
University of Alberta

Candy Siu Tung Pang 0

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfill-
ment of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Fa11 1999

National Library I+(of Canada
Bibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services services bibliographiques

395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K I A ON4
Canada Canada

Your hie Vorm r8f.rmCe

Our file Notre ref8lence

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sel1
copies of this thesis in rnicroform,
paper or electronic formats.

The author retains ownership of the
copyright in ths thesis. Neither the
thesis nor substantial extracts fiom it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

The fear of the Lord is the beginning of knowledge,
but fools despise wisdom and discipline.

Proverbs 1:7

Abstract

Most of the widely used object-oriented languages, such as C++. Java and Samlltalk.

use single-receiver dispa tch. Jn single-receiver dispat ch, the code for a particular

message expression is deterrnined by the dynamic type of the receiver object and the

static signature of the message. In contrast, there are object-oriented languages, like

CLOS, Cecil and Dylan that use multi-method dispatch. In multi-method dispatch,

the code for a message expression is determined a t run-tirne by the name of the

message and the dynamic types of al1 message arguments, including the receiver

object.

Multiple Row Displacement(MRD) is a new dispatch technique for multi-method

languages. It is based on cornpressing an n-dimensional table using an extension of the

single-receiver row displacement mechanism. This thesis presents the new algorithm

and provides experimental results that compare it with implementations of existing

techniques: compressed n-dimensional tables, look-up automata and single-receiver

projection. MRD has the fastest dispatch performance and uses comparable space

to these other techniques. This thesis also discusses how to apply MRD in statically

typed and non-statically typed languages.

Acknowledgement s

First of all, thanks to the Lord for His sufficient providing in the last two years that
I may complete my degree.

Therefore 1 tell you, do not worry about your life, what you will eat or
drink; or about your body, what you will ivear. 1s not life more important
than food, and the body more important than clothes? (Matthew 6 2 5)

Second, I would like to thank my, could not be better, supervisor, Duane Szafron,
who provided me a thesis topic, and guidance through out the year.

Then, I thank National Sciences and Engineering Research Council for providing
financial support.

Next, 1 have to thank al1 the members of the Dispatch team. Wade Holst has
taught me a lot; shared with me al1 of his source code and his C++ programming tool,
Cm. Yuri Leontiev has been a wonderful source of information, and his suggestion has
drarnatically improved the time and space efficiency of the Multiple Row Displacement
algorithm. Also to Christopher Dutchyn and Thomas Harke, for their invaluable
feedback in our weekly meeting.

Finally, 1 have to thank my family and friends who encouraged me to carry on
with my studies.

Contents

1 Introduction 1

2 Terminology for Mult i-Method Dispatch 4
2.1 Notation . 4
2.2 Inheritance Conflicts . 6

. 2.3 Reflexive versus Non-Reflexive Environmeni 8
2.4 Statically Typed versus Non-S tatically Typed 9

3 Existing Dispatch Techniques 10
3.1 Cache-Based Single-Receiver Dispatch Techniques 10
3.2 Table-Based Single-Receiver Dispatch Techniques 11

3.2.1 Selector Table Indexing (STI) 12
3.2.3 Row Displacement (RD) . 12
3.2.3 Selector Colonng (SC) . 13

3.3 Cache-Based Multi-Method Dispatch Techniques 14
3.1 Table-Based Multi-Method Dispatch Techniques 14

3.4.1 N-Dimensional Table . 14
3.4.2 Compressed N-Dimensional Table (CNT) 15
3.4.3 Single-Receiver Projections (SRP) 17

3.5 Search-Based Multi-Method Dispatch 19
3.5.1 Lookup Automata (LUA) . 20
3.52 Product Type Search (PTS) 21

4 Multiple Row Displacement (MRD) 23
4.1 Multiple Row Displacement by Examples 23
4.2 The i\rlultiple Row-Displacement Dispatch Algorithm 26
1.3 lmprovements . 29

4.3.1 Eliminating the Global Behavior Array 29
4.3.2 Use a Single Global Index Array 29
4.3.3 Row Matching . 31
4.3.4 Byte vs . Word Storage (MRD-B) 32
4.3.5 Type Ordering . 32

4.4 The MRD Data Structure Creation Algorithm 32
4.5 Separate Compilation . 34
4.6 Non-Static Typing in MRD . 34

. 4.6.1 Eliminating the Index Out Of Bounds Error 35
. 4.6.2 Eliminating the Wrong Method Error 36

5 Implementation of Multiple Row Displacement 38
. 5.1 Behavior 38

. 5.2 Type 39

. 5.3 Table 40
. 5.4 Table Entry 40

6 Performance Results 41
. 6.1 Data Structures and Dispatch Code 41

. 6.1.1 MRD 42
. 6.2.2 MRD-B 42

. 6.1.3 CNT 42
6.1.4 SRP . 43

. 6.1.5 LUA 44
. 6.2 Timing Results 46

. 6.3 MemoryUtilization 47

7 Future Work and Conclusion 51
. 7.1 Implementation 51

. 7.2 Non-StaticallyTypedLanguages 52
. 7.3 Reflexive Environment 52

. 7.4 Object-Oriented Language Usage Metrics 53
. 7.5 Surnmary 53

Bibliography 54

List of Figures

2.1 An example hierarchy and program segment requiring method dispatch 5
2.2 An Inheritance Hierarchy. 31. and its induced Product-Type Graph R2 6

. 2.3 Single Inheritance and Multiple Inheritance 7

Selector Table . 12
. Compressing -2 Selector Table By Row Displacement 13

. Com pressing A Selector Table By Jslector Coloring 13
N-Dimeosional Dispatch Tables . 15
Compressed N-Dimensional Table . 16
Single-Receiver Projections . 18
Lookup Automata . 20
The LUA dispatch function for ct . 21
The PTS dispatch function for a . 22

Data Structure for Multiple Row Displacement 23
Compressing The Data Structure for a 25
Cornpressing The Data Structure For B. with a in place from Figure 4.2 96
Compressing The Data Structure For 6 27
Global Data Structure With One Index Array 29
Global Data Structure With One Index Array 30
Row-Shifting vs . Row-Matching . 32
Extend the Index Array . 36
Attaching Behavior Indicator to Indices in the Index Array 36

6.1 Number of microseconds required to compute a method a t a call-site 47
6.2 Cdl-Site Memory Usage . 48
6.3 'Type Hierarchy Details for Two Different Hierarchies 49
6.4 Static Data Structure Mernory Usage for Cecil Vortex3 50
6.5 Static Data Structure Memory Usage Cor No Root-Typed Cecil Vortex3 50

List of Symbols

0 - Name of a behavior.

oi - Argument object a t the i position.

type(oi) - Type of the argument at the i position.

