University of Alberta

MULTI-METHOD DISPATCH USING MULTIPLE Row DISPLACEMENT
by

Candy Siu Tung Pang ©

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfill-
ment of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Fall 1999

i~

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliotheque naticnale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your fle Votre référence

Our file Notre reférence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliotheque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propnété du
droit d’auteur qui protége cette these.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-47078-4

Canadi

The fear of the Lord is the beginning of knowledge,
but fools despise wisdom and discipline.
Proverbs 1:7

Abstract

Most of the widely used object-oriented languages, such as C++. Java and Samlltalk,
use single-receiver dispatch. In single-receiver dispatch, the code for a particular
message expression is determined by the dynamic type of the receiver object and the
static signature of the message. In contrast, there are object-oriented languages, like
CLOS, Cecil and Dylan that use multi-method dispatch. In multi-method dispatch,
the code for a message expression is determined at run-time by the name of the
message and the dynamic types of all message arguments, including the receiver
object.

Multiple Row Displacement(MRD) is a new dispatch technique for multi-method
languages. [t is based on compressing an n-dimensional table using an extension of the
single-receiver row displacement mechanism. This thesis presents the new algorithm
and provides experimental results that compare it with implementations of existing
techniques: compressed n-dimensional tables, look-up automata and single-receiver
projection. MRD has the fastest dispatch performance and uses comparable space
to these other techniques. This thesis also discusses how to apply MRD in statically

typed and non-statically typed languages.

Acknowledgements

First of all, thanks to the Lord for His sufficient providing in the last two years that
{ may complete my degree.

Therefore I tell you, do not worry about your life, what you will eat or
drink; or about your body, what you will wear. Is not life more important
than food, and the body more important than clothes? (Matthew 6:25)

Second, I would like to thank my, could not be better, supervisor, Duane Szafron,
who provided me a thesis topic, and guidance through out the year.

Then, I thank National Sciences and Engineering Research Council for providing
financial support.

Next, I have to thank all the members of the Dispatch team. Wade Holst has
taught me a lot; shared with me all of his source code and his C++ programming tool,
Crz. Yuri Leontiev has been a wonderful source of information, and his suggestion has
dramatically improved the time and space efficiency of the Multiple Row Displacement
algorithm. Also to Christopher Dutchyn and Thomas Harke, for their invaluable
feedback in our weekly meeting.

Finally, I have to thank my family and friends who encouraged me to carry on
with my studies.

Contents

1 Introduction 1
2 Terminology for Multi-Method Dispatch 4
21 Notation e 4
2.2 Inheritance Conflicts 6
2.3 Reflexive versus Non-Reflexive Environment 8
2.4 Statically Typed versus Non-Statically Typed 9

3 Existing Dispatch Techniques 10
3.1 Cache-Based Single-Receiver Dispatch Techniques 10
3.2 Table-Based Single-Receiver Dispatch Techniques 11
3.2.1 Selector Table Indexing (STI) 12

3.2.2 Row Displacement (RD) 12

3.2.3 Selector Coloring (SC) 13

3.3 Cache-Based Multi-Method Dispatch Techniques 14
3.4 Table-Based Multi-Method Dispatch Techniques 14
3.4.1 N-Dimensional Table. 14

3.4.2 Compressed N-Dimensional Table (CNT) 15

3.4.3 Single-Receiver Projections (SRP) 17

3.5 Search-Based Multi-Method Dispatch 19
3.5.1 Lookup Automata (LUA) 20

3.5.2 Product Type Search (PTS) 21

4 Multiple Row Displacement (MRD) 23
4.1 Multiple Row Displacement by Examples 23
4.2 The Multiple Row-Displacement Dispatch Algorithm 26
43 Improvements 29
4.3.1 Eliminating the Global Behavior Array 29

4.3.2 Use a Single Global Index Array 29

433 RowMatching. 31

4.3.4 Byte vs. Word Storage (MRD-B} 32

435 TypeOrdering 32

4.4 The MRD Data Structure Creation Algorithm 32
4.5 Separate Compilation 34

4.6 Non-Static Typingin MRD 34

4.6.1 FEliminating the Index Out Of Bounds Error
4.6.2 Eliminating the Wrong Method Error
5 Implementation of Multiple Row Displacement
5.1 Behavior
52 TyYpe . - o o v o e
53 Table. e e
54 TableEntry
6 Performance Results
6.1 Data Structures and Dispatch Code
6.1.1 MRD. e
6.1.2 MRD-B
6.1.3 CNT e e e e
6.1.4 SRP e e
6.1.5 LUA e e
6.2 TimingResults
6.3 Memory Utilization

7 Future Work and Conclusion

Implementation oL
Non-Statically Typed Languages.
Reflexive Environment L.
Object-Oriented Language Usage Metrics

7.1
7.2
7.3
7.4
7.9

Summary

Bibliography

.................................

38
38
39
40
40

41
41
42
42
42
43
14
46
47

51
3l
32
32
33
33

54

List of Figures

2.1
2.2

e

23

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

6.1
6.2
6.3
6.4
6.5

An example hierarchy and program segment requiring method dispatch
An Inheritance Hierarchy, #, and its induced Product-Type Graph #?
Single Inheritance and Multiple Inheritance

Selector Table
Compressing A Selector Table By Row Displacement
Compressing A Selector Table By Selector Coloring
N-Dimensional Dispatch Tables
Compressed N-Dimensional Table
Single-Receiver Projections
Lookup Automata
The LUA dispatch functionfore
The PTS dispatch functionfora

Data Structure for Multiple Row Displacement
Compressing The Data Structurefora
Compressing The Data Structure For 3, with & in place from Figure 4.2
Compressing The Data Structure For é
Global Data Structure With One Index Array
Global Data Structure With One Index Array
Row-Shifting vs. Row-Matching
Extend the Index Array
Attaching Behavior Indicator to Indices in the Index Array

Number of microseconds required to compute a method at a call-site

Call-Site Memory Usage
Type Hierarchy Details for Two Different Hierarchies
Static Data Structure Memory Usage for Cecil Vortex3
Static Data Structure Memory Usage for No Root- Typed Cecil Vortex3

26

List of Symbols

o - Name of a behavior.

0; - Argument object at the ¢ position.

type(o;) - Type of the argument at the i position.
T* - Type of argument at the i position.

T; - One of the types in a system, with type number .
num(7;) - Type number of the type T;.

T; <1 T; - Tj is a direct subtype of T;.

T; < T; - Tjis a subtype of T;.

T; X T, - T,is T, or a subtype of T;.

P - Product type.

T'xT?x...xT* - Product type for k-arity behavior.
P; <, P, - P;is a direct subtype of P;.

P; < P; - Pjis a subtype of P;.

‘H - A type hierarchy.

|H| - Number of types in the type hierarchy H.

H* - k-degree product-type graph, k& > 1.

Bt - A behavior named o with k arity.

o; - The i** method defined for behavior .

K - The maximum arity for all behaviors in the system.
S - Selector table.

M - Master array in row displacement.

[- Index arrayv in row displacement.

B - Behavior array in multiple row displacement.

D¥ - K-dimensional table for the k-arity behavior o.

DYCNT _ Compressed n-dimensional table for the k-arity behavior o.

G! - Index-group array far the i** argument of the k-arity behavior ¢ in compressed
n-dimensional table.

‘H, - The i hierarchy table in single-receiver projections.
A¥ - Lookup automaton for the k-arity behavior o.

DE-MRD _ \Jethod-map for the k-arity behavior o in multiple row displacement with
byvte array.

STI - Selector Table Indexing.

SC - Selector Coloring.

RW - Row Displacement.

CNT - Compressed N-Dimensional Table.
SRP - Single-Receiver Projections.

LUA - Lookup Automata.

EPD - Efficient Predicate Dispatch.

PTS - Product Type Search.

MRD - Multiple Row Displacement.

MRD-B - Multiple Row Displacement with byte array.

Chapter 1

Introduction

Object-oriented languages can be separated into single-receiver languages and multi-
method languages. Single-receiver languages use the dynamic type of a dedicated
receiver object in conjunction with the method name to determine the method to
execute at run-time. Multi-method languages [6] use the dynamic types of one or
more arguments’ in conjunction with the method name to determine the method to
execute. In single-receiver languages, a call-site can be viewed as a message send
to the receiver object. In multi-method languages, a call-site can be viewed as the
execution of a behavior on a set of arguments. The run-time determination of the
method to invoke at a call-site is called method dispatch. Note that languages like
C++ and Java that allow methods with the same name but different static argument
types are not performing actual run-time dispatch on the types of these arguments;
the static types are simply encoded within the method name at compile time. For
example, consider two Java methods, A.alpha(Integer) and A.alpha(Float), defined
in a class A. The Java names of these two methods are different, since they are
alphalnteger and alphaF'loat respectively.

Since most of the commercial object-oriented languages are single-receiver lan-
guages, many efficient dispatch techniques have been invented for such languages [21].
However, multi-method dispatch is more suitable to some methods than single-receiver
dispatch. For example, the operator '+’ can be considered as add(Numberl, Number2).
If Numberl is an integer, and Number2 is a float number, dispatching on the

type of Numberl by single-receiver dispatch returns add(Integer, Integer), while

'In the rest of this thesis, I will assume that dispatch occurs on all arguments.

add(Integer. Float) should be returned. In fact there will be four different methods
that implement add: add(Integer. Integer). add(Integer. Float). add{Float. [nteger)
and add(Float. Float). Many other numerical operators also need the extra expressive
power of multi-methods.

Multi-method dispatch is also very useful in many graphical user interface opera-
tions. For example. the method drag_and._drop(source. target) can be expressed more
efficiently by multi-method dispatch. The source object could be a circle. rectangle.
or other visual component. The target object could be a canvas. browser. or other
displaying component. In this case. both the type of the source object and the type of
the target object must be considered to perform the actual operation. Multi-methodl
dispatch provides the convenience. There are some muiti-method languages in use.
such as Cecil [7], CLOS [3], and Dylan [4]. However. They are not as popular as Java
or C++.

Since multi-methods are not supported in any popular commercial languages. it is
not easy to convince users to switch language. just to use multi-methods. [t is also not
casv to convince langnage designers and implementors to extend existing languages
to support multi-methods. since multi-method dispatch is slower than single-receiver
dispatch. The acceptance of multi-method languages depends on faster dispatch
algorithms and faster machines.

There are three major categories of method dispatch: search-based. cache-based
and table-based. The simplest search-based technique is called method lookup. which
looks in a dictionary based on the message name and dynamic argument types. [f a
match is not found. it looks in other dictionaries based on super-types of the argument
types. It keeps looking until a method is found. If no method is found an error is
reported. A cache-based technique looks in either a global or local cache at the time
of dispatch to determine if the method for a particular call-site has already been
determined. If it has been determined. that method is used. Otherwise. a cuche-
miss technique is used to compute the method, which is then cached for subsequent
executions. A teble-based technique pre-determines the method for every possible call-
site. and records these methods in a table. At dispatch-time, the method name and
dynamic argument types form an index into this table. This thesis focuses exclusively

on table-based techniques. The advantage of using table-based techniques is that they

(3]

have constant dispatch time. In addition, even when cache-based techniques are used,
table-based techniques can be effectively used for cache-misses.

This thesis presents a new multi-method table-based dispatch technique. It uses
a time efficient n-dimensional dispatch table that is compressed using an extension
of a space efficient row displacement mechanism. Since the technique uses multiple
applications of row displacement, it is called Multiple Row Displacement and will
be abbreviated as MRD. MRD works for methods of arbitrary arity. Its execution
speed and memory utilization are analyzed and compared to other multi-method
table-based dispatch techniques.

The rest of this thesis is organized as follows. Chapter 2 introduces some notation
for describing multi-method dispatch. Chapter 3 reviews existing single-receiver and
multi-method dispatch techniques. Chapter 4 presents the new multi-method table-
based technique. Chapter 5 shows the data structures used to implement the new
algorithm. Chapter 6 presents time and space results for the new technique and

compares it to existing techniques. Chapter 7 presents future work and conclusions.

