they are more practi- 

cal. Table-based techniques are even more practical in multi-method languages, since 

cache- based techniques also require extensive rnemory for multi-met hods, as shown 

in Section 3.3. Section 3.4 introduces t hree existing table-based multi-met hod dis- 

patch techniques, and Section 3.5 int roduces two existing search-based mu1 ti-method 

dispatch techniques. 

3.1 Cache-Based Single-Receiver Dispatch Tech- 
niques 

Since cache-based single-receiver dispatch techniques are not very relevant to this 

thesis, 1 give only a brief description of each technique. 



1. Global Lookup Cache([l9, 261) uses < Tl o > as a hash key into a global cache, 

whose entries store a type, T, a selector, oo and a method address. During a 

dispatch, if the entry retrieved from the global cache by < Tl 0 > contains 

a method for the correct type and selector, it can be executed immediately. 

Othenvise, a cache-miss technique (usually method lookup) is called to obtain 

the correct method address. The resulting method address is stored in the 

global cache. 

2. Inline Cache(Il21) caches addresses at  each call-site. The initial address at each 

call-site invokes the cache-miss technique, which modifies the call-site once a 

method address is obtained. Subsequent executions of the call-site invoke the 

previously computed method. Witbin each rnethod, a rnethod prologue exists 

to ensure that the receiver class matches the expected class. Othenvise. the 

cache-miss technique is called to recornpute and modify the call-site address. 

3. Polymorphic Inline Caches ([Ml) cache multiple addresses in a behavior specific 

stub-routine. On the first invocation of a stub-routine, the cache-miss technique 

is called. However, each time the cache-miss algorithm is called the stub is ex- 

tended by adding code to compare subsequent receiver types against the current 

type, and providing a direct function cal1 if the test succeeds. 

3.2 Table-Based Single-Receiver Dispat ch Techniques 

There are five known single-receiver table-based dispatch techniques: Selector Table 

Indexing, Row Displacement, Selector Coloring, Compact Selector-Indexed Tables, 

and Virtual Function Tables. Since Selector Table, Row Displacement and Selector 

Coloring are used in the description of other multi-method dispatch techniques, I will 

briefly introduce these three techniques in this chapter. Please see [28] and [29] for 

details about Compact Selector Indexed Tables, and see [18] for details about Virtual 

Function Tables, which are used in C++. 



3.2.1 Selector Table Indexing (STI) 

In single-receiver table dispatch, the method address can be cakulated in advance for 

every legal class/behavior pair, and stored in a selector table, S. Figure 3.1 shows 

the selector table for the type hierarchy and method definitions in Figure 2.1 (a). An 

empty table entry means that the behavior cannot be applied to the type. At run 

time, the behavior and the dynamic type of the receiver are used as indices into S 

[Il]. In the literature [15], this algorithm is known as Selector Table Indexing or STI. 

Figure 3.1: Selector Table 

hlthough STI provides efficient dispatch, its large rnemory requirements prohibit it 

from being used in real systems. For example, there are 961 types and i2130 different 

behaviors in the VisualWorks 2.5 Smalltalk hierarchy. If each method address required 

4 bytes, then the selector table would be more than 46.6 Mbytes (961 x 12130 x 

4 bytes).  Fortunately, 95% of the entries in the selector table for single-receiver 

languages are empty [id], so the table can be compressed. 

3.2.2 Row Displacement (RD) 

Row displacement (RD) reduces the number of empty entries by cornpressing the 

two-dimensional selector table into a one-dimensional array [14, 161. As illustrated 

in Figure 3.2, each row in S is shifted by an offset until there is only one occupied 

entry in each column. Then, this structure is collapsed into a one-dimensional master 

orruy, M. When the rows are shifted, the shift indices (number of columns each row 

has been shifted) are stored in an index array, 1. 

At run-tirne! the behavior is used to find the shift index from the index array, 1. 

In fact, each behavior has a unique index determined at compile time, and it is this 

index which is used to represent the behavior in the compiled code. For simplicity, 1 

will just use the behavior name in this thesis. The shift index is added to the type 

number of the receiver to form an index into the master array, M. For example, to 

dispatch behavior ,6 with D as the dynamic type of the receiver, the shift index for P 



Figure 3.2: Cornpressing A Selector Table By Row Displacement 

is I [P]  = 1. The type number of the receiver, D, is 3. Therefore, the final shift index 

is 1 + 3 = 4, and the method to execute is at M [ 4 ]  which is D::?. Compared with 

other single-receiver table dispatch techniques, row displacement is highly space and 

time efficient [21]. I will show how this single-receiver technique can be generalized 

to multi-method languages in Chapter 4. This is the main research contribution of 

this t hesis. 

3.2.3 Selector Coloring (SC)  

Selector coloring (SC) compresses the selector table by allowing two rows (behaviors) 

to be combined, if no type recognizes both behaviors in the type Iiierarchy [13, 31. For 

example, if Figure 2 4 a )  was modified, so that no method C :: ,LI was included, then 

the selector table for the types and rnethod definitions in the modified Figure 2.l(a) 

would be as shown on the left hand side of Figure 3.3. Since no type understands both 

cu and P,  the two rows in the selector table can be combined, as shown on the right 

hand side of Figure 3.3. Sirice, both cr and are sharing one row index, a behavior 

to row index table is added to record the correct row index for each behavior. Since 

this approach is implementable as a graph coloring algorithm, the selector (behavior) 

indices are usually referred to as colors. 

Figure 3.3: Compressing .A Selector Table By Selec tor Colorhg 

. dispatch, the first index to the 2-dimensional array, S, is from the index 



ble I and the second is the type number. For example. to dispatch behavior ,3 

with D as the dynamic type of the receiver, the correct method can be found at 

S[ I [ P ]  ][ num(D) ] = S[0][3] = D :: P.  Selector coloring is used in different 

multi-met hod dispatch techniques, like Compressed N-Dimensional Tables and Single- 

Receiver Projections. 

In Section 2.4, it was mentioned that in non-statically typed languages, an extra 

validity check must be made during dispatch due to aliasing during compression. For 

esample, if I dispatch behar-ior ,3 with dynamic type A, then the compressed table 

in Figure 3.3 yields S[  I[B] ][ num(A) ] = S[0][0] = .4 :: a, which is incorrect. The 

returned method is not even a method For f i .  In single receiver dispatch. the validity 

check simply compares the required behavior, 0, to the behavior of the returned 

method, A :: a; since they do not match, there is a naethod-not-understood error. 

3.3 Cache-Based Multi-Method Dispatch Techniques 

In the cache-based dispatch techniques for single-receiver descri bed in Section 3.1, 

< T, o > is used as a key to a cache, where T is a type. The same key is iised in 

multi-method caches, except that type T is replaced by a product-type P. 

3.4 Table-Based Mult i-Method Dispatch Techniques 

This section provides a summary of the existing multi-method table dispatch tech- 

niques. 

3.4.1 N-Dimensional Table 

In single-receiver method dispatch, only the dynamic type of the receiver and the 

behavior name are used in dispatch. However, in multi-method dispatch, the dynamic 

types of al1 arguments and the behavior name are used. 

The single-receiver dispatch table can be extended to a multi-rnethod table. In 

multi-method dispatch, each k-arity behavior, Bb, has a k-dimensional dispatch table, 

DO, with type numbers as indices for each dimension. Therefore, each k-dimensional 

dispatch table has l'HIk entries. At a call-site, u(o l ,  0 2 ,  ..., ok), the method to execute 

is in ~,k[nîsm(~~)][num(~~)] ...[ n m ( T k ) ] ,  where T' = type(oi). 