Ti - Type of argument at the i position.

Ti - One of the types in a system, with type number i.

num(Ti) - Type number of the type Ti.

Tj 4 1 Ti - T, is a direct subtype of Ti.

Tj 4 Ti - T, is a subtype of Ti.

Tj 5 Ti - Sj is TiTi, or il subtype of 7''.

P - Product type.

TL x S2 x ... x Tk - Product type for k-arity behavior.

Pi 4 1 Pi - Pj is a direct subtype of Pi.

P, 4 Pi - Pj is a subtype of Pi-

'H - A type hierarchy.

1311 - Nurnber of types in the type hierarchy 3t.

'Hk - k-degree product-type graph, k 2 1.

B - A behavior named cr with k arity.

ci - The ith method defined for behavior a.

K - The maximum arity for al1 behaviors in the system

S - Selector table.

M - Master array in row displacement.

I - Indes array in row displacement.

B - Behavior array in riiultiple row displacenient.

D - K-diniensional table for the k-arity beliitvior a.

- Compressed n-climensional table for the k-arity behavior o.

G - Indes-group array for the i th argument of the k-arity behavior a in compressed
n-climensionrtl table.

-4: - Lookiip automaton for the k-arity behavior o.

D:."' RD - I\Iethod-rriüp for the k-arity behavior a in rnultiple row tfisplacenicrit wit 11

byte ikrray.

STI - Selector Table Iriclexirig.

SC - Selector Coloririg.

RW - Row Displacenicnt.

CNT - Coiriprcasixi N-Diriic~risional Tal~lc.

SRP - Si~igle-Receiver Projections.

LUA - Lookup Automata.

EPD - Efficient Predicate Dispatch.

PTS - Product Type Searcli.

MRD - Multiple Row Displacement.

MRD-B - Multiple Row Displacement witli byte array.

Chapter 1

Introduction

Object-oriented languages can be separated into single-receiver languages and rnultà-

method languages. Single-recezuer languages use the dynamic type of a dedicated

receiver object in conjunction with the method name to determine the method to

execute a t run-time. Multi-method languages [6] use the dynamic types of one or

more arguments' in conjunction with the method name to determine the method to

execute. In single-receiver languages, a call-site can be viewed as a message send

to the receiver object. In multi-method languages, a call-site can be viewed as the

execution of a behavior on a set of arguments. The run-time determination of the

method to invoke at a call-site is called method dzspatch. Note that languages like

C++ and Java that allow methods with the same name but different static argument

types are not performing actual run-time dispatch on the types of these arguments;

the static types are simply encoded within the method name at compile tirne. For

example, consider two Java methods, A.alpha(Integer) and d.alpha(Float), defined

in a class A. The Java names of these two methods are different, since they are

alphalnteger and alpha Float respectively.

Since most of the commercial object-oriented languages are single-receiver lan-

guages, many efficient dispatch techniques have been invented for such languages [21].

However, rnulti-method dispatch is more suitable to some methods than single-receiver

dispatch. For example, the operator '+' can be considered as add(Number1, Mumber2).

If A h n b e r l is an integer? and Nurnber2 is a Boat number, dispatching on the

type of Numberl by single-receiver dispatch returns add(Integer, Integer) , while

In the rest of th& thesis, 1 will assume that dispatch occurs on ail arguments.

1

ucltl(lnteyer. Floclt) shoiild be returned. In façt there miIl be four diffèrent rnetliotls

tliat iniplenieiit udd: ucld(Intryc.r. Irrteger). a<ld(Integer. Float). a&(Floc~t. I l i t r g c r)

and add(Flout. Flout). l fariy ot her numerical operators also neecl the estra e sp rmive

powcr of multi-rnethocls.

IIulti-iiirthocl tlispatch is also very iisefiil in niany graphical user interhce opera-

t ions. For csiirnple. the niet hoc1 drag-and-drup(.soi~rce. tnrget) can bc cspresseti niore

dficieritly by miilti-rriethocl dispatch. The source object could be a circle. rectangle.

or otlier risual coniponerit. The target object could bc a ciln\-as. bromser. or ot1it.r

(lisplq-irig- conipuricrit. Iri this case. bot h the type of the .suilr*cf ul>jcct ancl t tir1 t y p ~ u l

the ttiryet object niust be coiisiclered to perform the actiial opcration. lfulti-rnct h l

disparch proricles thc corivenieiicc. Tliere ;ire sonie ni~iiti-mrtliod larigiiagrs i r i 1isi1.

siicli ;is Cecil [Tl. CLOS [SI. i d Dylan [4]. Ho~vcvcw. The- ;ire riot as popiilar as .Java

or C++.

Sincc rtiiilti-iiirtliods are not siipportetl in any popiilar corrirriercial I i i r ig~~agw it is

~ i o t tliWy to (mvi~ lco iiscass to sivitch langiiagr. jist to i i s r t i i i i l t i-trii~tkiods. I t is ;dso riot.

iliisy tm cwiiviricr1 1;rrigii;igc. c l i + p m ;incl irtipltbrri(i~itors t o tist o i i d vsisti iig 1;iiigii;tgos

to support riiul ti-nictliotls. siiice r i i d t i-rrietlioti dispatcli is slomc.r tliari siriglc-rrwiwr

tlispiitch. Tlic iicccptarict: of rriiilti-rricthod lariguagcs cleprrids un hstcr dispatc4i

illgorithnis aritl fastclr iiiadiincs.