Chapter 2

Terminology for Multi-Method
Dispatch

2.1 Notation

The notation in this thesis originated with the dispatch team at the University of
Alberta. Expression 2.1 shows the form of a k-arity multi-method call-site. Each
argument, o;, represents an object. and has an associated dynamic type. T* = type(o;).
Let H represent a type hierarchy. and |H| be the number of tyvpes in the hierarchy. In
‘H. each tvpe has a type number. num(T). A directed supertype edge exists between
type T, and type T; if T, is a direct subtype of T,. which is denoted as T, <, T,. I[f T,
can be reached from T, by following one or more supertype edges. T, is a subtype of

T.. denoted as T, < T,.
ag(oy.09. 0f) (2.1)
In the single-receiver domain. Expression 2.1 can be written as Expression 2.2.

2)

,-\
[AV]

0]_.0’(0‘_). ()k)

Method dispatch is the run-time determination of a method to invoke at a call-site.
When a method is defined, each argument, o;, has a specific static type, T*. However.
at a call-site, the dynamic type of each argument can either be the static type. T".
or any of its subtypes, {T|T < T°}. For example, consider the type hierarchy and
method definitions in Figure 2.1(a). and the code in Figure 2.1(b). The static type of

anA is A, but the dynamic type of anA can be either A, B or C. In general. the dynamic

4

A anA;
ifC ...)
anA = new AQ);
D Ao else if(...)
/'A& T3 C::o anA = new B();
C:B else
B C, E
l B * D::B anA = new C();
¢ The subscript beside the type is the anA.« () ’
type number, num(T).
(a) Type Hierarchy (b) Code Requiring Method Dispatch

Figure 2.1: An example hierarchy and program segment requiring method dispatch

type of an object at a call-site is not known until run-time, so method dispatch is
necessary.

Although multi-method languages might appear to break the conceptual model
of sending a message to a receiver, this idea can be maintained by introducing the
concept of a product-type. A k-arity product-type is an ordered list of k types denoted
by P=T'xT?x...xT*. The induced k-degree product-type graph, k > 1, denoted
HE, is implicitly defined by the edges in H. Nodes in H* are k-arity product-types,
where each type in the product-type is an element of 4. Expression 2.3 describes
when a directed edge exists from a child product-type P; = Tjl ><Tj2 X ... fo to a

arent product-type P, = T! xT?x...x T*, which is denoted P; <; P,
p T] [3

Pj <1 P,@BU,ISUSk(T;‘ =<1 T:‘)/\(VU—')élL,nv:T:’) (23)

The notation P; < P; indicates that P; is a sub-product-type of P;, which implies
that P; can be reached from P; by following edges in the product-type graph H*.
Figure 2.2 presents a sample inheritance hierarchy H and its induced 2-arity product-
type graph, H2. Three 2-arity methods (-, to y3) for behavior v have been defined on
‘H? and associated with the appropriate product-types.' Note that for real inheritance

hierarchies, the product-type hierarchies, #2, H3, ..., are too large to store explicitly.

1The method 74 in the dashed box is an implicit inheritance conflict definition, and will be
explained later.

Therefore, it is essential to define all product-type relationships in terms of relations

between the original types, as in Expression 2.3.

An Inheritance Hierarchy, H: The 2-arity product-type graph, H’
A AxA
}
B /N
* AxB BxA
c
/S N/
Y3 l Y2
Method Definitions on H>: AxC BxB CxA
Y1 2 AxA '___:\ / \ /
x:ﬁ;‘g LY e CxB

/
N

CxC

Figure 2.2: An Inheritance Hierarchy, #, and its induced Product-Type Graph H?

Next, I define the concept of a behavior. A behavior corresponds to a generic-
function in CLOS and Cecil, to the set of methods that share the same signature
in Java, and the set of methods that share the same message selector in Smalltalk.
Behaviors are denoted by B, where £ is the arity and o is the name. The maximum
arity for all behaviors in the system is denoted by K. Multiple methods can be
defined for each behavior. A method for a behavior named o is denoted by ;. If the
static type of the i** argument of o; is denoted by T, the list of argument types can
viewed as a product-type, dom(c;) = T' xT?x...x T*. With multi-method dispatch,

the dynamic types of all arguments are needed.

2.2 Inheritance Conflicts

Section 2.1 defines subtype and supertype relationship between types in an inheritance
hierarchy. If each type in an inheritance hierarchy is allowed to have at most one
immediate supertype, as in Figure 2.3(a), this hierarchy is called a single inheritance
hierarchy. On the other hand, if types are allowed to have more than one immediate

supertype, as in Figure 2.3(b) and (c), this hierarchy is called a multiple inheritance

hierarchy.

A A B
VA NV G T
B C C

(a) (b)

Figure 2.3: Single Inheritance and Multiple [nheritance

In single-receiver languages with multiple inheritance, the concept of inheritance
conflict arises. In general, an inheritance conflict occurs at a type T if two different
methods of a behavior are visible (by following different paths up the type hierarchy)
in supertypes T; and T;. For example, if two methods, A :: a and C :: o, are defined
for the type hierarchy in Figure 2.3(c), then there will be an inheritance conflict for
behavior a at type D. Since D is a subtype of C, C :: a is visible to type D. At the
same time, D is a subtype of B, which in turn is a subtype of A, therefore A :: v is
also visible to type D. This situation is called an inheritance conflict.

Most languages relax this definition slightly. Assume that n different methods of
a behavior are defined on the set of types T = {T\,...,T,}, where T <X T\,...,T,.
Then, the methods defined in two types, T; and T} in 7T, do not cause a conflict in T,
ifT; <Tj,orT; <Ti,or (3T €T |Ti <T; & T <T;} . As described in the last
paragraph, an inheritance conflict occurs at type D, if 4 :: @ and C :: a are defined
for the type hierarchy in Figure 2.3(c). However, after the relaxation, no inheritance
conflict results, since type C is a subtype of 4. That is, C :: a will be selected over
At

Inheritance conflicts can also occur in multi-method languages, and are defined
in an analogous manner. A conflict occurs when a product-type can see two different
method definitions by looking up different paths in the induced product-type graph
T'xT?x...xT*. Interestingly, inheritance conflicts can occur in multi-method lan-

guages even if the underlying type hierarchy, H, has single inheritance. For example,

in Figure 2.2, the product-type BxC has an inheritance conflict, since it can see two
different definitions for behavior 7 (3 in AXC and -y, in BxB). For this reason, an im-
plicit conflict method, 74, is defined in BxC as shown in Figure 2.2. Similar to single-
receiver languages, relaxation can be applied. Assume that n methods are defined in
product-types P = {P,, ..., P,}, and let P < Py, ..., P,. Then, the methods in P; and
P; do not conflict in Pif P, < Pj,or P; < B,or {3PR€P|P. <P & P.<P}.
In multi-method languages, it is especially important to use the more relaxed defi-
nition of an inheritance conflict. Otherwise, a large number of inheritance conflicts

would be generated for almost every method definition.

2.3 Reflexive versus Non-Reflexive Environment

A program is running in a non-reflexive environment, if all types and methods are
defined before the execution of the program. Hence, no types or methods can be
changed during execution. Programs written in C++ are running in a non-reflexive
environment. On the other hand, a program is running in a reflexive environment, if
the type hierarchy and method definitions can be changed during program execution.
Programs written in Smalltalk, Prolog and CLOS are running in a reflexive environ-
ment. The situation in Java is more complicated since limited reflexive compabilities
were added in the latest release.

In a reflexive environment, three categories of changes can happen during program
execution: (1) add or drop a type, (2) link or unlink a type to another type, (3) add,
delete, or change a method. Cache-based dispatch techniques do not work very well in
a reflexive environment. A small change (e.g. linking two types) in the environment
may require the entire cache to be rebuilt from scratch. This removes the advantage
of using a cache. Some table-based dispatch techniques allow their tables to evolve
incrementally as the environment evolves [22]. Other table-based dispatch techniques
must rebuild the entire set of tables when a change occurs. In either case, since the
environment needs access to the table for the changes, no dispatch can occur when
the tables are being modified.

Reflexivity is a complicated problem, which requires further study. Therefore, this

thesis concentrates on dispatch in a non-reflexive environment only.

2.4 Statically Typed versus Non-Statically Typed

Some programming languages (C++, Java, Eiffel) require each variable to be declared
with a static type. These languages are called statically typed languages. Other
languages (Smalltalk, CLOS) which do not declare static types for variables. are
called non-statically typed languages. In statically typed languages, a type checker
can be used at compile-time to ensure that all call-sites are type-valid. A call-site is
type-valid, if it has either a defined method for the message or an implicitly defined
conflict method. In contrast, a call-site is type-invalid, if dispatching the call-site will
lead to method-not-understood. For example, the static type of the variable anA is
A in Figure 2.1(b). The dynamic type of anA can be either A, B or C, since B and
C are subtypes of A. Since the message « is defined for type A, no matter what its
dynamic type is, anA can understand the message a. Therefore, the type checker
can tell at compile-time that the call-site anA.ca() is type-valid. Consider another
variable aD with static type D. A call-site aD.a() would be type invalid since no
method for « is defined on D. The type checker would find at compile-time that the
call-site aD.a() is type-invalid, and return a compile-time error.

In statically typed languages with implicitly defined conflict methods, no type-
invalid call-site will be dispatched during execution. However, in non-statically typed
languages, call-sites may be type-invalid. As will be shown in Section 3.2.3, any
dispatch technique that uses compression may return a method for a different behavior
due to selector aliasing. Therefore, in non-statically typed languages, an extra check
must be made to ensure that the computed method is applicable for the dispatched
behavior. This check must also ensures that the dynamic type of each argument is
a subtype of the declared static parameter type in the method. For non-statically
typed languages, the Multiple Row Displacement dispatch technique introduced in

this thesis must perform this extra check.

Chapter 3

Existing Dispatch Techniques

As mentioned in the introduction, there are three categories of method dispatch:
search-based, cache-based and table-based. There is only one viable search-based
single receiver dispatch technique called method lookup. Method lookup searches
the method dictionaries for the behavior, o, starting from the receiver’s type, and
going up the inheritance chain, until a method for o is found. However, method
lookup is very time inefficient. Smalltalk and Java use method lookup, but only
as a cache-miss technique. Cache-based techniques have been extensively used in
single-receiver languages, like Smalltalk [20]. Cache-based single-receiver dispatch
techniques are described in Section 3.1. Many time-efficient single-receiver table-
based dispatch techniques are also available, and they are presented in Section 3.2.
They have been ignored in most commercial implementation due to large memory
requirements. However, as the price of memory gets lower, they are more practi-
cal. Table-based techniques are even more practical in multi-method languages, since
cache-based techniques also require extensive memory for multi-methods, as shown
in Section 3.3. Section 3.4 introduces three existing table-based multi-method dis-
patch techniques, and Section 3.5 introduces two existing search-based multi-method

dispatch techniques.

3.1 Cache-Based Single-Receiver Dispatch Tech-
niques

Since cache-based single-receiver dispatch techniques are not very relevant to this

thesis, I give only a brief description of each technique.

10

1. Global Lookup Cache([19, 26]) uses < T,o > as a hash key into a global cache,
whose entries store a type, T, a selector, o, and a method address. During a
dispatch, if the entry retrieved from the global cache by < T,0 > contains
a method for the correct type and selector, it can be executed immediately.
Otherwise, a cache-miss technique (usually method lookup) is called to obtain
the correct method address. The resulting method address is stored in the

global cache.

o

Inline Cache([12]) caches addresses at each call-site. The initial address at each
call-site invokes the cache-miss technique, which modifies the call-site once a
method address is obtained. Subsequent executions of the call-site invoke the
previously computed method. Within each method, a method prologue exists
to ensure that the receiver class matches the expected class. Otherwise, the

cache-miss technique is called to recompute and modify the call-site address.

3. Polymorphic Inline Caches([24]) cache multiple addresses in a behavior specific
stub-routine. On the first invocation of a stub-routine, the cache-miss technique
is called. However, each time the cache-miss algorithm is called the stub is ex-
tended by adding code to compare subsequent receiver types against the current

type, and providing a direct function call if the test succeeds.