D: 2" Argument D; 2" Argument 

Figure 3.4: N-Dimensional Dispatch Tables 

For example, the 2-dimensional dispatch tables for the type hierarchy and method 

definitions in Figure 3./L(a) are s h o w  in Figure 3 4 b ) .  In building an n-dimensiorial 

dispatch table, inheritance conflicts must be resolved. For example, there is an in- 

heritance conflict at E x  E for a, since both al and cr2 are applicable for the call-site 

cr(anE, anE). Therefore, an implicit conflict method (YB is defined, and inserted into 

the table at E x  E. 

N-dimensional table dispatch is very time efficient. However, analogous to the sit- 

uation with selector tables in single-receiver languages, n-dimensional dispatch tables 

are impractical becaiise of their huge memory requirements. For example, in the type 

hierarchy for the Cecil Vortex3 compiler program, there are 1954 types. Therefore, a 

single bari ty beliavior would require 1954~  x 4 bytes = 29.84 gigabytes. Since there 

are hundreds of different behaviors, the space requirement is prohibitive. The need 

to cornpress these n-dimensional tables is even greater than the need to compress 

single-receiver dispatch tables. 

3.4.2 Compressed N-Dimensionai Table (CNT) 

The Compressed N-Dimensional Table (CNT) [2] technique keeps one k-dimensional 

dispatch table, ~ $ 7 ~ ~ ~  per behavior, where k represents the arity of a behavior. Start- 

ing from a regular n-dimensional dispatch table as described in Section 3.4.1, CNT 

eliminates rows or colurnns containing only empty entries. For example, applying this 



elimination to the n-dimensional tables D: and D$ in Figure 3 4 b )  yields the tables 

shown in Figure 3.5(a). Then, CNT groups identical rows or columns together. This 

grouping technique is called class sharing. The result of applying class sharing to the 

tables in Figure 3.5(a) is shown in Figure 3.5(b). 

D : * ~ ~  2nd Argument 

DFaw Pd Arg 

Figure 3.5: Cornpressed N-Dimensional Table 

The groups of types indexing the dimensions of a compressed table are called 

index-groups. In each dimension, index groups are represented by an index. For 

example, in the first dimension of the table D2CNT in Figure 3.5(b), the index of the 

index of group (A, B )  is O; {C, D) is 1; and {E) is 2. However, after this grouping, 

CNT cannot use type-indices to access the dispatch table, @ t C N T  directly. Therefore, 

k type to index arrays, GL, ..., GO, are created to map each type to its corresponding 

index-group index in its own dimension. Figure 3.5(c) shows the CNT dispatch table 

for a and ,û with the corresponding type to index arrays. These type to index arrays 

are, t hen, cornpressed by row displacement or selector coloring. Expression 3.1 shows 

the dispatch formula for CNT. 



For example, dispatch of the call-site @( anE, ail ) using the data structure in 

Figure 3.5(d) is shown in Expression 3.2. 

3.4.3 Single-Receiver Projections (SRP) 

Single-Receiver Projections (SRP) [23] handles a k-arity behavior multi-method dis- 

patch as k single-receiver dispatches. Instead of maintaining one data structure per 

behavior. SRP maintains K copies of the type hierarchy, X, which are denoted as 

?il, U2, ..., UK, where K is the maximum arity across al1 behaviors. Then, for each 

behavior, B:, its method definitions are projected ont0 the first k hierarchies, Xi, 

3 1 2 ,  ..., Xk. 
For example, the method definition cul (A,  D) is projected to Hl and U2. ai is 

projected to RI for its first arity type, A, and projected to R2 for its second arity 

type, D. The result of projecting al (A, D) ont0 Ni and X2 is shown in Figure 3.6(a). 

The results of projecting the rest of the methods defined in Figure 3.4(a) are shown 

in Figure 3.6(b). 

In the next step, SRP extends each of the hierarchies to return a partially ordered 

method set (poset ) , which includes al1 'natively' defined and inherited rnethods for 

each type. This extension is shown in Figure 3.6(c). Method definitions of ail be- 

haviors are also projected to the same set of type-hierarcliies, Ri ,  ?12, ..., xK7 in the 

same way. The result of projecting method definitions for a and @ in Figure 3 4 a )  

is shown in Figure 3.6(d). Each partially ordered method set must satisfy the con- 

straint: if dm(oi)  i d o m ( ~ ~ ) ,  then oi must preceed oj. For example, the Xi poset 

[a3, al, a*] in Figure 3.6(d) may be replaced by the poset [or3, nz, a l ] ,  but a3 must 
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Figure 3.6: Single-Receiver Projections 

preceed c t ~ ,  since dom(a3) = E4 4 .do = dom(cul), and a3 must preceed a2, since 

dom(as) = E4 i C2 = dom(az). The partially ordered sets replace methods in the 

selector tables as shown in Figure 3.6(e). These partially order method sets can be 

represented by bit vectors [23]. 

At dispatch, a partially ordered set is obtained from the corresponding hierarchy 

for each argument type. These posets are intersected to obtain a result poset. Within 

the final poset, the first element is the dispatch result. For example, consider the 

call-site, p( a B ,  aC ). First, the poset [,&, Pl] is obtained from 311 for the first 

argument aB. Then, the poset [Pl] is obtained from X2 for the second argument 

aC. Intersecting these two posets yields [pi]. Since, pi is the first element, pi is the 

dispatch result. The dispatch formula for SRP is shown in Expression 3.3. 



Note that the hierarchies, Ri ,  X2, . .. , UK, can be compressed by any single- 

receiver table compression techniques. described in Section 3.2, to obtain better space 

utilization. Moreover, several other enhancements have been applied to SRP as de- 

scribed in [23], to improve its time and space efficiency. 

3.5 Search-Based Multi-Method Dispatch 

The only search-based single-receiver dispatch technique is method lookup. However, 

a simple extension of method lookup will not work for multi-method dispatch. For 

example, there are three different methods defined for the behavior y in Figure 2.2. 

When the call-site y(nC, aC) is dispatched, and y is not defined in the product-type 

CxC, where should the method lookup begin'? Should the supertype of the first argu- 

ment, or the second argument be considered first? Assume that the second argument 

is considered first, and the method n is found in product-type B x B. However, in 

multi-method dispatch rnethod search cannot stop after one of the rnethods is founcl. 

Obviously, y1 and y.l, are valid alternatives. Therefore, the search has to continue 

until al1 possibilities are exhausted. After al1 the applicable methods are found, the 

methods must be ordered, and the most applicable method must be selected. This 

process is too complicated to be executed a t  run-time. Therefore, search-based multi- 

method dispatch techniques need to do some precomputation to simplify the search. 

There are three search-based multi-rnethod dispatch techniques: Lookup Au- 

tomata (LUA), Efficient Predicate Dispatch (EPD), and Product Type Search (PTS). 

Lookup Automata is the first published search-based dispatch technique, I will review 

this technique in detail in the following section. Efficient Predicate Dispatch is an ex- 

tension of lookup automata, as described in [SI. Product Type Search is the simplest 

search-based multi-method dispatch technique, but it has not been published yet. I 

will also describe product type search in detail. 

All search-based multi-method dispatch techniques have per-behavior dispatch 

functions. When a call-site is encountered, the corresponding dispatch function of 



that behavior is called to handle the dispatch. The per-behavior dispatch function 

may access global data  structures for informat ion. 

3.5.1 Lookup Automata (LUA) 

Chen et. al describe Lookup Automata (LU-A) in detail [IO, 91. The idea of LUA 

is every simple, it creates one lookup automaton per behavior. Subtype testing is 

used in transition from one state to another, until a final state is reached. Each final 

state represents a method of a behavior. To avoid backtracking, and thus exponential 

dispatch time, some automaton must include more types than are explicitly listed in 

method definitions (inheritance conflicts are implici tly defined this way) . 

Figure 3.7: Lookup Automata 

Figure 3.7 shows the automata for cr and defined in Figure 3 4 4 .  In each state: 

the edges leading away from it must be ordered so that a subtype cornes before its 

supertype. In Figure 3.7, the edges are ordered top-down. The automaton for a is 

translated to the function shown in Figure 3.8. 