Tlierc. arc. tliree rnajor ciitegories of rnerliotl tlispatch: seclrch-based. cache-basrd

and tuble-lmsed. The sirriplest scarch-basetl technique is callecl method lookup. ivliicli

Imks in a clictionary basetl on the message name and dynarnic arg-iirnent types. If a

riiatcti is not foiind. it looks in othcr dictionaries basecl ori super-types of t h argutricrit

types. It keeps lookirig until a method is found. If no methocl is foiind an w o r is

reportetl. -1 cache-based tcchriiclue looks in either a glol~al or local caclic a t thc tinic

of tlispatch to determine if the rnethod for a partictilar call-site lias alreacfy beeri

determinecl. If it has been determined. that method is used. Otherwise. a cache-

miss technique is used to compute the niethocl? which is then cachecl for subsequent

eseciitions. .A tuble-buse& teclinique pre-determines the rnethod for every possible call-

site. and rccords these metliods in a table. At dispatch-tirne. the rnetliod nanie and

clynamic argument types Form an index into this table. This thesis fociises exclusivel~

on table-based techniques. The advantage of using table-based techniques is that they

have constant dispatch time. In addition, even when cache-based techniques are used,

table-based techniques can be effectively used for cache-misses.

This thesis presents a new multi-method table-based dispatch technique. It uses

a time efficient n-dimeosional dispatch table that is cornpressed using an extension

of a space efficient row displacement mechanism. Since the technique uses multiple

applications of row displacement, it is called Multiple Row Displacement and wi11

be abbreviated as MRD. MRD works for methods of arbitra- arity. Its execution

speed and mernos utilization are analyzed and compared to other multi-method

table-based dispatch techniques.

The rest of this thesis is organized as follows. Chapter 2 introduces some notation

for describing multi-method dispatch. Chapter 3 reviews existing single-receiver and

multi-method dispatch techniques. Chapter 4 presents the new multi-method table-

based technique. Chapter 5 shows the data structures used to impiement the new

algorithm. Chapter 6 presents time and space results for the new technique and

compares it to existing techniques. Chapter 7 presents future work and conclusions.

Chapter 2

Terminology for Multi-Method
Dispat ch

2.1 Notation

Tliv riut,iitio~i in tliis tliesis originatctl mith tlie tlispatcli tearri at the Cniwrsity i ~ t '

Alberta. Expression 2.1 shows the form of a k-arity multi-niet hod call-sitcl. E d i

argunient. O, . represerits an object. and lias a n associatcd ~ n u n i t c t;qpe. TL = t , ~ p (u ~).

L r t 'fl rcprcwnt a typr liierixrchy. ;inci 1x1 bc thc tiiimbor of rypw in the kiicrarc:liy. Ici

'H. c w l i type hiis a typc riiinibcr. nirm(T). -4 clircctc.cl si~pertype fdye esists hrtwvti

type T, ancl typc? T, if T, is a direct subtype of Tt. which is cleriotd as T, 4 1 Tt . I f T,

cari be reaclietl frotri T, II?* following orle or rriore siiprrtypr cvlgc~s. T, is a sid)t ! /pt~ of

TL. dcrioted as T, + TL.

Ir1 the sirigle-rcceivt~r tlorriairi. Expressiori 2.1 can be written as Espressiori 2 . 2

ibkthod tlispotch is the ruri-time determinat ion of' a met hod to invoke at a call-site.

When a method is definecl, each argument, oi. has a specific static type. Tz . Hoivever.

at a call-site, the dynamic type of each argument c m either be the static type. TL.

or any of its subtypes, {TIT 5 Ti}. For example, consider the type hierarchy and

rnethod definitions in Figure Z.l(a). and the code in Figure 3.l(b). The static type of

anA is A. but the dynaniic type of anA c m be either A. 3 or C. In general. the clytiamic

The subscript besidt the type is the
type numkr. niun(77.

A a d ;
if(. . . 1

anA = new A () ;
else if (. . .

anA = new B O ;
else

ad = new C O ;

(a) Type Hierarchy (b) Code Requiring hlethod Dispatch

Figure 3.1: An example hierarchy and program segment requiring niethod dispatch

type of an object at a call-site is not known until run-time, so method dispatch is

necessary.

Although multi-method languages might appear to break the conceptual mode1

of sending a message to a receiver, this idea can be maintained by introducing the

concept of a product-type. A k-arity product-type is an ordered list of k types denoted

by P = TL x T2 x ... x Tk. The induced k-degree product-type graph, k 2 1, denoted

Xk, is implicitly defined by the edges in U. Nodes in ?tk are k-arity product-types,

where each type in the product-type is an element of 'H. Expression 2.3 describes

when a directed edge exists from a child product-type P, = T: x Tf x ... x T ' to a

parent product-type P, = T,' x T; x ... x qk, which is denoted Pj i L Pi.

The notation Pj i Pi indicates that P, is a sub-product-type of Pi, which irnplies

that P, can be reached from Pj by following edges in the product-type graph 7 f k .

Figure 2.2 presents a sample inheritance hierarchy H and its induced 2-arity product-

type graph, XZ. Three 2-anty methods (T ~ to yJ) for behavior y have been defined on

U2 and associated with the appropriate product-types.l Note that for real inheritance

hierarchies, the product-type hierarchies, 'U2, X 3 , .. ., are too large to store explicitly.

'The method 74 in the dashed box is an implicit inheritance conflict definition, and will be
evpIained later.

Therefore, it is essential to define all product-type relationships in terms of relations

between the original types, as in Expression 2.3.

An Inheritance Hierarchy, H: The 2-arity product-type *ph, H?

1 h B BxA

Method Definitions on H':
BxB (CxA

\ /'
cxc

Figure 2.2: An Inheritance Hierarchy, X, and its induced Product-Type Graph 7i2

Next, I define the concept of a behavior. A behavior corresponds to a generic-

function in CLOS and Cecil, to the set of methods that share the same signature

in Java, and the set of methods that share the same message selector in Smalltalk.

Behaviors are denoted by B:, where k is the arity and o is the name. The maximum

a i t y for al1 behaviors in the system is denoted by K. Multiple methods can be

defined for each behavior. A method for a behavior named o is denoted by O,. If the

static type of the ith argument of oj is denoted by T', the list of argument types can

viewed as a product-type, d m (o j) = Tt x TZ x ... x Tk. With multi-method dispatch,

the dynamic types of al1 arguments are needed.