3.2 Table-Based Single-Receiver Dispatch Techniques

There are five known single-receiver table-based dispatch techniques: Selector Table
Indexing, Row Displacement, Selector Coloring, Compact Selector-Indexed Tables,
and Virtual Function Tables. Since Selector Table, Row Displacement and Selector
Coloring are used in the description of other multi-method dispatch techniques, I will
briefly introduce these three techniques in this chapter. Please see [28] and [29] for
details about Compact Selector Indexed Tables, and see [18] for details about Virtual
Function Tables, which are used in C++.

11

3.2.1 Selector Table Indexing (STI)

In single-receiver table dispatch, the method address can be calculated in advance for

every legal class/behavior pair, and stored in a selector table, 5. Figure 3.1 shows

the selector table for the type hierarchy and method definitions in Figure 2.1(a). An

empty table entry means that the behavior cannot be applied to the type. At run

time, the behavior and the dynamic type of the receiver are used as indices into S

[11]. In the literature {15], this algorithm is known as Selector Table Indexing or STI.
S Ag B, C, Dy E

ol Aol Ao Coox
Bl -- - I1C:B ID:B1D::B

Figure 3.1: Selector Table

Although STI provides efficient dispatch, its large memory requirements prohibit it
from being used in real systems. For example, there are 961 types and 12130 different
behaviors in the VisualWorks 2.5 Smalltalk hierarchy. If each method address required
4 bytes, then the selector table would be more than 46.6 Mbytes (961 x 12130 x
4 bytes). Fortunately, 95% of the entries in the selector table for single-receiver

languages are empty [14], so the table can be compressed.

3.2.2 Row Displacement (RD)

Row displacement (RD) reduces the number of empty entries by compressing the
two-dimensional selector table into a one-dimensional array [14, 16]. As illustrated
in Figure 3.2, each row in S is shifted by an offset until there is only one occupied
entry in each column. Then, this structure is collapsed into a one-dimensional master
array, M. When the rows are shifted, the shift indices (number of columns each row
has been shifted) are stored in an index array, I.

At run-time, the behavior is used to find the shift index from the index array, I.
In fact, each behavior has a unique index determined at compile time, and it is this
index which is used to represent the behavior in the compiled code. For simplicity, I
will just use the behavior name in this thesis. The shift index is added to the type
number of the receiver to form an index into the master array, M. For example, to

dispatch behavior 8 with D as the dynamic type of the receiver, the shift index for 8

12

MolAza|AcalCral - -~

I [o]1]

Figure 3.2: Compressing A Selector Table By Row Displacement

is {8} = 1. The type number of the receiver, D, is 3. Therefore, the final shift index
is 1 +3 = 4, and the method to execute is at M[4] which is D::3. Compared with
other single-receiver table dispatch techniques, row displacement is highly space and
time efficient [21]. I will show how this single-receiver technique can be generalized
to multi-method languages in Chapter 4. This is the main research contribution of

this thesis.

3.2.3 Selector Coloring (SC)

Selector coloring (SC) compresses the selector table by allowing two rows (behaviors)
to be combined, if no type recognizes both behaviors in the type hierarchy (13, 3]. For
example, if Figure 2.1(a) was modified, so that no method C :: 8 was included, then
the selector table for the types and method definitions in the modified Figure 2.1(a)
would be as shown on the left hand side of Figure 3.3. Since no type understands both
a and f, the two rows in the selector table can be combined, as shown on the right
hand side of Figure 3.3. Since, both @ and 3 are sharing one row index, a behavior
to row index table is added to record the correct row index for each behavior. Since
this approach is implementable as a graph coloring algorithm, the selector (behavior)

indices are usually referred to as colors.

S A B, C D; E S A B C; Dy E
(0 4 A..‘x A..a C"a — -~ ’ OI e--ﬂ e--q I g:-.a l D..B I D..B
BlL-—- | - | - |D:BID:B I 7o ﬂ

Figure 3.3: Compressing A Selector Table By Selector Coloring

In dispatch, the first index to the 2-dimensional array, S, is from the index ta-

13

ble I and the second is the type number. For example, to dispatch behavior 3
with D as the dynamic type of the receiver, the correct method can be found at
S[I{8]][num(D) | = S[0][3] = D :: B. Selector coloring is used in different
multi-method dispatch techniques, like Compressed N-Dimensional Tables and Single-
Receiver Projections.

In Section 2.4, it was mentioned that in non-statically typed languages, an extra
validity check must be made during dispatch due to aliasing during compression. For
example, if I dispatch behavior 3 with dynamic type A, then the compressed table
in Figure 3.3 yields S[I[8]][num(A)] = S[0][0] = A :: @, which is incorrect. The
returned method is not even a method for 3. In single receiver dispatch, the validity
check simply compares the required behavior, 4, to the behavior of the returned

method, A :: a; since they do not match, there is a method-not-understood error.

3.3 Cache-Based Multi-Method Dispatch Techniques

In the cache-based dispatch techniques for single-receiver described in Section 3.1,
< T,o > is used as a key to a cache, where T is a type. The same key is used in

multi-method caches, except that type T is replaced by a product-type P.

3.4 Table-Based Multi-Method Dispatch Techniques

This section provides a summary of the existing multi-method table dispatch tech-

niques.

3.4.1 N-Dimensional Table

In single-receiver method dispatch, only the dynamic type of the receiver and the
behavior name are used in dispatch. However, in multi-method dispatch, the dynamic
types of all arguments and the behavior name are used.

The single-receiver dispatch table can be extended to a multi-method table. In
multi-method dispatch, each k-arity behavior, B, has a k-dimensional dispatch table,
Dk, with type numbers as indices for each dimension. Therefore, each k-dimensional
dispatch table has |#|* entries. At a call-site, o(0y, 09, ..., 0x), the method to execute
is in DE[num(T")][num(T?)]...[num(T*)], where T* = type(o;).

14

Ay C o(AD) BAQC)

ot o (C,B) B,(B.D)

B, Dy *aEE

N

E, * @, 15 an mplicit conflict method.
(a)

D; 27 Argument D; 2% Argument
- Ag B, C, Dy E - Ay B G Dy Es
5 Ag| -- - =~ 1 041 s Ag| - hand B: B 8,
E By| — nd =~ 10 o) g By -- - B: B, {8
e I N I I] N P I e
<D - gl | - 1qa <Dy = | e} = | -]
L El -l ~lala Z Esf -- 8. 8: 8,

(b)

Figure 3.4: N-Dimensional Dispatch Tables

For example, the 2-dimensional dispatch tables for the type hierarchy and method
definitions in Figure 3.4(a) are shown in Figure 3.4(b). In building an n-dimensional
dispatch table, inheritance conflicts must be resolved. For example, there is an in-
heritance conflict at Ex E for «, since both a; and a5 are applicable for the call-site
a(anF,anFE). Therefore, an implicit conflict method a3 is defined, and inserted into
the table at ExE.

N-dimensional table dispatch is very time efficient. However, analogous to the sit-
uation with selector tables in single-receiver languages, n-dimensional dispatch tables
are impractical because of their huge memory requirements. For example, in the type
hierarchy for the Cecil Vortex3 compiler program, there are 1954 types. Therefore, a
single 3-arity behavior would require 1954 x 4 bytes = 29.84 gigabytes. Since there
are hundreds of different behaviors, the space requirement is prohibitive. The need
to compress these n-dimensional tables is even greater than the need to compress

single-receiver dispatch tables.

3.4.2 Compressed N-Dimensional Table (CNT)

The Compressed N-Dimensional Table (CNT) [2] technique keeps one k-dimensional
dispatch table, D¥CNT per behavior, where & represents the arity of a behavior. Start-
ing from a regular n-dimensional dispatch table as described in Section 3.4.1, CNT

eliminates rows or columns containing only empty entries. For example, applying this

15

elimination to the n-dimensional tables D2 and Dg in Figure 3.4(b) yields the tables
shown in Figure 3.5(a). Then, CNT groups identical rows or columns together. This
grouping technique is called class sharing. The result of applying class sharing to the

tables in Figure 3.5(a) is shown in Figure 3.5(b).

DN 2% Argument Dz 2% Argument
B, D E
1= - C, D
5 Aol - 1o law E Al Ts g‘
E Bi| - lo o £ L0y L Dy
?I) Cg .2} - o, ?0 Bl Bv Bj Bo
< Dila, | - | @, < Ei B 1818,
L E oo @ =
DM 2m Arg Dy 24 Arg
{B:} (D3} (Ei}
ED{AO.B” - o Qs 20 {C:} {Ds. E4}
-< {CaDs} | . - o :(B {Aat B, 8.
= {Ellos |l o] o b = (BuEsh B | Bn
i.CNT 2nd Arg D;.C.‘W' 2‘“’ Al'g
0 1 2 " 0 1
20 0l -- oy | Oy <"' ol 8, 8,
L Mol -l s 1B]B
- 2l lalu -
| AO BI C2 D3 Ed | Ag B] C; 03 E4
Ge [0T1T-T-T1] G [0t [-T-T1]
G, [(=[-ToJ1Tt] (¢ Gsl=I-TJTolriTr1]

Figure 3.5: Compressed N-Dimensional Table

The groups of types indexing the dimensions of a compressed table are called
index-groups. In each dimension, index groups are represented by an index. For
example, in the first dimension of the table D>“NT in Figure 3.5(b), the index of the
index of group {4, B} is 0; {C, D} is 1; and {E} is 2. However, after this grouping,
CNT cannot use type-indices to access the dispatch table, D*“*7T directly. Therefore,
k type to index arrays, G.,...,G¥, are created to map each type to its corresponding
index-group index in its own dimension. Figure 3.5(c) shows the CNT dispatch table
for o and 8 with the corresponding type to index arrays. These type to index arrays
are, then, compressed by row displacement or selector coloring. Expression 3.1 shows

the dispatch formula for CNT.

16

DM G GoIT?]][Go[T™]] (3.1)

For example, dispatch of the call-site 3(anE,aD) using the data structure in

Figure 3.5(d) is shown in Expression 3.2.

D;°NT[G| num(E) | |[G3[num(D)]]

= Dz M G541 [G313]]
2, CNT[I][]

= 2 (3.2)

3.4.3 Single-Receiver Projections (SRP)

Single-Receiver Projections (SRP) [23] handles a k-arity behavior multi-method dis-
patch as & single-receiver dispatches. Instead of maintaining one data structure per
behavior, SRP maintains K copies of the type hierarchy, H, which are denoted as
Hi, Hs, ..., Hi, where K is the maximum arity across all behaviors. Then, for each

behavior, BE, its method definitions are projected onto the first k hierarchies, H,,

For example, the method definition a;(A, D) is projected to H, and H,. «, is
projected to H,; for its first arity type, A, and projected to H, for its second arity
type, D. The result of projecting «,(A, D) onto M, and H, is shown in Figure 3.6(a).
The results of projecting the rest of the methods defined in Figure 3.4(a) are shown
in Figure 3.6(b).

In the next step, SRP extends each of the hierarchies to return a partially ordered
method set (poset), which includes all 'natively’ defined and inherited methods for
each type. This extension is shown in Figure 3.6(c). Method definitions of all be-
haviors are also projected to the same set of type-hierarchies, H,, H,, ..., Hk, in the
same way. The result of projecting method definitions for a and 3 in Figure 3.4(a)
is shown in Figure 3.6(d). Each partially ordered method set must satisfy the con-
straint: if dom(o;) < dom(c;), then o; must preceed o;. For example, the H, poset

[a3, a;, 2] in Figure 3.6(d) may be replaced by the poset [as3, @z, ay], but a; must

17

o] ?o %3 ?0 %3 (o) ?0 %3[01] ?0 (T::s
B D B, D,a) B D (a,] B D, [oy]
N N NI S
E; E; Esa,) 5 (]
(a) (b)
H, H, H, “
(o] C, [0 C (o) ?
Tl Py o e Ao CiBi
[B, Dyl o] B, Dy ey o]
) B, Djo, [0 B, D,I[%
\ES/‘ '\ES/‘ (B2, Bl \E/ V\E/ * [B., By
(0, 0y, Q) [0, @y, O] (o, a?,) (o, af. o)
() (B By) (d) (B2, By}
H, Ap B, C; Dy Ey
ol [oy] [a] fon] | [06] | [0, O, O]
BLIB | BBl] -~ | - (B2 Bl
H, Ao B, C, D; E4
al - [0) -- (o) [0, Oy, O]
Bl - = LB | BBl | 1By Bl

Figure 3.6: Single-Receiver Projections

preceed ay, since dom(as) = E; < 4y = dom(a,), and a; must preceed a,, since
dom(az) = Ey < Cy = dom(az). The partially ordered sets replace methods in the
selector tables as shown in Figure 3.6(e). These partially order method sets can be
represented by bit vectors {23].