As shown in Figure 3.8, LUA needs frequent subtype testing. Therefore, an effi- 

cient subtype testing mechanism is necessary. The authors of LUA do not specify hom 

subtype testing should be done. Efficient Predicate Dispatch (EPD) extends LUA, 

so that the subtype testing is done within the per-behavior function by type-number 

cornparing. For that reason, no extra run-time data  structure is created for subtype 

testing. 

It can be seen from Figure 3.8 that LUA does not have constant time dispatch. 

Each dispatch takes a t  least k comparisons, besides the time for calling the dispatch 

function itself. The cal1 to the dispatch function involves saving registers and a branch 

instruction that will clear the instruction pipe-line. 



void a-automaton ( 01, 0 2  { 
T1 = type( 01 1 ; 
T 2  = type( 02 1; 
if( T L i E )  { 

if( T2 i E ) execute ct3( 0 1 ,  02 1; 
else if ( T2 4 D 1 execute ai ( 01, 0 2  1 ; 
else if( T2 i B 1 execute 4 0 1 ,  02 1; 
else execute method-not-understood; 

} 
else if ( TL I -4 { 

if( T2 4 D 1 execute al( 01,  02 1; 
else execute method-not-understood; 

1 
e ï s e  if( T L  4 C 1 { 

if( T2 i B 1 execute a*( 0 1 ,  02 1; 
else execute method-not-understood; 

} 
else { 

execute method-not-understood; 

} 
1 

Figure 3.8: The LUA dispatch function for a 

Since type checking at each stage has to be in subtype order, LUA cannot take 

advantage of call-site profiles. For example, consider 1,000 call-sites for the behavior 

Uz, where 800 of them are CI( aC, aB ). Xccording to Figure 3.8, each of the 800 d l -  

sites has to perform the su btype tests if (TL + E) and i f  (Ti + A) before performing 

the test i f(TL i C), which is the right one. Since the type E is a subtype of the 

type C, the test if (TL 4 C) cannot go before if (TL 4 E), even though if (TL 4 C) 

is used more often. The EPD technique extends LUA to take advantage of call-site 

profiles. 

3.5.2 Product Type Search (PTS) 

Product Type Search (PTS) is very similar to LUA. Instead of using subtype testing 

per argument, PTS uses child product type testing. First, al1 conflict methods are 

implicitly defined. Then, the product type of each implicitly or evplicitly defined 



method is retrieved. These product types are ordered so that each child product 

type preceeds its parents. Finally, a per-behavior function is created to perform child 

product type testing as ordered. Figure 3.9 shows the per-behavior function for cu in 

PTS. 

void a-product-type-search( 01, 02 ) { 
Product-Type P = type(ol) x type(02 ) ; 
if( P +  E x E ) execute a3( 01, 02 1; 
else i f  ( P 4 -4 x D ) execute al ( 01 ,  02 ) ; 
e ï s e  if( P I C X B  execute as( 01, 02 1; 
else execute method-not-understood; 

} 

Figure 3.9: The PTS dispatch function for a 



Chapter 4 

Multiple Row Displacement 

4.1 Multiple Row Displacement by Examples 

Multiple Row Displacement (MRD) is a new tirne and space efficient dispatch tech- 

nique which combines row displacement and n-dimensional dispatch tables. MRD 

will first be illustrated by examples, and then the algorithm will be given. The first 

example uses the type hierarchy and 3-arity method definitions from Figure 3 4 4 .  

Figure 4.1: Data Structure for Multiple Row Displacement 

Instead of representing each dispatch table as a single k-dimensional array as 

shown in Figure 3.4(b), each table can be represented as an array of arrays as shown 

in Figure .L.l(a). The arrays indexed by the first argument are called level-0 arrays, 

i. Shere is only one level-0 array per behavior. The arrays indexe9 by the second 

argument are called level-l arrays, LI ( O ) .  If the arity of the behavior is greater than 



two then the arrays indexed by the third arguments are called leuel-2 arrays, L 2 ( - ) ;  

and so on. The highest level arrays are leael-(k - 1) arrays, Lk-L(.) , for k arity 

behaviors. 

It  can be seen from Figure 4.l(a) that some of the level-1 arrays are exactly the 

same. The cornmon arrays are combined as shown in Figure 4.l(b). In general, there 

will be many identical rows in an n-dimensional dispatch table, and many empty 

rows. These observations are the basis for the CNT dispatch technique mentioned in 

Chapter 3, and are also one of the underlying reasons for the compression provided 

by LIRD. It is worth noting that  this sharing of rows is only possible due to the fact 

the table uses types to index into al1 dimensions. In single-receiver languages, the 

tables being compressed have behaviors along one dimension, and types along the 

other. Sharing between two behavior rows would imply that both behaviors invoke 

the same methods for ail types, and although languages like Tigukat [27] allow this 

to Iiappen, such a situation would be highly unlikely to occur in practice. Sharing 

between two type columns is also unlikely since it occurs only when a type inherits 

methods from a parent and does not redefine or introduce any new methods. Such 

sharing of type coliimns is more feasible if the table is partitioned into subtables by 

grouping a number of rows together. This strategy was used in the single-receiver 

dispatch technique called Compressed Dispatch Sable (CS) 1291. 

There is one data structure per behavior, D:, and MRD compresses these per 

behavior data structures by row displacement into three global data structures: a 

Global Master Array, M, a set of Global Index Arrays, I,, where j = O, ..., (K - 2), 

and a Global Behavior Array, B. 

In compressing the data structure D: in Figure 4.l(b) ,  the Ieuel-l array LI (A) 

is first shifted into the Global Master Array, hl, by row displacement, as shown in 

Figure 4.2(a). The shift index, 0, is stored in the leuel-0 array, Lo, in place of L1(.-l) 

(and into Lo at B, since A and B share LI@)). In the implementation, a temporary 

array is created to store the shift indices, but in this thesis, 1 have put them in La 

for simplicity of presentation. Figure U ( b )  shows how LI (C) and LI (E) are shifted 

into M by row displacement, and how they are replaced in Lo by their shift indices 1 

and 5. Finally, as shown in Figure M ( c ) ,  Lo is shifted into the Global Index Array, 

Io by row displacement. The resulting shift index, 0, is stored in the Global Behavior 



Array at B[a]. After D: is compressed into the global data structures, the memory 

for its preliminary data structures can be released. Figure 4.3 shows how to cornpress 

the behavior data structure, Da, into the same global data structures, M, Io and B. 

The compression of the level-1 arrays, LI (il) and LI  (B), are shown in Figure 4.3(a). 

The compression of the leuel-0 array, Le, is shown in Figure 4.3(b). Note that only 

Io is used in the case of arity-2 behaviors. For arity-3 behaviors, Il d l  also be used. 

For arity-4 behaviors, I2 will also be used, etc. 

Figure 4.2: Cornpressing The Data Structure for a 

As an example of dispatch, I will demonstrate how to dispatch a d l - s i te  P(anE, aD)  

using the data structures in Figure 4.3(b). The method dispatch starts by obtaining 

the shift index of the behavior, ,B, from the Global Behavior Array, B. From Fig- 

ure 43(b), B[p] is 5. The next step is to obtain the shift index for the first argument, 

E, from the Global Index array, Io. Since the shift index of ,b' is 5 ,  and the type num- 

ber of E, num(E), is 4, the shift index of the first argument is Io[5 + 41 = Io[9] = 11. 

Finally, by adding the shift index of the first argument to the type number of the 

second argument, num(D) = 3, an index to M is formed, which is 11 + 3 = 14. The 

method to execute can be found in M[14] = ,&, as expected. 