2.2 Inheritance Conflicts

Section 2.1 defines subtype and supertype relationship between types in an inheritance

hierarchy. If each type in an inheritance hierarchy is allowed to have a t most one

immediate supertype, as in Figure S.3(a), this hierarchy is called a single inheritance

hierarchy. On the other hand, if types are allowed to have more than one immediate

supertype, as in Figure 2.3(b) and (c), this hierarchy is called a multiple inheritance

hierarchy.

Figure 2.3: Single Inheritance and Multiple Inheritance

In single-receiver languages with multiple inheritance, the concept of inhentance

conj-lict arises. In general, an inheritance conflict occurs a t a type T if two different

methods of a behavior are visible (by following different paths up the type hierarchy)

in supertypes T, and Tj . For example, if two methods, .L :: a and C :: a, are defined

for the type hierarchy in Figure 2.3(c), then there will be an inheritance conflict for

behavior a at type D. Since D is a subtype of C, C :: a is visible to type D. At the

same time, D is a subtype of B, which in turn is a subtype of il. therefore -4 :: cr is

also visible to type D. This situation is called an inheritance conflict.

Most languages relax this definition slightly. .Assume that n different methods of

a behavior are defined on the set of types 7 = {Tl , ..., T,), where T 5 Ti, ..., T,.
Then, the methods defined in two types, Ti and Tj in 7, do not cause a conflict in T,

if 4 T,, or T, 4 T,, or {3 Tk E 7 1 Tk + S, & Sk + T,} . .As described in the last

paragraph, an inheritance conflict occurs at type D, if .4 :: a and C :: ut are defined

for the type hierarchy in Figure 2.3(c). However, after the relaxation, no inheritance

conflict results, since type C is a subtype of .I. That is, C :: a will be selected over

J :: ci!.

Inheritance conflicts can also occur in multi-method languages, and are defined

in an analogous manner. A conflict occurs when a product-type can see two different

method definitions by looking up different paths in the induced product-type graph

TL x T2 x ... x Tk. Interestingly, inheritance conflicts can occur in multi-method lan-

guages even if the underlying type hierarchy, 3, has single inheritance. For example,

in Figure 2.2, the product-type B x C has an inheritance conflict, since it can see two

different definitions for behavior y (m in AxC and 7 2 in BxB). For this reason, an im-

plicit conflict method, y,, is defined in BxC as shown in Figure 2.2. Similar to single-

receiver languages, relaxation can be applied. Assume that n methods are defined in

product-types P = { P l , ..., P,,), and let P 4 Pl, ..., P,. Then, the methods in Pi and

P, do not conflict in P if Pi 4 Pj, or P, + P,, or (3 Pk E P 1 Pk 4 Pi k Pk 4 Pj) .
In multi-method languages, it is especially important to use the more relâued defi-

nition of an inheritance conflict. Othenvise, a large number of inheritance conflicts

would be generated for almost every method definition.

2.3 Reflexive versus Non-Reflexive Environment

-4 program is running in a non-reflexive environment, if al1 types and methods are

defined before the execution of the program. Hence, no types or methods can be

changed during execution. Programs written in C++ are running in a non-reflexive

environment. On the other hand, a progam is running in a reflexive environment, if

the type hierarchy and method definitions can be changed during progam execution.

Programs written in Smalltalk, Prolog and CLOS are running in a reflexive environ-

ment. The situation in Java is more complicated since limited reflexive compabilities

were added in the latest release.

In a reflexive environment, three categories of changes can happen during program

execution: (1) add or drop a type, (2) link or unlink a type to another type, (3) add,

delete, or change a method. Cache-based dispatch techniques do not work very well in

a reflexive environment. A small change (e.g. linking two types) in the environment

rnay require the entire cache to be rebuilt from scratch. This removes the advantage

of using a cache. Some table-based dispatch techniques allow their tables to evolve

incrementally as the environment evoives [22]. Ot her table-based dispatch techniques

must rebuild the entire set of tables when a change occurs. In either case, since the

environment needs access to the table for the changes, no dispatch can occur when

the tables are being modified.

Reflexivity is a complicated problem, which requires further study. Therefore, this

thesis concentrates on dispatch in a non-reflexive environment only.

2.4 S tat ically Typed versus Non-Stat ically Typed

Some programming languages (C++, Java, Eiffel) require each variable to be declared

with a static type. These languages are called statically typed languages. Other

languages (Smalltalk, CLOS) which do not declare static types for variables. are

called non-staticalS t yped languages. In statically typed languages, a type checker

can be used at compile-time to ensure that al1 call-sites are type-valid. A call-site is

type-valid, if it has either a defined method for the message or an implicitly defined

conflict method. In contrast, a call-site is type-invalid, if dispatching the call-site will

lead to method-not-understood. For example, the static type of the variable anil is

;L in Figure 2.l(b). The dynamic type of an.4 can be either A, B or C, since B and

C are subtypes of -4. Since the message a is defined for type A, no matter what its

dynamic type is, anrl can understand the message a. Therefore, the type checker

can tell at compile-time that the call-site anAct () is type-valid. Consider another

variable a D with static type D. A cd-si te aD.a() would be type invalid since no

method for a is defined on D. The type checker would find a t compile-time that the

call-site a Da() is type-invalid, and return a compile-time error.

In statically typed languages with implicitly defined conflict methods, no type-

invalid call-site will be dispatched during execution. However, in non-statically typed

languages, call-sites may be type-invalid. -4s will be shown in Section 3.2.3, any

dispatch technique that uses compression may return a method for a different behavior

due to selector aliasing. Therefore, in non-statically typed languages, an extra check

must be made to ensure that the computed method is applicable for the dispatched

behavior. This check must also ensures that the dynamic type of each argument is

a subtype of the declared static parameter type in the method. For non-statically

typed languages, the Multiple Row Displacement dispatch technique introduced in

t his thesis must perforrn this extra check.