At dispatch, a partially ordered set is obtained from the corresponding hierarchy
for each argument type. These posets are intersected to obtain a result poset. Within
the final poset, the first element is the dispatch result. For example, consider the
call-site, 3(aB,aC). First, the poset (82, ;] is obtained from #, for the first
argument aB. Then, the poset [3;] is obtained from #, for the second argument
aC. Intersecting these two posets yields [8)]. Since, §, is the first element, 8, is the

dispatch result. The dispatch formula for SRP is shown in Expression 3.3.

18

FirstElement(H, [o][T"} N Ha[o][T?] N ... N Hi[o][TF]) (3.3)

Note that the hierarchies, H,, H., ..., Hx, can be compressed by any single-
receiver table compression techniques, described in Section 3.2, to obtain better space
utilization. Moreover, several other enhancements have been applied to SRP as de-

scribed in [23], to improve its time and space efficiency.

3.5 Search-Based Multi-Method Dispatch

The only search-based single-receiver dispatch technique is method lookup. However,
a simple extension of method lookup will not work for multi-method dispatch. For
example, there are three different methods defined for the behavior v in Figure 2.2.
When the call-site v(aC, aC) is dispatched, and 7 is not defined in the product-type
CxC, where should the method lookup begin? Should the supertype of the first argu-
ment, or the second argument be considered first? Assume that the second argument
is considered first, and the method 7, is found in product-type B x B. However, in
multi-method dispatch method search cannot stop after one of the methods is found.
Obviously, v, and vy, are valid alternatives. Therefore, the search has to continue
until all possibilities are exhausted. After all the applicable methods are found, the
methods must be ordered, and the most applicable method must be selected. This
process is too complicated to be executed at run-time. Therefore, search-based multi-
method dispatch techniques need to do some precomputation to simplify the search.

There are three search-based multi-method dispatch techniques: Lookup Au-
tomata (LUA), Efficient Predicate Dispatch (EPD), and Product Type Search (PTS).
Lookup Automata is the first published search-based dispatch technique, I will review
this technique in detail in the following section. Efficient Predicate Dispatch is an ex-
tension of lookup automata, as described in [8]. Product Type Search is the simplest
search-based multi-method dispatch technique, but it has not been published yet. I
will also describe product type search in detail.

All search-based multi-method dispatch techniques have per-behavior dispatch

functions. When a call-site is encountered, the corresponding dispatch function of

19

that behavior is called to handle the dispatch. The per-behavior dispatch function

may access global data structures for information.

3.5.1 Lookup Automata (LUA)

Chen et. al describe Lookup Automata (LUA) in detail [10, 9]. The idea of LUA
is every simple, it creates one lookup automaton per behavior. Subtype testing is
used in transition from one state to another, until a final state is reached. Each final
state represents a method of a behavior. To avoid backtracking, and thus exponential
dispatch time, some automaton must include more types than are explicitly listed in

method definitions (inheritance conflicts are implicitly defined this way).

Figure 3.7: Lookup Automata

Figure 3.7 shows the automata for & and 3 defined in Figure 3.4(a). In each state,
the edges leading away from it must be ordered so that a subtype comes before its
supertype. In Figure 3.7, the edges are ordered top-down. The automaton for « is
translated to the function shown in Figure 3.8.

As shown in Figure 3.8, LUA needs frequent subtype testing. Therefore, an effi-
cient subtype testing mechanism is necessary. The authors of LUA do not specify how
subtype testing should be done. Efficient Predicate Dispatch (EPD) extends LUA,
so that the subtype testing is done within the per-behavior function by type-number
comparing. For that reason, no extra run-time data structure is created for subtype
testing.

It can be seen from Figure 3.8 that LUA does not have constant time dispatch.
Each dispatch takes at least & comparisons, besides the time for calling the dispatch
function itself. The call to the dispatch function involves saving registers and a branch

instruction that will clear the instruction pipe-line.

20

void a-automaton (o, 02) {

T! = type(0,);

T? = type(02);

if(T'<E) {
if(T? < F) execute a3(oy, 02);
else if(T? < D) execute a;(o, 09);
else if(T? < B) execute as(0, 07);
else execute method-not-understood;

}

else if(T' <4) {
if(T2 < D) execute a;(0;, 02);
else execute method-not-understood;

}

else if(T'<C) {
if(T? < B) execute ay(0, 07);
else execute method-not-understood;

else {
execute method-not-understood;

Figure 3.8: The LUA dispatch function for a

Since type checking at each stage has to be in subtype order, LUA cannot take
advantage of call-site profiles. For example, consider 1,000 call-sites for the behavior
B2, where 800 of them are a(aC,aB }. According to Figure 3.8, each of the 800 call-
sites has to perform the subtype tests i f(T' < E) and if (T < A) before performing
the test if(T! < C), which is the right one. Since the type E is a subtype of the
type C, the test if(T* < C) cannot go before if (T! < E), even though if(T! < C)
is used more often. The EPD technique extends LUA to take advantage of call-site

profiles.

3.5.2 Product Type Search (PTS)

Product Type Search (PTS) is very similar to LUA. Instead of using subtype testing
per argument, PTS uses child product type testing. First, all conflict methods are
implicitly defined. Then, the product type of each implicitly or explicitly defined

21

method is retrieved. These product types are ordered so that each child product
type preceeds its parents. Finally, a per-behavior function is created to perform child
product type testing as ordered. Figure 3.9 shows the per-behavior function for « in
PTS.

void a-product-type-search(o;, 02) {
Product-Type P = type(o,) x type(os);
if(P< Ex FE) execute az(o, 02);
else if(P<AXx D) execute o;(01, 02);
else if(P <C x B) execute as(01, 02);
else execute method-not-understood;

Figure 3.9: The PTS dispatch function for «

22

Chapter 4

Multiple Row Displacement
(MRD)

4.1 Multiple Row Displacement by Examples

Multiple Row Displacement (MRD) is a new time and space efficient dispatch tech-
nique which combines row displacement and n-dimensional dispatch tables. MRD
will first be illustrated by examples, and then the algorithm will be given. The first

example uses the type hierarchy and 2-arity method definitions from Figure 3.4(a).

D; A HEErary Ds
N e s rars
"r(l' e hind a)] (a)
"I(I‘phﬁ“la-pf

e l .= I B, I 8. I o]L'(A)
L(B)

1—" [(11] e l et [(11]L'(c] [b)
AE)

—lewl - lalal

Figure 4.1: Data Structure for Multiple Row Displacement

Instead of representing each dispatch table as a single k-dimensional array as
shown in Figure 3.4(b), each table can be represented as an array of arrays as shown
in Figure 4.1(a). The arrays indexed by the first argument are called level-0 arrays,
Lg. There is only one level-0 array per behavior. The arrays indexed by the second

argument are called level-1 arrays, L;(-). If the arity of the behavior is greater than

23

two then the arrays indexed by the third arguments are called level-2 arrays, Lo(-);
and so on. The highest level arrays are level-(k — 1) arrays, Ly_((-), for & arity
behaviors.

It can be seen from Figure 4.1(a) that some of the level-1 arrays are exactly the
same. The common arrays are combined as shown in Figure 4.1(b). In general, there
will be many identical rows in an n-dimensional dispatch table, and many empty
rows. These observations are the basis for the CNT dispatch technique mentioned in
Chapter 3, and are also one of the underlying reasons for the compression provided
by MRD. [t is worth noting that this sharing of rows is only possible due to the fact
the table uses types to index into all dimensions. In single-receiver languages, the
tables being compressed have behaviors along one dimension, and types along the
other. Sharing between two behavior rows would imply that both behaviors invoke
the same methods for all types, and although languages like Tigukat [27] allow this
to happen, such a situation would be highly unlikely to occur in practice. Sharing
between two type columns is also unlikely since it occurs only when a type inherits
methods from a parent and does not redefine or introduce any new methods. Such
sharing of type columns is more feasible if the table is partitioned into subtables by
grouping a number of rows together. This strategy was used in the single-receiver
dispatch technique called Compressed Dispatch Table (CT) [29].

There is one data structure per behavior, D¥, and MRD compresses these per
behavior data structures by row displacement into three global data structures: a
Global Master Array, M, a set of Global Index Arrays, [;, where j =0, ..., (K — 2),
and a Global Behavior Array, B.

In compressing the data structure D? in Figure 4.1(b), the level-1 array L;(A)
is first shifted into the Global Master Array, M, by row displacement, as shown in
Figure 4.2(a). The shift index, 0, is stored in the level-0 array, Lo, in place of L;(4)
(and into Lg at B, since A and B share L;(A4)). In the implementation, a temporary
array is created to store the shift indices, but in this thesis, I have put them in Lg
for simplicity of presentation. Figure 4.2(b) shows how L;(C) and L,(F) are shifted
into M by row displacement, and how they are replaced in Ly by their shift indices 1
and 5. Finally, as shown in Figure 4.2(c), L is shifted into the Global Index Array,
Iy by row displacement. The resulting shift index, 0, is stored in the Global Behavior

24

Array at Ba]. After D? is compressed into the global data structures, the memory
for its preliminary data structures can be released. Figure 4.3 shows how to compress
the behavior data structure, D;, into the same global data structures, M, Iy and B.
The compression of the level-1 arrays, L,(A) and L,(B), are shown in Figure 4.3(a).
The compression of the level-0 array, L, is shown in Figure 4.3(b). Note that only
I is used in the case of arity-2 behaviors. For arity-3 behaviors, I; will also be used.

For arity-4 behaviors, /, will also be used, etc.

L,
A) I 2 3 4 s . S
o -T=T=Taulaf D, % ey gy BV
1
Iy i Tal - T~ Taleo
B Dy~
(a) T Lo | - o | o L8
H 12 3 3 5§ 6 1T % 9
ML-]--] jala D é"'
Ll(c =10h] ==t == 10> a B|
Ly(E) . 2l o= 100 100
, | ol - o L] clil " Lo
H D n _
B (b) e - g L(E)

4 1 2 3 4 s 6 7 % 9

M Lol Ton (o Toe Toe ot - Ton Tan] D;' Ag(}

P2 3 4 By (}
I, CRTITITS) c

a D31
B (o] EsS

&

(c)

Figure 4.2: Compressing The Data Structure for «

As an example of dispatch, [will demonstrate how to dispatch a call-site 3(anFE, aD)
using the data structures in Figure 4.3(b). The method dispatch starts by obtaining
the shift index of the behavior, 3, from the Global Behavior Array, B. From Fig-
ure 4.3(b), B[B] is 5. The next step is to obtain the shift index for the first argument,
E, from the Global Index array, ;. Since the shift index of § is 5, and the type num-
ber of E, num(FE), is 4, the shift index of the first argument is L[5 + 4] = [[9] = 11.
Finally, by adding the shift index of the first argument to the type number of the
second argument, num(D) = 3, an index to M is formed, which is 11 + 3 = 14. The
method to execute can be found in M[14] = 3, as expected.