MRD can be extended to handle behaviors of any ar i t .  Figure 4.4(a) shows the 

rnethod definitions of a barity behavior, 6, and Figure 4 4 b )  shows its preliminary 



Figure 4.3: Cornpressing The Data Structure For ,8! with cu in place from Figure 4.2 

behavior data structure, 0;. Figures 4 4 c )  to 4 4 e )  show the compression of this 

data structure. First? the level-2 arrays, L2 (B x D), L2(D x B) and L2 (E x E) are 

shifted into the existing M as shown in Figure 4 4 ~ ) .  Their shift indices (15, 14, 19) 

are stored in Ll(B), LI(D) and Ll(E). In fact, every pointer in Figure 4 4 b )  that 

pointed to LY (B x D) is replaced by the shift index 15. Pointers to Lz(D x B) are 

replaced by the shift index 14 and the single pointer to L Q x  E) is repiaced by the 

shift index 19. Then, the level-1 arrays, LI (B), LI (D) and Ll (E), are shifted into the 

Global Index Array Il as shown in Figure 4.4(d). The shift indices (O, 1,s) are stored 

in Lo. Finally, Lo is shifted into the Global Index Array Io and its shift index (7)  is 

stored in the Global Behavior Array at B[d], as shown in Figure 4.4(e). 

4.2 The Multiple Row-Displacement Dispat ch Al- 
gorithm 

1 have shown, by examples, how MRD compresses an n-dimensional dispatch table by 

row displacement. On the behavior level, a preliminary data structure, D:, is created 

for each behavior. is a data structure for a k-arity behavior named a, as shown 

in Figure 4.4(b). It is actually an n-dimensional dispatch table, which is an array of 

pointers to arrays. Each array in D: ha the size of l'Hl. The leuel-0 array, Lo, is 

indexed by the type of the first argument. The leuel-1 arrays, LI(-), are indexed by 



Figure 4.4: Compressing The Data Structure For 6 

the type of the second argument. The leuel-(k - 1) arrays, Lt-l(-), always contain 

method addresses. Al1 other arrays contain pointers to arrays at the next level. 

After the compression has finished, there are a Global Master Dispatch Array, M ,  

K - 1 Global Index Arrays, Io, ..., 44, and a Global Behavior .4rray, B. The Global 

Master Dispatch Array, M, stores method addresses of al1 methods. Each Global 

Index Array, 4, contains shift indexes for Ij+i. The Global Behavior Array, B stores 



the shift indices of the behaviors. 

At compile time, a D,k data structure is created for each behavior. The leael- 

(k - 1) arrays, Lk- l r  are shifted into 1M by row displacement. The shifted indices are 

stored in Lk-2. Then, the level-(k - 2) arrays, L k 4 ,  are shifted into the index array, 

Ik-2. The shift indices are stored in Lk4. This process is repeated until the leuel-0 

array, Lo, is shifted into Io, and the shift index is stored in B[a].  The whole process is 

repeated for each behavior. The algorithm to compress al1 behavior data structures 

is given in Section 4.4. 

The dispatch formula for a call-site; o(ol, ..., a), is given by Expression 4.1, where 

Ti  = t ype (o i ) .  

As an example of dispatch with Expression 4.1, I will demonstrate how to dispatch 

a call-site d(anE, a Dl aB) using the data structures in Figure 4.4(e). Since d is a 3- 

arity behavior, Expression 4.1 becomes Expression 4.2. 

Sutstituting the data from Figure 4.4(e) into Expression 4.2 yields the method 

4, as shown in Expression 4.3. 

Note that all index arrays, Io, I l ,  12, ...? can be further compressed into one big 

index anay by row displacement to save more memory. However, for presentation 

simplicity 1 have ignored this final compression. 



4.3 Improvements 

4.3.1 Eliminating the Global Behavior Array 

Each behavior has its own data structure to store information iinrelated to dispatch. 

A field named sh@-index can be added to this behavior data structure to support 

MRD. Then, the shift index of each behavior can be stored in the data structure of 

each behavior, instead of a Global Behavior Array. B. The advantage of this change 

is that one array lookup is eliminated from rnethod dispatch, without increasing the 

memory usage. The new dispatch formula for a call-site, a(ol ,  ..., o ~ ) ,  after the change 

is given in Expression 1.1. 

M [  11.-2[ Ik-3[ ... I l [  IO[ o.shi ft-index + n , u m ( ~ ' )  j 

+ n u m ( ~ ' )  ] + ... ] + n u r n ( ~ ~ - ' )  ] + n ,urn(~" ' )  ] + n u r n ( ~ ~ )  1 (4.1) 

Note that in a non-reflexive environment, the shiftindex is a compile-time con- 

stant that can be inserted into the dispatch code. 

4.3.2 Use a Single Global Index Array 

ashi ft-index = O 
P.shift-index = 5 

Figure 4.5: Global Data Structure With One Index Array 

For simplicity of presentation, Section 4.1 and Section 4.2 had one Index Array per 

arity position. Actually, only one Global Index Array, 1, is needed to store al1 level-0 

to leuel-(k - 2) arrays. Figure 4.5 shows the global data structure, after D: and L$ 

from Figure 4.l(b) has been compressed using a single Global I n d ~ x  Array. Since a 

and ,8 are both 2-arity behaviors, they use only one index array, the Index Array Io 

in Figure 4.3(b). This index array has been re-named I in Figure 4.5. The effects 

of using one index array are illustrated when 0: from Figure 4.4(b) is compressed 

into the global data structure. Figure 4.6(a) shows the global data structure after 



Lz ( B  x D), L2 (D x B) and L2(E x E) have been compressed into the Global Master 

Array, hl. Then, Figures 4.6b and 4 . 6 ~  shows how to compress LL(B),  LI (D) Li@), 

and Lo into the single Global Index Array. 

Figure 4.6: Global Data Structure With One Index Array 

Using a single Index Array provides additional compression, and lias no negative 

impact on dispatch speed. Notice that this change has sirnplified the global data 

structure. Now, only 2 arrays are maintained. Expression -4.6 shows the modified 

dispatch formula that accesses one Global Index Array. As an example. the formula to 

dispatch the call-site, G(anE, aD, aB) using Expression 4.5 is shown in Expression 1.6. 

Substituting the data from Figure 4.6 to Expression 4.6 yields method dl ,  as shown 

in Expression 4.7. This is the same result that was derived in Section 4.2. 



This irnprovement simplifies the data structure, and reduces total mernory usage, 

especially memory for the high arity position Index hrray. For example. if there is 

only one 10-arity behavior in the environment, for this one bchavior I8 of size (RI has 

to be maintained, even though I8 is a sparse array. According to [Id] and [16], Row 

Displacernent is highiy space efficient in compressing sparse short arrays. Therefore, 

compressing Ig into the single Global Index Irray, 1, reduces the overall mernory 

usage. The same reason applies, wher. 17, I6 and r5 are collapsed into 1. 

4.3.3 Row Matching 

Note that  the row-shifting mechanism used in my implementation of row displacement 

is no t the most space-efficient technique possible. When the row-shifting algorit hm is 

replaced by a more general algorithm called row-matching (based on string-matching), 

a higher compression rate is obtained. In row-matching, two table entries match if 

one entry is ernpty or if both entries are identical. For example, using row-shifting to 

compress rows RI and R2 in Figure 4.7(a) produces a master array with 9 elements as 

shown in Figure 4.7(b). However, using a row-matching algorithm to compress R1 and 

R2 produces a master array with only 6 elements as shown in Figure 4.'i(c). Using row- 

matching instead of row-shifting provides an additional 10-14% compression. Row- 

matching cannot be used in single-receiver row displacement, since different rows 

contain different behaviors, and thus different addresses. 