Chapter 3

Exist ing Dispatch Techniques

-4s mentioned in the introduction, there are three categories of method dispatch:

search-based, cache-based and table-baçed. There is only one viable search- based

single receiver dispatch technique called method lookup. Method lookup searches

the method dictionaries for the behavior, O, starting from the receiver's type, and

going up the inheritance chain, until a method for o is found. However, rnethod

lookup is very time inefficient. Smalltalk and Java use method lookup, but only

as a cache-miss technique. Cache-based techniques have been extensively used in

single-receiver languages, like Smalltalk [20]. Cache-based single-receiver dispatch

techniques are described in Section 3.1. Many t ime-efficient single-receiver table-

based dispatch techniques are also available, and they are presented in Section 3.2.

They have been ignored in most commercial implementation due to large memory

requirements. However, as the price of memory gets lower, they are more practi-

cal. Table-based techniques are even more practical in multi-method languages, since

cache- based techniques also require extensive rnemory for multi-met hods, as shown

in Section 3.3. Section 3.4 introduces t hree existing table-based multi-met hod dis-

patch techniques, and Section 3.5 int roduces two existing search-based mu1 ti-method

dispatch techniques.

3.1 Cache-Based Single-Receiver Dispatch Tech-
niques

Since cache-based single-receiver dispatch techniques are not very relevant to this

thesis, 1 give only a brief description of each technique.

1. Global Lookup Cache([l9, 261) uses < Tl o > as a hash key into a global cache,

whose entries store a type, T, a selector, oo and a method address. During a

dispatch, if the entry retrieved from the global cache by < Tl 0 > contains

a method for the correct type and selector, it can be executed immediately.

Othenvise, a cache-miss technique (usually method lookup) is called to obtain

the correct method address. The resulting method address is stored in the

global cache.

2. Inline Cache(Il21) caches addresses at each call-site. The initial address at each

call-site invokes the cache-miss technique, which modifies the call-site once a

method address is obtained. Subsequent executions of the call-site invoke the

previously computed method. Witbin each rnethod, a rnethod prologue exists

to ensure that the receiver class matches the expected class. Othenvise. the

cache-miss technique is called to recornpute and modify the call-site address.

3. Polymorphic Inline Caches ([Ml) cache multiple addresses in a behavior specific

stub-routine. On the first invocation of a stub-routine, the cache-miss technique

is called. However, each time the cache-miss algorithm is called the stub is ex-

tended by adding code to compare subsequent receiver types against the current

type, and providing a direct function cal1 if the test succeeds.

3.2 Table-Based Single-Receiver Dispat ch Techniques

There are five known single-receiver table-based dispatch techniques: Selector Table

Indexing, Row Displacement, Selector Coloring, Compact Selector-Indexed Tables,

and Virtual Function Tables. Since Selector Table, Row Displacement and Selector

Coloring are used in the description of other multi-method dispatch techniques, I will

briefly introduce these three techniques in this chapter. Please see [28] and [29] for

details about Compact Selector Indexed Tables, and see [18] for details about Virtual

Function Tables, which are used in C++.

3.2.1 Selector Table Indexing (STI)

In single-receiver table dispatch, the method address can be cakulated in advance for

every legal class/behavior pair, and stored in a selector table, S. Figure 3.1 shows

the selector table for the type hierarchy and method definitions in Figure 2.1 (a). An

empty table entry means that the behavior cannot be applied to the type. At run

time, the behavior and the dynamic type of the receiver are used as indices into S

[Il]. In the literature [15], this algorithm is known as Selector Table Indexing or STI.

Figure 3.1: Selector Table

hlthough STI provides efficient dispatch, its large rnemory requirements prohibit it

from being used in real systems. For example, there are 961 types and i2130 different

behaviors in the VisualWorks 2.5 Smalltalk hierarchy. If each method address required

4 bytes, then the selector table would be more than 46.6 Mbytes (961 x 12130 x

4 bytes). Fortunately, 95% of the entries in the selector table for single-receiver

languages are empty [id], so the table can be compressed.

3.2.2 Row Displacement (RD)

Row displacement (RD) reduces the number of empty entries by cornpressing the

two-dimensional selector table into a one-dimensional array [14, 161. As illustrated

in Figure 3.2, each row in S is shifted by an offset until there is only one occupied

entry in each column. Then, this structure is collapsed into a one-dimensional master

orruy, M. When the rows are shifted, the shift indices (number of columns each row

has been shifted) are stored in an index array, 1.

At run-tirne! the behavior is used to find the shift index from the index array, 1.

In fact, each behavior has a unique index determined at compile time, and it is this

index which is used to represent the behavior in the compiled code. For simplicity, 1

will just use the behavior name in this thesis. The shift index is added to the type

number of the receiver to form an index into the master array, M. For example, to

dispatch behavior ,6 with D as the dynamic type of the receiver, the shift index for P

Figure 3.2: Cornpressing A Selector Table By Row Displacement

is I [P] = 1. The type number of the receiver, D, is 3. Therefore, the final shift index

is 1 + 3 = 4, and the method to execute is at M [4] which is D::?. Compared with

other single-receiver table dispatch techniques, row displacement is highly space and

time efficient [21]. I will show how this single-receiver technique can be generalized

to multi-method languages in Chapter 4. This is the main research contribution of

this t hesis.

3.2.3 Selector Coloring (SC)

Selector coloring (SC) compresses the selector table by allowing two rows (behaviors)

to be combined, if no type recognizes both behaviors in the type Iiierarchy [13, 31. For

example, if Figure 2 4 a) was modified, so that no method C :: ,LI was included, then

the selector table for the types and rnethod definitions in the modified Figure 2.l(a)

would be as shown on the left hand side of Figure 3.3. Since no type understands both

cu and P, the two rows in the selector table can be combined, as shown on the right

hand side of Figure 3.3. Sirice, both cr and are sharing one row index, a behavior

to row index table is added to record the correct row index for each behavior. Since

this approach is implementable as a graph coloring algorithm, the selector (behavior)

indices are usually referred to as colors.