MRD can be extended to handle behaviors of any arity. Figure 4.4(a) shows the

method definitions of a 3-arity behavior, 4, and Figure 4.4(b) shows its preliminary

25

0 1 2 J 4 § 6 7 8 9 10 1 12 13 14 15
M E]"lmla.la.la»lm]- [v AAL0 %Y

LA --)-- 1B [B: B
LB —]--[R1B.18.]
L L 23 3) 3 r -
I, [oToT1T1T5] Dy Aq8] L - T - 18 B 3 L
« Bl i - T T3 "5 3 s
8] o
(a) E{11]
[\ | 1 3 4 5 6 7 K% 9 10 1t 12 13 14 15
M (] laoolontaslan] - [oulon]B.18, 18,18, (8.8,
01 2 3 4 5 &4 7 % 9 D
I, lo1T11s "';"“\I
LTl -T-111 yt
i
B (5] oL
(b) Egll]

Figure 4.3: Compressing The Data Structure For 3, with « in place from Figure 4.2

behavior data structure, D}. Figures 4.4(c) to 4.4(e) show the compression of this
data structure. First, the level-2 arrays, Ly(B x D), Ly(Dx B) and Ly(E x E) are
shifted into the existing M as shown in Figure 4.4(c). Their shift indices (15, 14, 19)
are stored in L(B), L;(D) and L,(E). In fact, every pointer in Figure 4.4(b) that
pointed to L,(B x D) is replaced by the shift index 15. Pointers to L,(D x B) are
replaced by the shift index 14 and the single pointer to L,(E x E) is replaced by the
shift index 19. Then, the level-1 arrays, Li(B), L,(D) and L,(F), are shifted into the
Global Index Array [as shown in Figure 4.4(d). The shift indices (0,1,5) are stored
in Ly. Finally, Lo is shifted into the Global Index Array Iy and its shift index (7) is
stored in the Global Behavior Array at B[d], as shown in Figure 4.4(e).

4.2 The Multiple Row-Displacement Dispatch Al-
gorithm

I have shown, by examples, how MRD compresses an n-dimensional dispatch table by
row displacement. On the behavior level, a preliminary data structure, D¥, is created
for each behavior. DF is a data structure for a k-arity behavior named o, as shown
in Figure 4.4(b). It is actually an n-dimensional dispatch table, which is an array of
pointers to arrays. Each array in D* has the size of |#|. The level-0 array, Lo, is

indexed by the type of the first argument. The level-1 arrays, L,(-), are indexed by

26

Aol — |

Bi| g |
C:| - |L,(BxD)
O[]
E,
D} w2 e
By h o | e | -
A, C, &(BDB) iy _*““] "'I C*“"l\ L@
3 P
T T Sz(D.B.D) Dy '_* "‘l L ["%]/ lL,(D)
B Pt 'SEEE)
ES
* 8,15 an implicit cuntlict method.
(a)
0 g 0 J1 12 13 14 15 16 317 14019 0 M RN 3
M f--l--la«la.]a‘lavlo:«[--la.roth,[B 18.18.18.18-
LBxDN-- 1§ }-- |- 15|
LB -] --[5.]5.
L(ExE)| __ .
(c)
0O t Y 3 4 5 6 7T X 9 10 il 12 13 14 15 16 17 I8 19 20 2] 2 23
M aa | e .) o] St B -
[} __j 2.3 4 s & 7 % 9
L, — 3 b
LLB D5 7] A B DB
I [=T-1-115015 B0l . TR IS L(BY
Lo =T =114 G-
L(E --J14]--115{19 Dfy]| - W - 1 LD
I, ofoTihTsTslnl..T..0n1 B{5] TT0d . 05 19 LyE)

B COTST @

: L
1, ET=Tnlshshelis]-lshs] s o
Iy 0Jouu TSIl -]-]1 &

s Ll=-10{.- ILS_] D‘T
B © B

Figure 4.4: Compressing The Data Structure For ¢

the type of the second argument. The level-(k — 1) arrays, Ly_;(-), always contain
method addresses. All other arrays contain pointers to arrays at the next level.
After the compression has finished, there are a Global Master Dispatch Array, M,
K —1 Global Index Arrays, I, ..., lx—2, and a Global Behavior Array, B. The Global
Master Dispatch Array, M, stores method addresses of all methods. Each Global

Index Array, I;, contains shift indexes for I;;;. The Global Behavior Array, B stores

the shift indices of the behaviors.

At compile time, a DF data structure is created for each behavior. The level-
(k — 1) arrays, Lg.;, are shifted into M by row displacement. The shifted indices are
stored in Li_,. Then, the level-(k — 2) arrays, Li_,, are shifted into the index array,
It _>. The shift indices are stored in L;_3. This process is repeated until the level-0
array, Ly, is shifted into Iy, and the shift index is stored in B[g]. The whole process is
repeated for each behavior. The algorithm to compress all behavior data structures

is given in Section 4.4.

The dispatch formula for a call-site, o(oy, ..., 0), is given by Expression 4.1, where

T" = type(o;).
M[L_o[Ie=s[- L[L[Bl o]+ num(T")]
+ num(T?)] + ... | + num(T*2) | + num(T*Y) | + num(T*)] (4.1)

As an example of dispatch with Expression 4.1, [will demonstrate how to dispatch
a call-site §(anFE, aD, aB) using the data structures in Figure 4.4(e). Since J is a 3-

arity behavior, Expression 4.1 becomes Expression 4.2.

M[L[L[B[] + num(E) | + num(D)] + num(B) | (4.2)

Substituting the data from Figure 4.4(e) into Expression 4.2 yields the method

), as shown in Expression 4.3.

M{L[L[T+4]+3]+1]
=M[11[[0[11]+3]+1]

=M[L[5+3]+1] (4.3)
=M[L[8]+1]
=M[15+1]
=M[16]| =4,
Note that all index arrays, Iy, I}, b, ..., can be further compressed into one big

index array by row displacement to save more memory. However, for presentation

simplicity I have ignored this final compression.

28

4.3 Improvements

4.3.1 Eliminating the Global Behavior Array

Each behavior has its own data structure to store information unrelated to dispatch.
A field named shift_indez can be added to this behavior data structure to support
MRD. Then, the shift index of each behavior can be stored in the data structure of
each behavior, instead of a Global Behavior Array, B. The advantage of this change
is that one array lookup is eliminated from method dispatch, without increasing the
memory usage. The new dispatch formula for a call-site, o(oy, ..., 0¢), after the change

is given in Expression 4.4.
M| L._o[Ly—3[... h[k[o.shift.index + num(T") |
+ num(T?) | + ... | + num(T*) | + num(T*™Y) | + num(T*) | (4.4)

Note that in a non-reflexive environment, the shift.index is a compile-time con-

stant that can be inserted into the dispatch code.

4.3.2 Use a Single Global Index Array

0 1 2 3 4 5 6 7 & 4 10 11 13 13 14 18

M [..]- -

0 1L 2 3 4 5 8 T 8 8
I Glolg Ty TsTall--T--Tiul

o.shift_index =0
B.shift_index =5

Figure 4.5: Global Data Structure With One Index Array

For simplicity of presentation, Section 4.1 and Section 4.2 had one Index Array per
arity position. Actually, only one Global Index Array, I, is needed to store all level-0
to level-(k — 2) arrays. Figure 4.5 shows the global data structure, after D? and Dj
from Figure 4.1(b) has been compressed using a single Global Index Array. Since «
and S are both 2-arity behaviors, they use only one index array, the Index Array f
in Figure 4.3(b). This index array has been re-named [in Figure 4.5. The effects
of using one index array are illustrated when D? from Figure 4.4(b) is compressed

into the global data structure. Figure 4.6(a) shows the global data structure after

29

Ly(Bx D), Ly(Dx B) and Ly(E x E) have been compressed into the Global Master
Array, M. Then, Figures 4.6b and 4.6¢c shows how to compress L,(B), L,(D) L,(E),
and Lg into the single Global Index Array.

] 2 3 4 § 6 7T 8 9% 10 11 12 13 14 IS 16 17 IR 19 0 2 22 13
M e - __
0 1L 1 3 4.5 6 7 8% 9 D} L
I loIsTsT=T--Tul 5 Ao A& B C D E
B =T =T15T15 B
a.shift_index =0 G
B.shift_index = O —lial [[}
@ E ~J1a] - 15T 19 LE
0 1 2 31 4 5 6 7 & 9 10 11 1213 14 15 3 L,
; oD TiTsT8N=—T-]it D5,/ a s oo e
ropy Lebel= SIS mla] T TS L
L(D) — — 5 b e
LE) 14] - [15[19] D[§
AN
(b)
g 1 2 3 4 5 6 7 8% 9 10 11 12 13 4 IS 16 17 IN 19 D:S‘ Lﬂ
r [oToltiTsTeInnishisTiifia]--Ti4f14l1sNig] Aof -
=laT--T81ut] By 3
Gl - |
S.shift_index = 15 Dhi 3
(©) BLL

Figure 4.6: Global Data Structure With One Index Array

Using a single Index Array provides additional compression, and has no negative
impact on dispatch speed. Notice that this change has simplified the global data
structure. Now, only 2 arrays are maintained. Expression 4.6 shows the modified
dispatch formula that accesses one Global Index Array. As an example, the formula to
dispatch the call-site, (anF, aD, aB) using Expression 4.5 is shown in Expression 4.6.
Substituting the data from Figure 4.6 to Expression 4.6 yields method ¢,, as shown

in Expression 4.7. This is the same result that was derived in Section 4.2.

M[I[I[... L[I[o.shift;ndez + num(T")]

+ num(T?) | + .. | + num(T*72) | + num(T*™) | + num(TF) | (4.5)

M[I[I[§.shift;ndex + num(E) |+ num(D) | +num(B)] (4.6)

30

M{I[I[15+4]+3]+1]

=M[I[I[19]+3]+1]

=M[I[11+3]+1] (4.7)
=M[I[14] +1]

=M[15+1]

=M[16] =,

This improvement simplifies the data structure, and reduces total memory usage,
especially memory for the high arity position Index Array. For example, if there is
only one 10-arity behavior in the environment, for this one behavior I3 of size || has
to be maintained, even though I3 is a sparse array. According to [14] and [16], Row
Displacement is highly space efficient in compressing sparse short arrays. Therefore,
compressing lg into the single Global Index Array, I, reduces the overall memory

usage. The same reason applies, wher [, s and 5 are collapsed into /.

4.3.3 Row Matching

Note that the row-shifting mechanism used in my implementation of row displacement
is not the most space-efficient technique possible. When the row-shifting algorithm is
replaced by a more general algorithm called row-matching (based on string-matching),
a higher compression rate is obtained. In row-matching, two table entries match if
one entry is empty or if both entries are identical. For example, using row-shifting to
compress rows R1 and R2 in Figure 4.7(a) produces a master array with 9 elements as
shown in Figure 4.7(b). However, using a row-matching algorithm to compress R1 and
R2 produces a master array with only 6 elements as shown in Figure 4.7(c). Using row-
matching instead of row-shifting provides an additional 10-14% compression. Row-
matching cannot be used in single-receiver row displacement, since different rows

contain different behaviors, and thus different addresses.

31

R (o o[- T [aro]
LAEMArAME
(a)

R o Joof--T-- Jas R R,
Rl ladadad -] — loulgal=l-lonlolonlol -]

(b)
R R
Rl gl -1 - los : Ry
Rl — -l lelel~1ad)

(c)

Figure 4.7: Row-Shifting vs. Row-Matching

4.3.4 Byte vs. Word Storage (MRD-B)

MRD stores four-byte function addresses in M. In a large hierarchy, M is the largest

data structure. To reduce the size of M, a method-map, D¥*™RD can be introduced

MRD 5 method

for each behavior. Since all methods of a behavior are stored in D¥:
can be represented by an index into D¥*2D_ Since it is very unlikely that more than
256 methods are defined per behavior, only one byte is needed to store the index to
the corresponding D¥MRP_ [f M stores this index instead of the function address,
the size of M is reduced to one-forth of its original size. However, there is an extra
indirection to access the method-map at dispatch time. I denote the technique which

stores bytes instead of words by MRD-B.

4.3.5 Type Ordering

In single receiver row displacement, type ordering has a significant impact on compres-
sion ratios [14]. I have investigated type ordering in multi-method row displacement
and found that the impact is not as significant, since the fill-rate for both Global
Master Array and Global Index Array is higher than 95%.