Figure 4.7: Row-Shifting vs. Row-Matching 

4.3.4 Byte vs. Word Storage (MXD-B) 

MRD stores four-byte Eunction addresses in M. In a large hierarchy, M is the largest 

data structure. To reduce the size of M, a method-map, can be introduced 

for each behavior. Since al1 methods of a behavior are stored in a method 

can be represented by an index into D $ " ~ ~ .  Since it is very unlikely that more than 

256 methods are defined per behavior, only one byte is needed to store the index to 

the corresponding D:yMRD. If Ad stores this index instead of the function address, 

the size of M is reduced to one-forth of its original size. However, there is an extra 

indirection to access the method-map a t  dispatch time. 1 denote the technique which 

stores bytes instead of words by MRD-B. 

4.3.5 Type Ordering 

In single receiver row displacement, type ordering has a significant impact on compres- 

sion ratios 1141. 1 have investigated type ordering in multi-method row displacement 

and found that the impact is not as significant, since the fill-rate for both Global 

Master Array and Global Index -4rray is higher than 95%. 

4.4 The MRD Data Structure Creation Algorithm 

The algorithm to build the global data structure for MRD is given below: 



Array M ,  1; 

createGlobalDataStructure () begin 

for(each behavior Bb do 

BehaviorStructure D: = BD. createstructure () ; 

createRecurs iveStructure ( D:.Lo, O 1 ; 

BO. shif t Index = DO.& . getshif t Index 0 ; 
endf or 

end 

createRecursiveStructure( Array L ,  int level ) begin 

for(int i=O; i < h s i z e ( )  ; i++ ) do 

if( L[il == nul1 ) then 

continue ; 

elseif ( L [il . getShift Index (1 == -1 ) then 

if( level == k-2 ) then 

L[i]  = M.add( L[i] ) ;  

else 

create~ecursive~tructure (L [il , level+l) ; 

L [il = L [il . getShiftIndex0 ; 
endif 

else 

L [il = L[i] .getShiftIndexo ; 

endif 

endf or 

I.add( L ) ;  

end 

This algorithm uses three support routines: Array . add (Array) , 
Array . getShif tIndex0, and Behavior . createstnicture 0.  The 

Array.add(Array) function sliifts the given array into the current array by 

row-matching or row-shifting, and returns the shift index. The returned shift index 

is also stored in the given array. The Array . getShif t Index (1 function returns 



the shift index of the current array, which is stored in the current array when it is 

added to another array. If the current array has never been added to another array, 

this function returns -1. The Behavior. createStructure() function creates an 

n-dimensional table for the current behavior. 

4.5 Separate Compilation 

With table-based dispatch, the tables must be built before they can be used. If 

a language does not support separate compilation, then the tables can be built at 

compile-time when the entire type hierarchy and al1 the method definitions are com- 

piled. If a language supports separate compilation, then neither the complete type 

hierarchy nor the set of al1 method definitions for a particular behavior are available 

when a class is being compiled. In this case, the dispatch tables must be built a t  

link-tirne. Fortunately, these tables only take a few seconds to build. In addition to 

building the dispatch tables, call-sites in compiled code must be patched with base 

table start addresses and global behavior shift indices. However, this is no more 

difficult than resolving other external references in separately compilecf object files. 

4.6 Non-Static Typing in MRD 

As discuss in Section 2.4 and Section 3.2.3, dispatch techniques that alias different 

selectors during compression may return a wrong method for invalid call-sites in non- 

statically typed languages. Actually, there are two potential errors when applying 

MRD to non-statically typed languages: index out of bounds, and wung method. 

Two examples illustrate the errors. 

Assume that the call-site 6(aC, anA, aB) is dispatched using the data structures 

in Figure 4.4(e). The formula to dispatch this call-site is shown in Expression 4.8. 

From Figure 4.4(e), B[b] is equal to 7, and Io[ 8 [6]  + num(C) ] = Io[? + 2 ] = &[ 9 ] 

which is equal to 11. The next step is to find Il [ 11 + num(A) 1, which is I l[  11 1. 
Unfortunately, I l[  11 ] does not exist, since the index 11 is out of the bounds of the 

Index Array Il. This is an evample of an index out of bounds error. 



Consider the call-site 6(aB, aC, anA) using the data structure in Figure 4.4(e). 

The steps of the dispatch are shown in Expression 4.9. The returned method is a, 
which is not a method defined for 6. This is an example of a wrong method error. 

4.6.1 Eliminating the Index Out Of Bounds Error 

There arc two ways to eliminate the index out of bounds error. The first approach is 

to compare the index against the length of the array before each Index Array access. If 

the index is bigger than the length of the Index Array, return method-not-understood, 

otherwise, progress to the next step. This solution slows down dispatch, because of 

the k extra testings. 

The second approach extends the improvement described in Section 4.3.2, using 

a single index array. To eliminate the out of bounds error, Index .Array is extended 

to be at least as long as the Global Master Array, and al1 the empty-entries in the 

Index Array are replaced with the number O. The result of doing such an extension 

is shown in Figure 4.8. After this extension, if the dispatch formula hits one of the 

emp-entries, O will be used as the index, and O + num(T) will never be an out of 

bounds error. If the dispatch formula hits an index of another behavior, that index 

will never exceed )MI - 1311. Then, (11111 - 1x1) + num(T) will never be an out of 

bounds, since the Index Array is at least as large as the nilaster Array. 

The second solution solves the out of bounds problem, without decreasing the 

dispatch speed. However, in general I do not know the size of I compared with M, so 

I do not know how space inefficient this extension is. In a non-reflexive programming 



Figure 4.8: Extend the Index Array 

environment, where speed is more important than memory, the second solution is 

the winner. However, in a refleBve environment, the first solution may be a better 

choice, since once al1 enipty-entries are replaced by O, it is impossible to insert other 

arrays into the Index Array. Recall that the index out of bound error only occurs 

in non-statically typed languages, not statically typed ones. Unfortunately, neither 

solutions solves the wrong method error. 

4.6.2 Eliminating the Wrong Method Error 

There are also two ways to elirninate wrong method errors. The first approach is to 

attach a behavior indicator to each index in the Index Array. The behavior indicator 

can be a number representing the behavior. This change has been applied to part 

of the Index Xrray in Figure 4.8, and the result is shown in Figure 1.9, where rnnv 

represents method-not-understood. At dispatch, the attached behavior indicator is 

compared against the behavior of the call-site, after each index is retrieved. If they 

match, the dispatch algorithm continues to the next step, othenvise, it returns method- 

not-understood. This solution slows down dispatch by k extra testings. In addition, 

memory usage for the Index Array is doubled. 

'mnu swnds for methad-not-undentand. It is a rneihod thoc will tell ihc user ih;ir an invalid d l - s i l e  h s  ken disoaichcd. 

Figure 4.9: Attaching Behavior Indicator to Indices in the Index .Array 

The second approach is to delay a11 checking until the end of the dispatch pro- 

cess. In order to do this, al1 empty-entries in the Global Master Array should be 

replaced by rnethod-not-understood. If a call-site is invalid, either a wrong method, or 

rnethod-not-understood will be returned under the original MRD algorithm. If the re- 

sult method is method-not-understood, retiirn rnethod-not-understood as the dispatch 



result. Otherwise, check whether the return method matches the behavior of the 

current call-site. If not, return method-not-understood. If sol make sure that the type 

of each argument is either the defined-type or its subtype for each arity position. If 

not, return method-not-îmderstood. If sol the method address is correct. 



Chapter 5 

Implement at ion of Multiple Row 
Displacement 

MRD is implemented in Cf+,  with classes being defined to represent the critical 

object-oriented concepts affecting dispatch. In particular. a Behavior class represents 

information about methods sharing the same name and arity; a Type class represents 

types; and instances of different Table classes store precomputed dispatch rcsults. 

Instances of a Table Entry class represents elements stored in tables. The following 

sections provide the implernentation details for the MRD algori t hm described in the 

1st chapter. 