Figure 3.3: Compressing .A Selector Table By Selec tor Colorhg

. dispatch, the first index to the 2-dimensional array, S, is from the index

ble I and the second is the type number. For example. to dispatch behavior ,3

with D as the dynamic type of the receiver, the correct method can be found at

S[I [P]][num(D)] = S[0][3] = D :: P. Selector coloring is used in different

multi-met hod dispatch techniques, like Compressed N-Dimensional Tables and Single-

Receiver Projections.

In Section 2.4, it was mentioned that in non-statically typed languages, an extra

validity check must be made during dispatch due to aliasing during compression. For

esample, if I dispatch behar-ior ,3 with dynamic type A, then the compressed table

in Figure 3.3 yields S[I[B]][num(A)] = S[0][0] = .4 :: a, which is incorrect. The

returned method is not even a method For f i . In single receiver dispatch. the validity

check simply compares the required behavior, 0, to the behavior of the returned

method, A :: a; since they do not match, there is a naethod-not-understood error.

3.3 Cache-Based Multi-Method Dispatch Techniques

In the cache-based dispatch techniques for single-receiver descri bed in Section 3.1,

< T, o > is used as a key to a cache, where T is a type. The same key is iised in

multi-method caches, except that type T is replaced by a product-type P.

3.4 Table-Based Mult i-Method Dispatch Techniques

This section provides a summary of the existing multi-method table dispatch tech-

niques.

3.4.1 N-Dimensional Table

In single-receiver method dispatch, only the dynamic type of the receiver and the

behavior name are used in dispatch. However, in multi-method dispatch, the dynamic

types of al1 arguments and the behavior name are used.

The single-receiver dispatch table can be extended to a multi-rnethod table. In

multi-method dispatch, each k-arity behavior, Bb, has a k-dimensional dispatch table,

DO, with type numbers as indices for each dimension. Therefore, each k-dimensional

dispatch table has l'HIk entries. At a call-site, u(o l , 0 2 , ..., ok), the method to execute

is in ~,k[nîsm(~~)][num(~~)] ...[n m (T k)] , where T' = type(oi).

D: 2" Argument D; 2" Argument

Figure 3.4: N-Dimensional Dispatch Tables

For example, the 2-dimensional dispatch tables for the type hierarchy and method

definitions in Figure 3./L(a) are s h o w in Figure 3 4 b) . In building an n-dimensiorial

dispatch table, inheritance conflicts must be resolved. For example, there is an in-

heritance conflict at E x E for a, since both al and cr2 are applicable for the call-site

cr(anE, anE). Therefore, an implicit conflict method (YB is defined, and inserted into

the table at E x E.

N-dimensional table dispatch is very time efficient. However, analogous to the sit-

uation with selector tables in single-receiver languages, n-dimensional dispatch tables

are impractical becaiise of their huge memory requirements. For example, in the type

hierarchy for the Cecil Vortex3 compiler program, there are 1954 types. Therefore, a

single bari ty beliavior would require 1954~ x 4 bytes = 29.84 gigabytes. Since there

are hundreds of different behaviors, the space requirement is prohibitive. The need

to cornpress these n-dimensional tables is even greater than the need to compress

single-receiver dispatch tables.

3.4.2 Compressed N-Dimensionai Table (CNT)

The Compressed N-Dimensional Table (CNT) [2] technique keeps one k-dimensional

dispatch table, ~ $ 7 ~ ~ ~ per behavior, where k represents the arity of a behavior. Start-

ing from a regular n-dimensional dispatch table as described in Section 3.4.1, CNT

eliminates rows or colurnns containing only empty entries. For example, applying this

elimination to the n-dimensional tables D: and D$ in Figure 3 4 b) yields the tables

shown in Figure 3.5(a). Then, CNT groups identical rows or columns together. This

grouping technique is called class sharing. The result of applying class sharing to the

tables in Figure 3.5(a) is shown in Figure 3.5(b).

D : * ~ ~ 2nd Argument

DFaw Pd Arg

Figure 3.5: Cornpressed N-Dimensional Table

The groups of types indexing the dimensions of a compressed table are called

index-groups. In each dimension, index groups are represented by an index. For

example, in the first dimension of the table D2CNT in Figure 3.5(b), the index of the

index of group (A, B) is O; {C, D) is 1; and {E) is 2. However, after this grouping,

CNT cannot use type-indices to access the dispatch table, @ t C N T directly. Therefore,

k type to index arrays, GL, ..., GO, are created to map each type to its corresponding

index-group index in its own dimension. Figure 3.5(c) shows the CNT dispatch table

for a and ,û with the corresponding type to index arrays. These type to index arrays

are, t hen, cornpressed by row displacement or selector coloring. Expression 3.1 shows

the dispatch formula for CNT.

For example, dispatch of the call-site @(anE, ail) using the data structure in

Figure 3.5(d) is shown in Expression 3.2.

3.4.3 Single-Receiver Projections (SRP)

Single-Receiver Projections (SRP) [23] handles a k-arity behavior multi-method dis-

patch as k single-receiver dispatches. Instead of maintaining one data structure per

behavior. SRP maintains K copies of the type hierarchy, X, which are denoted as

?il, U2, ..., UK, where K is the maximum arity across al1 behaviors. Then, for each

behavior, B:, its method definitions are projected ont0 the first k hierarchies, Xi,

3 1 2 , ..., Xk.
For example, the method definition cul (A, D) is projected to Hl and U2. ai is

projected to RI for its first arity type, A, and projected to R2 for its second arity

type, D. The result of projecting al (A, D) ont0 Ni and X2 is shown in Figure 3.6(a).

The results of projecting the rest of the methods defined in Figure 3.4(a) are shown

in Figure 3.6(b).

In the next step, SRP extends each of the hierarchies to return a partially ordered

method set (poset) , which includes al1 'natively' defined and inherited rnethods for

each type. This extension is shown in Figure 3.6(c). Method definitions of ail be-

haviors are also projected to the same set of type-hierarcliies, Ri , ?12, ..., xK7 in the

same way. The result of projecting method definitions for a and @ in Figure 3 4 a)

is shown in Figure 3.6(d). Each partially ordered method set must satisfy the con-

straint: if dm(oi) i d o m (~ ~) , then oi must preceed oj. For example, the Xi poset

[a3, al, a*] in Figure 3.6(d) may be replaced by the poset [or3, nz, a l] , but a3 must

[a39 a,. %l
rP, Pli

Figure 3.6: Single-Receiver Projections

preceed c t ~ , since dom(a3) = E4 4 .do = dom(cul), and a3 must preceed a2, since

dom(as) = E4 i C2 = dom(az). The partially ordered sets replace methods in the

selector tables as shown in Figure 3.6(e). These partially order method sets can be

represented by bit vectors [23].