4.4 The MRD Data Structure Creation Algorithm

The algorithm to build the global data structure for MRD is given below:

32

Array M, I;
createGlobalDataStructure() begin
for(each behavior B) do
BehaviorStructure D¥ = B createStructure();
createRecursiveStructure(DX.L,, 0);
BY .shiftIndex = DF.L,.getShiftIndex();
endfor

end

createRecursiveStructure(Array L, int level) begin
for(int i=0; i<L.size(); i++) do
if(L[i] == null) then
continue;
elseif (L[i] .getShiftIndex() == -1) then
if(level == k-2) then
L[i] = M.add(L[i]);
else
createRecursiveStructure (L [i],level+1);

L[i] = L[i].getShiftIndex();

endif
else
L[i]l = L[i].getShiftIndex();
endif
endfor
I.add(L);
end
This algorithm uses three support routines: Array.add(Array),
Array.getShiftIndex(), and Behavior.createStructure().

Array.add(Array) function shifts the given array into the current array by

row-matching or row-shifting, and returns the shift index. The returned shift index

is also stored in the given array. The Array.getShiftIndex() function returns

33

the shift index of the current array, which is stored in the current array when it is
added to another array. If the current array has never been added to another array,
this function returns —1. The Behavior.createStructure() function creates an

n-dimensional table for the current behavior.

4.5 Separate Compilation

With table-based dispatch, the tables must be built before they can be used. If
a language does not support separate compilation, then the tables can be built at
compile-time when the entire type hierarchy and all the method definitions are com-
piled. If a language supports separate compilation, then neither the complete type
hierarchy nor the set of all method definitions for a particular behavior are available
when a class is being compiled. In this case, the dispatch tables must be built at
link-time. Fortunately, these tables only take a few seconds to build. In addition to
building the dispatch tables, call-sites in compiled code must be patched with base
table start addresses and global behavior shift indices. However, this is no more

difficult than resolving other external references in separately compiled object files.

4.6 Non-Static Typing in MRD

As discuss in Section 2.4 and Section 3.2.3, dispatch techniques that alias different
selectors during compression may return a wrong method for invalid call-sites in non-
statically typed languages. Actually, there are two potential errors when applying
MRD to non-statically typed languages: inder out of bounds, and wrong method.
Two examples illustrate the errors.

Assume that the call-site §(aC,anA, aB) is dispatched using the data structures
in Figure 4.4(e). The formula to dispatch this call-site is shown in Expression 4.8.
From Figure 4.4(e), B[6] is equal to 7, and k[B[d] + num(C) | = L[7T+ 2] = L[9]
which is equal to 11. The next step is to find [;[11 + num(4) |, which is /[11].
Unfortunately, [;[11 | does not exist, since the index 11 is out of the bounds of the

Index Array [,. This is an example of an index out of bounds error.

M[L[k[B[&] + num(C) | + num(A) | + num(B)] (4.8)

34

Consider the call-site §(aB,aC,anA) using the data structure in Figure 4.4(e).
The steps of the dispatch are shown in Expression 4.9. The returned method is 55,

which is not a method defined for §. This is an example of a wrong method error.

M[L[L[B[§] + num(B) | + num(C) | + num(A) |
=M[L[L[7T+1]+2]+0]

=M[L[L[8]+2]+0]

=M[L[0+2]+0] (4.9)
=M[L[2]+0]

=M[14+0]

=M[14]|= 0

4.6.1 Eliminating the Index Out Of Bounds Error

There are two ways to eliminate the index out of bounds error. The first approach is
to compare the index against the length of the array before each Index Array access. If
the index is bigger than the length of the Index Array, return method-not-understood,
otherwise, progress to the next step. This solution slows down dispatch, because of
the £ extra testings.

The second approach extends the improvement described in Section 4.3.2, using
a single index array. To eliminate the out of bounds error, Index Array is extended
to be at least as long as the Global Master Array, and all the empty-entries in the
Index Array are replaced with the number 0. The result of doing such an extension
is shown in Figure 4.8. After this extension, if the dispatch formula hits one of the
empty-entries, 0 will be used as the index, and 0 + num(T) will never be an out of
bounds error. If the dispatch formula hits an index of another behavior, that index
will never exceed |M| — |H|. Ther, (|M| — |H|) + num(T) will never be an out of
bounds, since the Index Array is at least as large as the Master Array.

The second solution solves the out of bounds problem, without decreasing the
dispatch speed. However, in general I do not know the size of I compared with M, so

I do not know how space inefficient this extension is. In a non-reflexive programming

35

9 1 2 3 4 5 6 9 10 11 12 13 14 §5 16 17 8 19 20 21 22 23

I [01011[llslslnhsnsmlmi | TP Y O) O I T I
6 7 B 9 10 11 12 83 14 1S 16 7 18 (9 0 21 12 3
lo[oll[l[5isLn[ns]nsmlmloll4l|4lisll9l4]0[8ﬁlfololo[ol

Figure 4.8: Extend the Index Array

environment, where speed is more important than memory, the second solution is
the winner. However, in a reflexive environment, the first solution may be a better
choice, since once all empty-entries are replaced by 0, it is impossible to insert other
arrays into the Index Array. Recall that the index out of bound error only occurs
in non-statically typed languages, not statically typed ones. Unfortunately, neither

solutions solves the wrong method error.

4.6.2 Eliminating the Wrong Method Error

There are also two ways to eliminate wrong method errors. The first approach is to
attach a behavior indicator to each index in the Index Array. The behavior indicator
can be a number representing the behavior. This change has been applied to part
of the Index Array in Figure 4.8, and the result is shown in Figure 4.9, where mnu
represents method-not-understood. At dispatch, the attached behavior indicator is
compared against the behavior of the call-site, after each index is retrieved. If they
match, the dispatch algorithm continues to the next step, otherwise, it returns method-
not-understood. This solution slows down dispatch by & extra testings. In addition,
memory usage for the Index Array is doubled.

0 [2 3 4 5 [7 8 9 10 11 12 13 14 15 16 17 .
! i 11815181518 11/814lrmnu01514]8141515519] 84 [mmuO].. .

*mnu stands for method-not-understand. [t is a method that will te!l the user that an invalid call-site has been dispaiched.

Figure 4.9: Attaching Behavior Indicator to Indices in the Index Array

The second approach is to delay all checking until the end of the dispatch pro-
cess. In order to do this, all empty-entries in the Global Master Array should be
replaced by method-not-understood. If a call-site is invalid, either a wrong method, or
method-not-understood will be returned under the original MRD algorithm. If the re-

sult method is method-not-understood, retnrn method-not-understood as the dispatch

36

result. Otherwise, check whether the return method matches the behavior of the
current call-site. If not, return method-not-understood. If so, make sure that the type
of each argument is either the defined-type or its subtype for each arity position. If

not, return method-not-understood. If so, the method address is correct.

37

Chapter 5

Implementation of Multiple Row
Displacement

MRD is implemented in C++, with classes being defined to represent the critical
object-oriented concepts affecting dispatch. In particular, a Behavior class represents
information about methods sharing the same name and arity; a Type class represents
types; and instances of different Table classes store precomputed dispatch results.
Instances of a Table Entry class represents elements stored in tables. The following
sections provide the implementation details for the MRD algorithm described in the

last chapter.

5.1 Behavior

Each Behavior instance describes a particular behavior, where a behavior is defined as
the set of methods sharing the same name and having the same arity. Each Behavior

instance consists of the following fields.

1. A name. The name of the behavior. This name is necessary in eliminating the

wrong method error.

[\
.

An arity. The number of arguments the behavior needs. Multiple references to
the same behavior name with the same number of arity should refer to the same
behavior, so a mapping from behavior name and number of arity to behavior

instance is maintained.

3. A number uniquely identifying the behavior. An array of all behaviors is also

38

maintained, and the behavior at index n has number n. In reflexive environ-
ment, this number is used as an index to access the Global Behavior Array in

dispatch.

4. A behavior shift inder. In non-reflexive environment, this shift index can be

pre-computed and stored at compile-time for the use of method dispatch.

5. An array of product-type/method pairs. This array lists all explicitly (user-
defined) and implicitly (inheritance conflict) defined methods of the behavior.
MRD uses the list to construct its dispatch tables, but MRD does not refer to
the list during dispatch. The order of the list does not matter in MRD.

5.2 Type

Each type instance records the dispatch-related information about a single type in the
type hierarchy for which dispatch is being implemented. Each instance has a name,
a unique number, an array of supertypes, an array of subtypes, and a bit vector for

subtype testing. Each Type instance has the following fields.

1. A name. Similar to behaviors, reference to types of the same name should refer

to the same type (i.e. type name uniquely identify type instances)

2. A number uniquely identifying the type. This number is used as an index to

access dispatch tables, and for subtype testing.

3. An array of supertypes. This array lists only immediate supertypes. MRD uses

this array to traverse the type hierarchy during dispatch table construction.

4. An array of subtypes. This array lists only immediate subtypes. MRD uses this

array to traverse the type hierarchy during dispatch table construction.

5. A bit vector for subtype testing. This bit vector has the size of the total number
of types in the hierarchy. If type T is a subtype (directly or indirectly) of a type

instance, the bit at the index representing T' will be set.

[~
©

5.3 Table

The last critical class is Table, which is used to encapsulate the data and functionality
for maintaining a row displacement dispatch table. Each instance of Table stores mul-
tiple instances of Table Entry. Instances of Table can also compress other instances of
Table into themselves. After each compression, the shift index is returned. Whether
row matching will be applied in the row displacement process is determined by the
instances of Table Entry in a table, which will be discussed in the next section.

The Table class is also responsible for table access functionality. Given a shift
index and a type, the Table class returns the instance of Table Entry at the proper

position. An instance of Table has the following fields.
1. A master array. This master array stores instance of Table Entry.

2. A list of empty entries. This list is used in table maintenance. In non-reflexive

environment, this list can be deleted after the table has been computed.

5.4 Table Entry

Each instance of Table Entry is either empty or non-empty. Each non-empty entry
stores either a method address, (in the Global Master Array), or a shift index (in the
Global Index Array). The Table Entry class implements two functions: isEmpty()
and isEqual(TableEntry). The Table class uses these two functions to perform row
displacement. The Table class allows two instances of Table Entry to share a space,
if one of the entries is empty, or the entries are equal.

If row-shifting is used, there are only two sets of Table Entry: empty and non-
empty. A non-empty entry can only share space with an empty entry. Therefore, the
isEqual(TableEntry) function return false, unless both of the operands are empty. To
use row matching, the isEqual(TableEntry) function is altered to return true, if the
content of the entries are equal. Each instance of Table Entry consists of the following

fields.

1. A field. If the entry is not empty, the field stores either a method address or a
shift index.

40

Chapter 6

Performance Results

This chapter presents memory and timing results for the new technique, MRD, and
three other techniques, CNT, LUA and SRP. When analyzing dispatch techniques,
both execution timing and memory usage need to be addressed. A technique that
is extremely fast is still not viable if it uses excessive memory, and a technique that
uses very little memory is not desirable if it dispatches methods very slowly. Both
timing and memory results are presented for MRD, SRP, LUA and CNT. This is the
first time a comparison of multi-method techniques has appeared in the literature.
The rest of this section is organized into three subsections. The first subsection
discusses the data-structures and dispatch code required by the various techniques.
The second subsection presents timing results. The third subsection presents memory

results.

6.1 Data Structures and Dispatch Code

This section provides a brief description of the required data-structures for each of
the four dispatch techniques in a static context. The code that needs to be gener-
ated at each call-site is also presented. In this chapter, the code presented refers to
the code that would be generated by the compiler upon encountering the call-site
o(01, 09y ..oy O).

The notation N (o;) represents the code necessary to obtain a type number for the
object at argument position ¢ of the call-site. Naturally, different languages implement
the relation between object and type in different ways, and dispatch is affected by this

choice. My timing results are based on an implementation in which every object is a

41

pointer to a structure that contains a 'typeNumber’ field (in addition to its instance

data).