5.1 Behavior 

Each Behavior instance describes a particular behavior, where a behavior is defined as 

the set of methods sharing the same name and having the same arity. Each Behavior 

instance consists of the following fields. 

1. A name. The name of the behavior. This name is necessary in eliminating the 

wrong method error. 

2. An arity. The number of arguments the behavior needs. Multiple references to 

the same behavior name with the same number of arity should refer to the same 

behavior, so a mapping from behavior name and number of arity to behavior 

instance is maintained. 

3. A nvmber unique$ identifying the behauzor. An array of al1 behaviors is also 



rnaintained, and the behavior a t  index n has number n. In reflexive environ- 

ment, this number is used as an index to access the Global Behavior Array in 

dispat ch. 

4. A behavior shift index. In non-reflexive environment, this shift index can be 

pre-computed and stored at compile-time for the use of method dispatch. 

5 .  An array of product-type/method pairs. This array lists al1 explicitly (user- 

defined) and implicitly (inheritance conflict) defined methods of the behavior. 

MRD uses the list to construct its dispatch tables, but MRD does not refer to 

the list during dispatch. The order of the list does not matter in MRD. 

5.2 Type 

Each type instance records the dispatch-related information about a single type in the 

type hierarchy for which dispatch is being implemented. Each instance has a narne, 

a unique number, an array of supertypes, an array of subtypes, and a bit vector for 

subtype testing. Each Type instance has the following fields. 

1. A narne. Similar to behaviors, reference to types of the same name should refer 

to the same type (i.e. type narne uniquely identify type instances) 

2. A number unzquely identifyzng the type. This number is used as an index to 

access dispatch tables. and for subtype testing. 

3. An a m a y  of supertypes. This array lists only immediate supertypes. 'VIRD uses 

this array to traverse the type hierarchy during dispatch table construction. 

4. An array of subtgpes. This array lists only immediate subtypes. MRD uses this 

array to traverse the type hierarchy during dispatch table construction. 

5 .  A bit vector for subtype testing. This bit vector has the size of the total number 

of types in the hierarchy. If type T is a subtype (directly or indirectly) of a type 

instance, the bit a t  the index representing T will be set. 



5.3 Table 

The last critical class is Table, which is used to encapsulate the data and functionality 

for rnaintaining a row displacement dispatch table. Each instance of Table stores mul- 

tiple instances of Table Entry. Instances of Table can also cornpress other instances of 

Table into themselves. After each compression, the shift index is returned. Whether 

row matching will be applied in the row displacernent process is determined by the 

instances of Table Entry in a table, which will be discussed in the next section. 

The Table class is also responsible for table access functionality. Given a shift 

index and a type, the Table class returns the instance of Table Entry a t  the proper 

position. An instance of Table has the Following fields. 

1. A master array. This master array stores instance of Table Entry. 

2. A list of ernpty entries. This iist is used in table maintenance. In non-reflexive 

environment, this list can be deleted after the table has been computed. 

5.4 Table Entry 

Each instance of Table Entry is either empty or non-empty. Each non-empty entry 

stores either a method address, (in the Global Master Array), or a shift index (in the 

Global Index Array). The Table Entry class implements two functions: isEmpty () 

and zsEqual(TabieEntry). The Table class uses these two fuunctions to perform row 

displacement. The Table class allows two instances of Table Entry to share a space, 

if one of the entries is empty, or the entries are equal. 

If row-shifting is used, there are only two sets of Table Entry: empty and non- 

empty. ..\ non-empty entry can ooly share space with an empty entry. Therefore, the 

zsEquai(TableEntry) function retum false, unless both of the operands are empty. To 

use row matching, the zsEqual(Ta6leEntry) funct ion is altered to return true, if the 

content of the entries are equal. Each instance of Table Entry consists of the following 

fields. 

1. A field. If the entry is not empty, the field stores either a method address or a 

shift indes. 



Chapter 6 

Performance Results 

This chapter presents meniory and timing results for the new technique, MRD, and 

three other techniqiies, CNT, LUA and SRP. W e n  analyzing dispatch techniques. 

both execution timing and mernory usage need to be addressed. -1 technique that 

is extremely fast is still not viable if it uses excessive memory, and a technique that 

uses very little memory is not desirable if it dispatches rnethods very slowly. Both 

timing and memory results are presented for MRD, SRP, LUA and CNT. This is the 

first time a cornparison of multi-method techniques has appeared in the literature. 

The rest of this section is organized into three subsections. The first subsection 

discusses the data-structures and dispatch code required by the various techniques. 

The second subsection presents timing results. The third subsection presents memory 

results. 

6.1 Data Structures and Dispatch Code 

This section provides a brief description of the required data-structures for each of 

the four dispatch techniques in a static context. The code that needs to be gener- 

ated a t  each call-site is also presented. In this chapter, the code presented refers to 

the code that would be generated by the compiler upon encountering the cd-si te  

4 01, 9. . - - 7  Ok 1. 
The notation N(oi) represents the code necessary to obtain a type number for the 

object at argument position i of the call-site. Naturally, different languages implement 

the relation between object and type in different ways, and dispatch is affected by this 

choice. My timing results are based on an implementation in which every object is a 



pointer to a structure that contains a 'typeNurnber' field (in addition to its instance 

data). 

6.1.1 MRD 

MRD has an M array that stores function addresses, an 1 array that stores level-array 

shift indices, and a B array that stores behavior shift indices. 

The dispatch sequence is given in Expression 6.1. 

Note that the Global Behavior Xrray, B, from Expression 4.1, is known at compile- 

time, so B[o] is known a t  compile-time. Thus #bu is a literal integer obtained from 

B[o].  The sequence, M [  ...], in Expression 6.1 returns the address of the method to 

be executed. Therefore, *( 1\1[ ...]) returns the method to be executed. The method 

is executed by passing the parameters, (ol, 02, ..., ok), to the rnethod *(!CI[...]). This 

(*( ...)) (ol, O*, ..., ok) format is used to indicated method execution in the rest of this 

chapter. 

6.1.2 MRD-B 

The dispatch sequence for MRD-B is given in Expression 6.2. 

CNT 

For each behavior, CNT has a k-dimensional array, but since 1 am assuming a 

non-refiexive environment, this k-dimensional array can be linearized into a one- 

dimensional array. Indexing into the array requires a sequence of multiplications and 

additions to convert the k indices into a single index. For a particular behavior, its 

one-dimensional dispatch table is denoted by ~ t c ~ ~ .  



In addition to the behavior-specific information, CNT requires arrays that map 

types to type-groups. In [lï], these group arrays are compressed by selector coloring 

(SC). My dispatch results are based on such a compression scheme, and assume that 

the maximum number of groups is less than 256, so tliat the group array can be an 

array of bytes. Furthermore, since the compiler knows exactly which group array to 

use for a particular type, it is more efficient to declare n statically allocated arrays 

than it is to declare an array of arrays. Thus, 1 assume that there are arrays GI,  ..., 
G,, and that the compiler knows which group array to use for each dimension of a 

particular behavior . 
If 1 assume that the compressed n-dimensional table for k-arity behavior o has 

dimensions ny , nî, ..., nk, where the n4 values are behavior specific, and that the group 

arrays for these dimensions are Gy, G2, ..., Gk then the call-site dispatch code is given 

in Expression 6.3. 

Note that since the nf are known constants, the products of the form: #(nr x ... x 

n l ) ,  can be precornputed. Shus, only k - 1 multiplications are required at run-time. 

Note that Dujardin et.al assume a behavior specific function-cal1 to compute the 

dispatch using Expression 6.3 [17] . Alt hough t his funct ion-cal1 reduces call-site size, 

it significantly increases dispatch time. The function-cal1 has been inlined to rnake 

CNT more cornpetitive in my timings. 