At dispatch, a partially ordered set is obtained from the corresponding hierarchy

for each argument type. These posets are intersected to obtain a result poset. Within

the final poset, the first element is the dispatch result. For example, consider the

call-site, p(a B , aC). First, the poset [,&, Pl] is obtained from 311 for the first

argument aB. Then, the poset [Pl] is obtained from X2 for the second argument

aC. Intersecting these two posets yields [pi]. Since, pi is the first element, pi is the

dispatch result. The dispatch formula for SRP is shown in Expression 3.3.

Note that the hierarchies, Ri , X2, . .. , UK, can be compressed by any single-

receiver table compression techniques. described in Section 3.2, to obtain better space

utilization. Moreover, several other enhancements have been applied to SRP as de-

scribed in [23], to improve its time and space efficiency.

3.5 Search-Based Multi-Method Dispatch

The only search-based single-receiver dispatch technique is method lookup. However,

a simple extension of method lookup will not work for multi-method dispatch. For

example, there are three different methods defined for the behavior y in Figure 2.2.

When the call-site y(nC, aC) is dispatched, and y is not defined in the product-type

CxC, where should the method lookup begin'? Should the supertype of the first argu-

ment, or the second argument be considered first? Assume that the second argument

is considered first, and the method n is found in product-type B x B. However, in

multi-method dispatch rnethod search cannot stop after one of the rnethods is founcl.

Obviously, y1 and y.l, are valid alternatives. Therefore, the search has to continue

until al1 possibilities are exhausted. After al1 the applicable methods are found, the

methods must be ordered, and the most applicable method must be selected. This

process is too complicated to be executed a t run-time. Therefore, search-based multi-

method dispatch techniques need to do some precomputation to simplify the search.

There are three search-based multi-rnethod dispatch techniques: Lookup Au-

tomata (LUA), Efficient Predicate Dispatch (EPD), and Product Type Search (PTS).

Lookup Automata is the first published search-based dispatch technique, I will review

this technique in detail in the following section. Efficient Predicate Dispatch is an ex-

tension of lookup automata, as described in [SI. Product Type Search is the simplest

search-based multi-method dispatch technique, but it has not been published yet. I

will also describe product type search in detail.

All search-based multi-method dispatch techniques have per-behavior dispatch

functions. When a call-site is encountered, the corresponding dispatch function of

that behavior is called to handle the dispatch. The per-behavior dispatch function

may access global data structures for informat ion.

3.5.1 Lookup Automata (LUA)

Chen et. al describe Lookup Automata (LU-A) in detail [IO, 91. The idea of LUA

is every simple, it creates one lookup automaton per behavior. Subtype testing is

used in transition from one state to another, until a final state is reached. Each final

state represents a method of a behavior. To avoid backtracking, and thus exponential

dispatch time, some automaton must include more types than are explicitly listed in

method definitions (inheritance conflicts are implici tly defined this way) .

Figure 3.7: Lookup Automata

Figure 3.7 shows the automata for cr and defined in Figure 3 4 4 . In each state:

the edges leading away from it must be ordered so that a subtype cornes before its

supertype. In Figure 3.7, the edges are ordered top-down. The automaton for a is

translated to the function shown in Figure 3.8.

As shown in Figure 3.8, LUA needs frequent subtype testing. Therefore, an effi-

cient subtype testing mechanism is necessary. The authors of LUA do not specify hom

subtype testing should be done. Efficient Predicate Dispatch (EPD) extends LUA,

so that the subtype testing is done within the per-behavior function by type-number

cornparing. For that reason, no extra run-time data structure is created for subtype

testing.

It can be seen from Figure 3.8 that LUA does not have constant time dispatch.

Each dispatch takes a t least k comparisons, besides the time for calling the dispatch

function itself. The cal1 to the dispatch function involves saving registers and a branch

instruction that will clear the instruction pipe-line.

void a-automaton (01, 0 2 {
T1 = type(01 1 ;
T 2 = type(02 1;
if(T L i E) {

if(T2 i E) execute ct3(0 1 , 02 1;
else if (T2 4 D 1 execute ai (01, 0 2 1 ;
else if(T2 i B 1 execute 4 0 1 , 02 1;
else execute method-not-understood;

}
else if (TL I -4 {

if(T2 4 D 1 execute al(01, 02 1;
else execute method-not-understood;

1
e ï s e if(T L 4 C 1 {

if(T2 i B 1 execute a*(0 1 , 02 1;
else execute method-not-understood;

}
else {

execute method-not-understood;

}
1

Figure 3.8: The LUA dispatch function for a

Since type checking at each stage has to be in subtype order, LUA cannot take

advantage of call-site profiles. For example, consider 1,000 call-sites for the behavior

Uz, where 800 of them are CI(aC, aB). Xccording to Figure 3.8, each of the 800 d l -

sites has to perform the su btype tests if (TL + E) and i f (Ti + A) before performing

the test i f(TL i C), which is the right one. Since the type E is a subtype of the

type C, the test if (TL 4 C) cannot go before if (TL 4 E), even though if (TL 4 C)

is used more often. The EPD technique extends LUA to take advantage of call-site

profiles.

3.5.2 Product Type Search (PTS)

Product Type Search (PTS) is very similar to LUA. Instead of using subtype testing

per argument, PTS uses child product type testing. First, al1 conflict methods are

implicitly defined. Then, the product type of each implicitly or evplicitly defined

method is retrieved. These product types are ordered so that each child product

type preceeds its parents. Finally, a per-behavior function is created to perform child

product type testing as ordered. Figure 3.9 shows the per-behavior function for cu in

PTS.

void a-product-type-search(01, 02) {
Product-Type P = type(ol) x type(02) ;
if(P + E x E) execute a3(01, 02 1;
else i f (P 4 -4 x D) execute al (01 , 02) ;
e ï s e if(P I C X B execute as(01, 02 1;
else execute method-not-understood;

}

Figure 3.9: The PTS dispatch function for a

Chapter 4

Multiple Row Displacement

4.1 Multiple Row Displacement by Examples

Multiple Row Displacement (MRD) is a new tirne and space efficient dispatch tech-

nique which combines row displacement and n-dimensional dispatch tables. MRD

will first be illustrated by examples, and then the algorithm will be given. The first

example uses the type hierarchy and 3-arity method definitions from Figure 3 4 4 .