6.1.1 MRD

MRD has an M array that stores function addresses, an [array that stores level-array
shift indices, and a B array that stores behavior shift indices.

The dispatch sequence is given in Expression 6.1.

(#(M[I] ..I[I[#6° + N(o))]
+1V(02)] + ...] + IV(Ok_l)] + IV(Ok)]))(0]_,02, caey Ok) (61)

Note that the Global Behavior Array, B, from Expression 4.1, is known at compile-
time, so B[o] is known at compile-time. Thus #b7 is a literal integer obtained from
B[o]. The sequence, M[...], in Expression 6.1 returns the address of the method to
be executed. Therefore, *(M(...]) returns the method to be executed. The method
is executed by passing the parameters, (oy, 02, ..., 0x), to the method x(M]...]). This
(%(...})(01, 02, ..., 0¢) format is used to indicated method execution in the rest of this

chapter.

6.1.2 MRD-B

The dispatch sequence for MRD-B is given in Expression 6.2.

(*(DEMEPL ML I[I I[#b° + N(o1)]
+N(03) | + ... | + N{ok=1) | + N(ox)]))01, 02, ., 0k) (6.2)

6.1.3 CNT

For each behavior, CNT has a k-dimensional array, but since I am assuming a
non-reflexive environment, this k-dimensional array can be linearized into a one-
dimensional array. Indexing into the array requires a sequence of multiplications and
additions to convert the k indices into a single index. For a particular behavior, its

one-dimensional dispatch table is denoted by DXCNT.

42

In addition to the behavior-specific information, CNT requires arrays that map
types to type-groups. In [17], these group arrays are compressed by selector coloring
(SC). My dispatch results are based on such a compression scheme, and assume that
the maximum number of groups is less than 256, so that the group array can be an
array of bytes. Furthermore, since the compiler knows exactly which group array to
use for a particular type, it is more efficient to declare n statically allocated arrays
than it is to declare an array of arrays. Thus, [assume that there are arrays Gy, ...,
Gn, and that the compiler knows which group array to use for each dimension of a
particular behavior.

If I assume that the compressed n-dimensional table for k-arity behavior ¢ has
dimensions n{, ng, ..., nf, where the n values are behavior specific, and that the group
arrays for these dimensions are G{,G7, ..., G{ then the call-site dispatch code is given

in Expression 6.3.

(+ (DESNTL GY[N(on)] x #(nf x n§ x .. x n{_,)
+ GY[N(02)] #(ng x ... x nd_,)
+ ...

+ Gi[N(ax)] 1)) (01,02, .0) (6.3)

Note that since the n{ are known constants, the products of the form: #(n{ x... x
n?), can be precomputed. Thus, only k& — 1 multiplications are required at run-time.
Note that Dujardin et.al assume a behavior specific function-call to compute the
dispatch using Expression 6.3 [17]. Although this function-call reduces call-site size,
it significantly increases dispatch time. The function-call has been inlined to make

CNT more competitive in my timings.

6.1.4 SRP

SRP has K selector tables, denoted Si,..., Sk where S; represents the applicable
method sets for types in argument position 7 of all methods. These dispatch tables
can be compressed by any single-receiver dispatch technique, such as selector coloring
(SRP/SC), row displacement (SRP/RD), or compressed dispatch table (SRP/CT).
The timing and space results, and the code that follows, are for SRP/RD.

43

In addition to the argument-specific dispatch tables, SRP has, for each behavior,
an array that maps method indices to method addresses, which is denoted by D*S&P,
The dispatch code for SRP is given in Expression 6.4, where FirstBit() is some macro
or function that implements the operation of finding the position of the first '1’ bit in
a bit-vector. Holst et. al. discuss this in some detail [23]. My timing and space results
assume that this is a hardware-supported operation with the same performance as

shift-right.

(#(DESRP[FirstBit(Si[N(o1) + #b]] &
Sa[N(02) + #b5) &
L&
Sk[N(ox) + #8]) 1)) (01,02, ..., 0k) (6.4)

Note that #b7 is the shift index assigned to behavior ¢ in argument-table ¢ and

is a literal integer.

6.1.5 LUA

LUA is, in some ways, the most difficult technique to evaluate accurately. First, there
are a number of variations possible during implementation, that have vastly different
space vs. time performance results. For example, in order to provide dispatch in O(k),
the technique must resort to an array access in certain situations, at the expense
of substantially more memory. Second, Chen et. al. do not provide any explicit
description of what the code at a particular call-site would look like [9]. They discuss
the technique in terms of data structures, and do not mention that in a statically-
typed environment, a collection of if-then-else statements would be a much more
efficient implementation. It is only indicated later in [8] that method dispatch will
happen as a function-call to a behavior-specific function. Given this assumption the

call-site code for LUA is given in Expression 6.5.

dispatchs(0y, 09, ..., 0k); (6.5)

44

Although the published discussion of LUA also assumes such a behavior-specific
call, I have provided a more time-efficient implementation of LUA by inlining the
dispatch computation (Expression 6.5), at the expense of more memory per call-site.
Unfortunately, it is not feasible to inline the dispatch computation for LUA because
the call-site code would grow too much.

My timing results assume the best possible dispatch situation for LUA, in which
there are only two k-arity methods from which to choose. In such a situation, LUA
needs to perform at most & subtype tests. Although numerous subtype-testing imple-
mentations are possible [25, 8], I have chosen one that provides a reasonable trade-off
between time and space efficiency. Each type, T, maintains a bitvector, subr, in
which the bit corresponding to every subtype of T is set to 1, and all other bits are
set to 0. Assuming the bit-vector is implemented as an array of bytes, [can pack 8
bits into each array index, so determining whether Tj is a subtype of T; consists of
the expression: subp,[num(T;) >> 3|&(1 << (num(T;) & 0z7)). However, note
that the actual subtype testing implementation does not really affect the overall dis-
patch time because LUA invokes a behavior-specific dispatch function, and this extra
function call is, in general, much more expensive than the actual computation itself.

The size of the per behavior function to be executed depends on the number
of methods defined for the behavior. In the best possible case, there are only two
methods, m, and m; defined for each behavior in a statically typed language (if there
is only one method, no dispatch is necessary). I reiterate that this is a rather liberal
under-estimate of the actual time a particular call-site takes to dispatch. The simplest

function that a behavior can have is shown in the code:

dispatch.o(0y, ..., ok } {
if (subpi[N(o1) >> 3] & (1 << (N(o1) & 0z7)))

if (subm{N(ok) >> 3] & (1 << (N(ox) & 0z7)))

return call m;(o;, ..., Ok);

return call mo(oy, ..., Ok);

45

6.2 Timing Results

In order to compare the address-computation time of the various techniques [gen-
erate technique-specific C++ programs that perform the computations listed in the
previous section. Each program consists of a loop that iterates 2000 times over 500
blocks of code representing the address-computation for randomly generated call-sites,
where a call-site consists of a behavior name and a list of k£ applicable types (for a
k-arity behavior). Each block consists of two expressions. The first expression assigns
to a global variable the result of an address-computation (i.e. the code described in
the previous section, without the actual invocation). The second expression in each
group calls a dummy function that modifies the previously assigned variable. These
contortions are performed in order to stop the compiler from doing optimizations
(such as only performing the last assignment in each group of 300, or in moving the
code outside the 2000-iteration loop). Note that [am timing just the computation
of addresses, since this is the only part of the dispatch process that varies from tech-
nique to technique (the actual invocation of the computed address is the same in all
techniques). [also time a loop over 500 constant assignments interleaved with calls
to the dummy function in order to time the overhead incurred (this is referred to as
noop in the results).

Thus, each execution of one of these programs computes the time for 1,000,000
method-address computations. For each technique, such a program is generated and
executed 20 times. The program is then regenerated (thus resulting in a different
collection of 500 call-sites) an additional 9 times, and each such program is executed
20 times. This provides 200 timings of 1,000,000 call-sites for each of the techniques.
The average time and standard-deviation of these 200 timings are reported in my
results. In the graph, the histograms represent the mean, and the error-bars indicate
the potential error in the results, as plus and minus twice the standard deviation.

In order to establish the effect that architecture and optimization have on the
various techniques, the above timing results are performed on five different platforms
using optimization levels from -O0 to -O3. All code is compiled using GNU C++ (in
future work, it would be useful to obtain timings for a variety of different compilers).

I present results for two platforms, and only for optimization level -O2. The other

46

0.45 T ™ T T T + Q.25
o4 - -
3 -
035 | . a2 +
— ~
-§ 0.3 |- - g
3 ; 0.15 E
= 025 - 1 =
T
0.2 -
a1
= 015 4 E
£ E
0.1 |- — 0as b B
a.05 |- .
noop MRAD MAD-8 CNT SRP tLUA noop MRD MRAD-8 CNT SRP LUA
Techniqua Tachnique

Figure 6.1: Number of microseconds required tc compute a method at a call-site

platforms and optimization level are similar. Furthermore, I only present results for 2-
arity dispatch, since all techniques scale similarily for higher-arity dispatch sequences.
In this chapter, Platforml refers to a 299MHz Sun Microsystems Ultra 5/10 running
Solaris 2.6 with 128 Mb of RAM and Platform?2 refers to a 400MHz Prospec PII
running Linux 2.0.34 with 256 Mb of RAM.

From Figure 6.1, it can be seen that MRD provides the fastest dispatch time on
both platforms, and did so for all five platforms tested.! Furthermore, LUA has the
slowest dispatch time on all platforms. However, the relative performance of MRD-B,
SRP and CNT varied with platform, although MRD-B was usually fastest, followed
by SRP, followed by CNT.

6.3 Memory Utilization

Memory usage can be divided into two different categories: 1) data-structures, and
2) call-site code-size. The amount of space taken by each of these depends on the
application, but in different ways. An application with many types and methods
will naturally require larger data-structures than an application with fewer types and
methods. As well, although the size of an individual call-site is independent of the

application, the number of call-sites (and hence the amount of code generated) is

1The other three platforms were: a Sun SPARCstation 10 Model 50 running SunOS 4.1.4 with
128 Mb, an 180MHz SGI O2 running IRIX 6.5 with 64 Mb, and an IBM RS6000/360 running AIX
4.1.4 with 128 Mb

100 T T T v 2 60 s T
90 T g ——
50 |- o B
- a0 | 1 «
£ ol N 15 —
2 &2 a0
%5 aol {1
g 50 B ; 30
3 2
] a0 41 3
= B ol -
go a0 [9 g‘
* =20} 4 = |
10
10 | ' ’ 4
° . . N . N ° . . N N N
LUA MAD MRAD-B CNT SRP LUA MRD MRD-8 CNT SRP
Technique Technique

Figure 6.2: Call-Site Memory Usage

application dependent.

In order to compare the call-site size of the various techniques, [generated an-
other set of technique-specific C++ programs. For each technique, a program was
created that represented the code for 200 consecutive two-arity method invocations,
including the dispatch computation. The program placed a label at the beginning
and end of this code and reported the computed average call-site size based on the
difference between the addresses of the labels. Note that the call-site size for a par-
ticular technique can vary slightly if the randomly generated arguments happen to
be identical, or if the constants in the dispatch computation happen to be less than
256 or less than 65536, allowing them to be stored using smaller instructions.

Figure 6.2 shows the number of bytes required by the call-site dispatch code.
Similar results are returned from higher arity behaviors.

Since the data-structure size is dependent on an application, [chose to mea-
sure the size required to maintain information for all types and all behaviors in two
representative applications, the Cecil Vortex3 (Cecil compiler [7]) hierarchy and the
Harlequin Dylan hierarchy (a Dylan [4] GUI hierarchy called duim). Harlequin is a
commercial implementation of Dylan. The Cecil Vortex-3.0 hierarchy contains 1954
types, 11618 behaviors and 21395 method definitions. The Dylan hierarchy contains
666 types, 2146 behaviors and 3932 method definitions.