6.1.4 SRP 

SRP has K selector tables, denoted Si, ..., SK where Si represents the applicable 

method sets for types in argument position i of al1 methods. These dispatch tables 

can be compressed by any single-receiver dispatch technique, such as selector coloring 

(SRPJSC), row displacement (SRP/RD), or compressed dispatch table (SRPJCT). 

The timing and space results, and the code that follows, are for SRP/RD. 



In addit ion to the argument-specific dispatch tables, SRP has, for each behavior, 

an array that rnaps method indices to method addresses, which is denoted by ~ t l ~ ~ ~ .  

The dispatch code for SRP is given in Expression 6.4, where FirstBit() is some macro 

or function that implements the operation of finding the position of the first '1' bit in 

a bit-vector. Holst et. al. discuss this in some detail [23]. bIy timing and space results 

assume that this is a hardware-supported operation with the same performance as 

shift-right. 

Note that #b: is the shift index assigned to behavior O in argument-table i and 

is a literal integer. 

6.1.5 LUA 

LUA is, in sonie ways, the most difficult technique to evaluate accurately. First, there 

are a number of variations possible during implementation, that have vastly different 

space vs. time performance results. For esample, in order to provide dispatch in O@), 

the technique must resort to an array access in certain situations, at thc expense 

of substantially more rnemory. Second, Chen et. al. do not provide any explicit 

description of what the code at a particular call-site would look like [9]. Tliey discuss 

the technique in terms of data structures, and do not mention that in a statically- 

typed environment, a collection of if-then-else statements would be a much more 

efficient implementation. It is only indicated later in [S] that method dispatch will 

happen as a function-cal1 to a behavior-specific function. Given this açsumption the 

call-site code for LUA is given in Expression 6.5. 



Although the published discussion of LU-4 also assumes such a behavior-specific 

call, 1 have provided a more time-efficient implementation of LUA by inlining the 

dispatch computation (Expression 6.5), a t  the expense of more memory per call-site. 

Unfortunately, it is not feasible to inline the dispatch computation for LU.\ because 

the cal!-site code would grow too much. 

My timing results assume the best possible dispatch situation for LU.4, in which 

there are only two k-arity rnethods from which to choose. In such a situation, LUA 

needs to perform at most k subtype tests. Although nurnerous subtype-testing imple- 

mentations are possible [25, 81, I have chosen one that provides a reasonable trade-off 

between time and space efficiency. Each type, T, maintains a bitvector, s.ubT, in 

which the bit corresponding to every subtype of T is set to 1, and a11 other bits are 

set to O. Assuming the bit-vector is implemented as an  array of bytes, 1 can pack 8 

bits into each array index, so determining whether T, is a subtype of T,  consists of 

the espression: szlb, [nu*m(Tj) > > 3]&( 1 << (nwn(T,) Sr 0x7) ). However, note 

that the actual subtype testing implementation does not really affect the overall dis- 

patch time because LüA invokes a behavior-specific dispatch function, and this extra 

function call is, in general, much more expensive than the actual computation itself. 

The size of the per behavior function to be executed depends on the number 

of methods defined for the behavior. In the best possible case, there are only two 

methods, ml and m z  defined for each behavior in a statically typed language (if there 

is only one method, no dispatch is necessary). 1 reiterate that this is a rather liberal 

under-estimate of the actual time a particular call-site takes to dispatch. The simplest 

function that a behavior can have is shown in the code: 

. . .  
if ( subp [N(ok)  >> 31 & ( 1 << (N(ok)  9t 0x7) ))  

return call ml (ol , . . . , ok )  ; 

return cal1 m2 Co1, . . . , o k )  ; 

} 



6.2 Timing Results 

In order to compare the address-computation tirne of the various techniques 1 gen- 

erate technique-specific C++ programs that perform the computations listed in the 

previous section. Each program consists of a loop that iterates 3000 times over 500 

blocks of code representing the address-computation for randomly generated call-sites, 

where a call-site consists of a behavior name and a list of k applicable types (for a 

k-arity behavior). Each block consists of two expressions. The first expression assigns 

to a global variable the result of an address-computation (i.e. the code described in 

the previous section, without the actual invocation). The second expression in each 

group calls a dummy function that modifies the previously assigned variable. These 

contort ions are performed in order to stop the compiler from doing optirnizations 

(such as only performing the last assignment in each group of 500, or in moving the 

code outside the 2000-iteration loop). Note that I am timing just the computation 

of addresses, since this is the only part of the dispatch process that varies from tech- 

nique to technique (the actual invocation of the cornputed address is the same in al1 

techniques). I also time a loop over 500 constant assignments interleaved with calls 

to the dummy function in order to time the overhead incurred (this is referred to as 

noop in the results). 

Thus, each execution of one of these programs computes the tirne for 1,000,000 

method-address computations. For each technique, such a prograrn is generated and 

executed 20 times. The program is then regenerated (thus resulting in a different 

collection of 500 call-sites) an additional 9 times, and each such program is executed 

20 times. This provides 200 timings of 1,000,000 call-sites for each of the techniques. 

The average time and standard-deviation of these 200 timings are reported in my 

results. In the graph, the histograms represent the mean, and the error-bars indicate 

the potential error in the results, as plus and minus twice the standard deviation. 

In order to establish the effect that architecture and optimization have on the 

various techniques, the above timing results are performed on five different platforms 

using optimization levels from -00 to -03. Al1 code is compiled using GNU C++ (in 

future work, it would be useful to obtain timings for a variety of different compilers). 

1 present results for two platforms, and only for optimization level -02. The other 
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Figure 6.1: Number of microseconds required tc compute a method at  a call-site 

platforrns and optimization level are similar. Furthermore, 1 only present resu!ts for 2- 

arity dispatch, since al1 techniques scale similarily for higher-arity dispatch sequences. 

In this chapter, Platforml refers to a 299iLIHz Sun Microsystems Ultra 5/10 running 

Solaris 2.6 with 128 Mb of FLAM and Platform2 refers to a 400h.[Hz Prospec PI1 

running L i n u  2.0.34 with 256Mb of RAM. 

From Figure 6.1, it can be seen that MRD provides the fastest dispatch time on 

both platforms, and did so for al1 five platforms tested.' Furthermore, LUA has the 

slowest dispatch time on al1 platforms. However, the relztive performance of MRD-B, 

SRP and CNT varied with platform, although LLRD-B was usually fastest, followed 

by SRP, followed by CNT. 

6.3 Memory Ut ilizat ion 

Mernory usage can be divided into two different categries: 1) data-structures, and 

2) call-site code-size. The amount of space taken by each of these depends on the 

application, but in different ways. An application with many types and methods 

will naturally require larger data-structures than an application with fewer types and 

methods. As well, although the size of an individual dl -s i te  is independent of the 

application, the number of call-sites (and lience the amount of code generated) is 

'The other three ptatforms were: a Sun SPARCstation 10 Mode1 30 running SunOS 4.1.4 with 
128 Mb, an 18OMHz SGI 0 2  running IRM 6.5 with 64 Mb, and an IBM RS6000/360 running .AIX 
4.1.4 with 128 Mb 
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Figure 6.2: Call-Site Memory Usage 

applicüt ion dependent. 

In order to compare the call-site size of the various techniques, 1 generated an- 

other set of technique-specific C++ programs. For each technique, a program was 

created that represented the code for 200 consecut ive two-arity met hod invocations, 

including the dispatch computation. The program placed a label at the beginning 

and end of this code and reported the computed average call-site size based on the 

difference between the addresses of the labels. Note t hat the call-site size for a par- 

ticular technique can Vary slightly if the randomly generated arguments Liappen to 

be identical. or if the constants in the dispatch computation happen to be less than 

256 or less than 65536, allowing them to be stored using smaller instructions. 

Figure 6.2 shows the number of bytes required by the call-site dispatch code. 

Similar results are returned from higher arity behaviors. 