In order to measure the amount of space required by the various techniques, I

filtered the set of all possible behaviors to arrive at the set of behaviors that truly

48

Arity # Behavior # Arity # Behavior
2 203 2 95
3 22 3 13
4 11 4 0
Method Count | # Behavior Method Count | # Behavior
2 53 2 21
3 33 3 11
4 35 4 32
3-8 57 5-8 23
9-16 27 9-16 13
17-32 16 17-32 6
33+ 5 33+ 2
(a) Cecil Vortex3 Type Hierarchy {b) Harlequin Type Hierarchy

Figure 6.3: Type Hierarchy Details for Two Different Hierarchies

require multi-method dispatch. In particular, I do not consider any 0-arity or I-arity
behaviors, because the address for such behaviors can be identified at compile-time
and with single-receiver techniques respectively. Furthermore, since my data assumes
a statically-typed language, [ignore behaviors with only one method defined on them,
since they too can be determined at compile-time. Finally, for each remaining be-
havior, I remove any arguments in which only one type participates. If there is only
one type in an argument position, no dispatch is required on that argument. For
example, if behavior o is defined only on A x A, B x A and C x A, then no dis-
patch on the second argument is required (because I am assuming statically typed
languages). By reducing behaviors down to the set of arguments upon which muitiple
dispatch is truly required, I get an accurate measure of the amount of multi-method
support the language requires. After the reduction, the Cecil Vortex3 hierarchy has
1954 types, 226 behaviors and 1879 methods, and the Dylan hierarchy has 666 types,
108 behaviors and 738 methods. The method distributions of these hierarchies are
shown in Figure 6.3. The data-structure memory usage for each technique is shown
in Figure 6.4.

In these reduced Cecil Vortex3 and Dylan hierachies, many of the method defini-

tions have arguments typed as the root-type. Whenever an argument is typed as the

49

kilobyles
4
T

N . I ——

L
LUA MRD MRD-8 SRP CNT
technique

Figure 6.4: Static Data Structure Memory Usage for Cecil Vortex3

kilobyles
»N
&
L)

L N N
LUA MRD MRD-B SAP CNT
technique

Figure 6.5: Static Data Structure Memory Usage for No Root-Typed Cecil Vortex3

root-type, MRD suffers. All rows on the dimension of that argument will be filled, so
that, not much compression can be claimed from row-shifting or row-matching. More
research is needed to find out whether it is a common practice to define many meth-
ods with arguments typed as the root-type in multi-method programming languages.
However, if I remove all methods with root-typed argument(s) from the reduced Cecil
Vortex3 hierarchy, the data structure size of each technique is profoundly different
from those shown in Figure 6.4. As multi-methods become more common, I ex-
pect that the actual distribution of methods will be somewhere between these two
extremes.

After removing all methods with root-typed argument(s), there are 1661 types,
660 behaviors and 1299 methods remaining in the Cecil Vortex3 hierarchy. The data
structure size of each technique for this no root-type Cecil Vortex3 hierarchy is shown

in Figure 6.5. The results for the Dylan hierarchy are similar.

Chapter 7

Future Work and Conclusion

7.1 Implementation

The research that produced MRD is part of a larger research project analyzing various
multi-method dispatch techniques. Numerous issues impact the performance results
given in this paper. For example, the simple loop-based timing approach poses a
problem. It reports an artificially deflated execution time due to caching effects.
Since the same data is being executed 10 million times, it stays hot. This problem
can be partially solved by generating large sequences of random call-sites on different
behaviors with different arguments. However, this approach might actually discount
caching effects that would occur in a real program, since random distributions of
call-sites will have poorer cache performance than real-world applications that have
locality of reference.

Furthermore, some of the techniques allow for a variety of implementations. The
implementations usually trade space for time, so an implementation can be chosen
with the execution and memory footprint that most closely satisfies the requirements
of a particular application. Also related to the issue of implementation is the impact
of inlining of dispatch code. In single-receiver languages, the dispatch code is placed
inline at each call-site, but some of the multi-method dispatch techniques have large
call-site code chunks. For example, LUA defines a single dispatch function for each
behavior. This function reduces call-site size, but significantly increases dispatch
time. Rather than always calling a function, conditional inlining of a call-site is an
open area of future research.

For all of the multi-method table-based dispatch techniques introduced in this

51

thesis, except LUA, dispatch code is placed inline. Therefore, as the size of a program
grows, the number of call-sites increases, so the dispatch memory usage increases.
Alternatively, function calls can be used instead of inline code for all techniques. In
this case, memory usage will not increase as the number of call-sites increase. More

expermentation is needed to assess the time and space trade-off for function calls

instead of inline code.

7.2 Non-Statically Typed Languages

In the thesis, I have investigated multi-method table-based dispatch techniques for
statically typed languages only. All table-based techniques described in this thesis
can be extended to handle non-statically typed languages. Each technique can be ex-
tended in many different ways to handle non-statically typed variables. As described
in Section 4.6, MRD has two ways to solve the index out of bounds error, and two
ways to solve the wrong method error. Each strategy has its own advantages and dis-
advantages. Therefore, a detailed investigation is needed to find out which strategy
has the best time and space trade off for each dispatch technique. Then, different

techniques can be compared on their performance for non-statically typed languages.

7.3 Reflexive Environment

Currently not much effort has been spent on extending multi-method table-based
dispatch techniques to handle a reflexive environment. Obviously, N-Dimensional
Tables can handle reflexivity easily, however it has been ruled out because of its huge
memory usage. Nothing has been done on extending CNT, LUA or MRD to handle
incremental environment changes. Since it takes only a few seconds to rebuild the
whole data structure for each of these techniques, it may be acceptable to rebuild the
whole data structure for each environment change. The only table-based technique
that has an advantage in a reflexive environment is SRP. SRP is based on single-
receiver table-based dispatch techniques. Holst et. al. described how single-receiver
table-based techniques handle incrementally environment changes [22]. Therefore,

there is still a lot of study necessary for table-based dispatch techniques for reflexive

environments.

Another question is how to compare different techniques on their performance for

reflexive environments. What should be measured?

7.4 Object-Oriented Language Usage Metrics

Randomly generated call-sites are used in performance evaluation in this thesis. How-
ever, in order to obtain the best possible analysis of the various techniques, we need
some indepth metrics on the distribution of behaviors in multi-method languages. In
particular, the number of behaviors of each arity, and the numbers of methods defined
per behavior are critical. As more and more multi-method languages are introduced,
we will be able to get a better feel for realistic distributions. Note that call-site distri-
butions are especially important for accurate analysis of LUA, since its dispatch time
depends on the average number of types that need to be tested before a successful

match occurs.

7.5 Summary

As described in the Introduction, mutli-method languages have more expressive power
than single-receiver lanugages. When dispatch algorithms become more efficient and
computing power increases, multi-method languages will be more popular. In this
thesis, a new time and space efficient multi-method dispatch technique. Multiple
Row Displacement (MRD), is presented. MRD compresses an n-dimensional table
by row displacement. It has been compared with existing table-based multi-method
techniques, CNT, LUA and SRP. MRD has the fastest dispatch time and the second
smallest per-call-site code size (next to LUA, which uses a function call). If the other
techniques used a function call, they could reduce their call-site size at the expense
of dispatch time.

In addition to presenting the new technique, this thesis has provided a performance
comparison of existing table-based multi-method dispatch techniques. This thesis is

one step in making multi-method languages more suitable for general use.

Bibliography

(1} ECOOP’97 Conference Proceedings, 1997.

[2] Eric Amiel, Olivier Gruber, and Eric Simon. Optimizing multi-method dispatch
using compressed dispatch tables. In OOPSLA 94 Conference Proceedings, 1994.

[3] P. Andre and J.C. Royer. Optimizing method search with lookup caches and
incremental coloring. In OOPSLA 92 Conference Proceedings, 1992.

[4] Apple Computer, Inc. Dylan Interim Reference Manual, 1994.

[5] Daniel G. Bobrow. Linda G. DeMichiel, Richard P. Gabriel, Sonya E. Keene.
Gregor Kiczales, and David A. Moon. Common Lisp Object System specification.
June 1988. X3.J13 Document 88-002R.

(6] Daniel G. Bobrow, Kenneth Kahn, Gregor Kiczales, Larry Masinter, Mark Stefik,
and Frank Zdybel. Commonloops: Merging lisp and object-oriented program-
ming. In OOPSLA 86 Conference Proceedings, pages 17-29, 1986.

[7] Craig Chambers. Object-oriented multi-methods in cecil. In ECOOP’92 Con-
ference Proceedings, 1992.

[8] Craig Chambers and Weimin Chen. Efficient predicate dispatch, 1998. Technical
Report UW-CSE-98-12-02.

[9] Weimin Chen. Efficient multiple dispatching based on automata. Master's thesis,
Darmstadt, Germany, 1995.

[10] Weimin Chen, Volker Turau. and Wolfgang Klas. Efficient dynamic look-up
strategy for multimethods. In ECOOP’94 Conference Proceedings, 1994.

[11] Brad Cox. Object-Oriented Programming, An Evolutionary Approach. Addison-
Wesley, 1987.

[12] L. Peter Deutsch and Alan Schiffman. Efficient implementation of the Smalltalk-
80 system. In Principles of Programming Languages, Salt Lake City, UT, 1994.

[13] R. Dixon, T. McKee, P. Schweizer, and M. Vaughan. A fast method dispatcher
for compiled languages with multiple inheritance. In QOPSLA’'89 Conference
Proceedings, 1989.

(14] K. Driesen and U. Hélzle. Minimizing row displacement dispatch tables. In
OOPSLA 95 Conference Proceedings, 1995.

[15] K. Driesen, U. Hélzle, and J. Vitek. Message dispatch on pipelined processors.
In ECOOP’95 Conference Proceedings, 1995.

54

[16] Karel Driesen. Selector table indexing and sparse arrays. In OOPSLA’93 Con-
ference Proceedings, 1993.

(17] Eric Dujardin, Eric Amiel, and Eric Simon. Fast algorithms for compressed multi-
method dispatch table generation. In Transactions on Programming Languages
and Systems, 1996.

[18] M.A. Ellis and B. Stroustrup. The Annotated C++ Reference Manual. Addison-
Wesley, 1990.

[19] A. Goldberg and David Robson. Smalltalk-80: The Language and its Implemen-
tation. Addison-Wesley, 1983.

[20] Wade Holst and Duane Szafron. Inheritance management and method dispatch
in reflexive object-oriented languages. Technical Report TR-96-27, University of
Alberta, Edmonton, Canada, 1996.

[21] Wade Holst and Duane Szafron. A general framework for inheritance manage-
ment and method dispatch in object-oriented languages. In ECO0OP’97 Confer-
ence Proceedings [1].

[22] Wade Holst and Duane Szafron. Incremental table-based method dispatch for
reflexive object-oriented languages. In Technology of Object-Oriented Languages
and Systems, 1997.

[23] Wade Holst, Duane Szafron, Yuri Leontiev, and Candy Pang. Multi-method
dispatch using single-receiver projections. Technical Report TR-98-03, University
of Alberta, Edmonton, Canada. 1998.

[24] Urs Holzle, Craig Chambers, and David Ungar. Optimizing dynamically-typed
object oriented languages with polymorphic inline caches. In ECOOP’9! Con-
ference Proceedings, 1991.

[25] Andreas Krall, Jan Vitek, and R. Nigel Horspool. Near optimal hierarchical
encoding of types. In ECOOP’97 Conference Proceedings [1].

(26] Glenn Krasner. Smalltalk-80: Bits of History, Words of Advice. Addison-Wesley,
Reading, MA, 1983.

[27] M.T. Ozsu, R.J. Peters, D. Szafron, B. Irani, A. Lipka, , and A. Munoz. Tigukat:
A uniform behavioral objectbase management system. In The VLDB Journal,
pages 100-147, 1995.

[28] Jan Vitek and R. Nigel Horspool. Taming message passing: Efficient method
lookup for dynamically typed languages. In ECOOP’94 Conference Proceedings,
1994.

[29] Jan Vitek and R. Nigel Horspool. Compact dispatch tables for dynamically typed
programming languages. In Proceedings of the Intl. Conference on Compiler
Construction, 1996.