Since the data-structure size is dependent on an application, 1 chose to mea- 

sure the size required to maintain information for al1 types and al1 behaviors in two 

representative applications, the Cecil Vortex3 (Cecil compiler [7]) hierarchy and the 

Harlequin Dylan hierarchy (a Dylan [4] GUI hierarchy called duzm). Harlequin is a 

commercial implementation of Dylan. The Cecil Vortex-3.0 hierarchy contains 1954 

types, 11618 behaviors and 21395 method definitions. The Dylan hierarchy contains 

666 types, 2146 behaviors and 3932 method definitions. 

In order to measure the amount of space required by the various techniques, I 

filtered the set of al1 possible behaviors to arrive a t  the set of behaviors that tmly 
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Figure 6.3: Type Hierarchy Details for Two Different Hierarchies 

require multi-rnethod dispatch. In particular, 1 do not consider any O-arity or 1-arity 

behaviors, because the address for such behaviors can be identified at compile-tirne 

and with single-receiver techniques respectively. Furthermore, since my data assumes 

a statically-typed language, I ignore behaviors with only one method defined on them, 

since they too can be determined at compile-time. Finally, for each remaining be- 

havior, I remove any arguments in which only one type participates. If there is only 

one type in an argument position, no dispatch is required on tliat argument. For 

example, if behavior o is defined only on A x A, B x -4 and C x A, then no dis- 

patch on the second argument is required (because I am assuming statically typed 

languages). By reducing behaviors down to the set of arguments upon which multiple 

dispatch is truly required, 1 get an accurate measure of the amount of multi-method 

support the language requires. After the reduction, the Cecil Vortex3 hierarchy has 

1954 types, 226 behaviors and 1879 methods, and the Dylan hierarchy has 666 types, 

108 behaviors and 738 methods. The rnethod distributions of these hierarchies are 

shown in Figure 6.3. The data-structure memory usage for each technique is shown 

in Figure 6.4. 

In these reduced Cecil Vortex3 and Dylan hierachies, many of the method defini- 

tions have arguments typed as the root-type. Whenever an argument is typed as the 
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root-type, MRD suffers. -411 rows on the dimension of that argument will be filled, so 

that, not much compression can be claimed from row-shifting or row-matching. More 

research is needed to find out whether it is a common practice to define many rneth- 

ods with arguments typed as the root-type in multi-rnethod programming languages. 

However, if I remove a11 methods with root-typed argument(s) from the reduced Cecil 

Vortex3 hierarchy, the data structure size of each technique is profoundly different 

from those shown in Figure 6.4. As multi-methods become more common, I ex- 

pect that the actual distribution of methods will be somewhere between these two 

extremes. 

After removing al1 met hods wit h root- t yped argument ( s )  , there are 166 1 types, 

660 behaviors and 1299 methods remaining in the Cecil Vortex3 hierarchy. The data 

structure size of each technique for this no root-type Cecil Vortex3 hierarchy is shown 

in Figure 6.5. The results for the Dylan hierarchy are similar. 



Chapter 7 

Future Work and Conclusion 

7.1 Implement at ion 

The research that produced MRD is part of a larger research project analyzing various 

multi-method dispatch techniques. Numerous issues impact the performance results 

given in this paper. For example, the simple loop-based timing approach poses a 

problem. It reports an artificially deflated execution tirne due to caching effects. 

Since the sarne data is being executed 10 million times, it stays hot. This problern 

can be partially solved by generating large sequences of random call-sites on different 

behaviors wit h different arguments. However, t his approach might actually discount 

caching effects that would occur in a real prograrn, since random distributions of 

call-sites will have poorer cache performance than real-world applications that have 

locality of reference. 

Furthermore, sorne of the techniques sllow for a variety of implementations. The 

implementations usually trade space for tirne, so an implementation can be chosen 

with the execution and memory footprint that most closely satisfies the requirements 

of a particular application. Also related to the issue of implementation is the impact 

of inlining of dispatch code. In single-receiver languages, the dispatch code is placed 

inline a t  each call-site, but sorne of the multi-method dispatch techniques have large 

call-site code chunks. For example, LUA defines a single dispatch function for each 

behavior. This function reduces call-site size, but significantly increases dispatch 

time. Rather than always calling a function, conditional inlining of a call-site is an 

open area of future research. 

For al1 of the multi-rnethod table-based dispatch techniques introduced in this 



thesis, except LUA, dispatch code is placed inline. Therefore, as the size of a program 

grows, the nurnber of call-sites increases, so the dispatch memory usage increases. 

Alternatively, function calls can be used instead of inline code for al1 techniques. In 

this case, memory usage will not increase as the number of call-sites increase. blore 

expermentation is needed to assess the time and space trade-off for function calls 

instead of inline code. 

7.2 Non-Statically Typed Languages 

In the thesis, 1 have investigated multi-method table-based dispatch techniques For 

statically typed languages only. Al1 table-based techniques described in this thesis 

can be extended to handle non-statically typed languages. Each technique can be ex- 

tended in many different ways to handle non-statically typed variables. -4s described 

in Section 4.6, MRD has two ways to solve the index out of bounds error. and two 

ways to solve the wrong method error. Each strategy has its own advaiitages and dis- 

adwntages. Therefore, a detailed investigation is needed to find out which strategy 

has the best time and space trade off for each dispatch technique. Then, different 

techniques can be compared on their performance for non-statically typed languages. 

7.3 Reflexive Environment 

Currently not much effort has been spent on estending multi-method table-based 

dispatch techniques to handle a reflexive environment. Obviously, N-Dimensional 

Tables can handle reflexivity easily, however it has been ruled out because of its huge 

memory usage. Nothing has been done on extending CNT, LUA or MRD to handle 

incremental environment changes. Since it takes only a few seconds to rebuild the 

whole data structure for each of these techniques, it may be acceptable to rebuild the 

whole data structure for each environment change. The only table-based technique 

that has an advantage in a refiexive environment is SRP. SRP is based on single- 

receiver table-based dispatch techniques. Holst et. al. described how single-receiver 

table-based techniques handle incrementally environment changes [22]. Therefore, 

there is still a lot of study necessary for table-based dispatch techniques for reflexive 

environments. 



Another question is how to compare different techniques on their performance for 

reflexive environments. What should be meaured'? 

7.4 Object-Oriented Language Usage Metrics 

Randomly generated cali-sites are used in performance evaliiation in this thesis. How- 

ever, in order to obtain the best possible analysis of the various techniques, we need 

sorne indept h metrics on the distribution of behaviors in multi-mct hod languages. In 

particular, the nurnber of behaviors of each arity, and the numbers of methods defined 

per behavior are critical. -4s more and more rnulti-method languages are introduced, 

we will be able to get a better Feel for realistic distributions. Note that call-site distri- 

butions are especially important for accurate analysis of LUA. since its dispatch time 

depends on the average number of types that need to be tested before a successful 

match occurs. 

7.5 Summary 

As described in the Introduction, mu tli-met hod languages have more expressive power 

than single-receiver lanugages. When dispatch algorithms becorne more efficient ancl 

computing power increases, multi-method languages will be more popular. In this 

thesis. a new tirne and space efficient rnulti-method dispatch technique. Multiple 

Row Displacement (MRD), is presented. MRD compresses an n-climensional table 

by row displacement. It has been compared with existing table-based multi-rnethod 

techniques, CNT, LU.& and SRP. MRD has the fastest dispatch time and the second 

smallest per-cd-site code size (next to LUA, which uses a function c d ) .  If' the other 

techniques used a function call, they could reduce their call-site size at the expense 

of dispatch tirrie. 

In addition to presenting the new technique, this thesis has provided a performance 

corn parison of exist ing table-based multi-met hod dispatch techniques. This t hesis is 

one step in making multi-method languages more suitable for general use. 
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