Figure 4.1: Data Structure for Multiple Row Displacement

Instead of representing each dispatch table as a single k-dimensional array as

shown in Figure 3.4(b), each table can be represented as an array of arrays as shown

in Figure .L.l(a). The arrays indexed by the first argument are called level-0 arrays,

i. Shere is only one level-0 array per behavior. The arrays indexe9 by the second

argument are called level-l arrays, LI (O) . If the arity of the behavior is greater than

two then the arrays indexed by the third arguments are called leuel-2 arrays, L 2 (-) ;

and so on. The highest level arrays are leael-(k - 1) arrays, Lk-L(.) , for k arity

behaviors.

It can be seen from Figure 4.l(a) that some of the level-1 arrays are exactly the

same. The cornmon arrays are combined as shown in Figure 4.l(b). In general, there

will be many identical rows in an n-dimensional dispatch table, and many empty

rows. These observations are the basis for the CNT dispatch technique mentioned in

Chapter 3, and are also one of the underlying reasons for the compression provided

by LIRD. It is worth noting that this sharing of rows is only possible due to the fact

the table uses types to index into al1 dimensions. In single-receiver languages, the

tables being compressed have behaviors along one dimension, and types along the

other. Sharing between two behavior rows would imply that both behaviors invoke

the same methods for ail types, and although languages like Tigukat [27] allow this

to Iiappen, such a situation would be highly unlikely to occur in practice. Sharing

between two type columns is also unlikely since it occurs only when a type inherits

methods from a parent and does not redefine or introduce any new methods. Such

sharing of type coliimns is more feasible if the table is partitioned into subtables by

grouping a number of rows together. This strategy was used in the single-receiver

dispatch technique called Compressed Dispatch Sable (CS) 1291.

There is one data structure per behavior, D:, and MRD compresses these per

behavior data structures by row displacement into three global data structures: a

Global Master Array, M, a set of Global Index Arrays, I,, where j = O, ..., (K - 2),

and a Global Behavior Array, B.

In compressing the data structure D: in Figure 4.l(b) , the Ieuel-l array LI (A)

is first shifted into the Global Master Array, hl, by row displacement, as shown in

Figure 4.2(a). The shift index, 0, is stored in the leuel-0 array, Lo, in place of L1(.-l)

(and into Lo at B, since A and B share LI@)). In the implementation, a temporary

array is created to store the shift indices, but in this thesis, 1 have put them in La

for simplicity of presentation. Figure U (b) shows how LI (C) and LI (E) are shifted

into M by row displacement, and how they are replaced in Lo by their shift indices 1

and 5. Finally, as shown in Figure M (c) , Lo is shifted into the Global Index Array,

Io by row displacement. The resulting shift index, 0, is stored in the Global Behavior

Array at B[a]. After D: is compressed into the global data structures, the memory

for its preliminary data structures can be released. Figure 4.3 shows how to cornpress

the behavior data structure, Da, into the same global data structures, M, Io and B.

The compression of the level-1 arrays, LI (il) and LI (B), are shown in Figure 4.3(a).

The compression of the leuel-0 array, Le, is shown in Figure 4.3(b). Note that only

Io is used in the case of arity-2 behaviors. For arity-3 behaviors, Il d l also be used.

For arity-4 behaviors, I2 will also be used, etc.

Figure 4.2: Cornpressing The Data Structure for a

As an example of dispatch, I will demonstrate how to dispatch a d l - s i te P(anE, aD)

using the data structures in Figure 4.3(b). The method dispatch starts by obtaining

the shift index of the behavior, ,B, from the Global Behavior Array, B. From Fig-

ure 43(b), B[p] is 5. The next step is to obtain the shift index for the first argument,

E, from the Global Index array, Io. Since the shift index of ,b' is 5 , and the type num-

ber of E, num(E), is 4, the shift index of the first argument is Io[5 + 41 = Io[9] = 11.

Finally, by adding the shift index of the first argument to the type number of the

second argument, num(D) = 3, an index to M is formed, which is 11 + 3 = 14. The

method to execute can be found in M[14] = ,&, as expected.

MRD can be extended to handle behaviors of any ar i t . Figure 4.4(a) shows the

rnethod definitions of a barity behavior, 6, and Figure 4 4 b) shows its preliminary

Figure 4.3: Cornpressing The Data Structure For ,8! with cu in place from Figure 4.2

behavior data structure, 0;. Figures 4 4 c) to 4 4 e) show the compression of this

data structure. First? the level-2 arrays, L2 (B x D), L2(D x B) and L2 (E x E) are

shifted into the existing M as shown in Figure 4 4 ~) . Their shift indices (15, 14, 19)

are stored in Ll(B), LI(D) and Ll(E). In fact, every pointer in Figure 4 4 b) that

pointed to LY (B x D) is replaced by the shift index 15. Pointers to Lz(D x B) are

replaced by the shift index 14 and the single pointer to L Q x E) is repiaced by the

shift index 19. Then, the level-1 arrays, LI (B), LI (D) and Ll (E), are shifted into the

Global Index Array Il as shown in Figure 4.4(d). The shift indices (O, 1,s) are stored

in Lo. Finally, Lo is shifted into the Global Index Array Io and its shift index (7) is

stored in the Global Behavior Array at B[d], as shown in Figure 4.4(e).

4.2 The Multiple Row-Displacement Dispat ch Al-
gorithm

1 have shown, by examples, how MRD compresses an n-dimensional dispatch table by

row displacement. On the behavior level, a preliminary data structure, D:, is created

for each behavior. is a data structure for a k-arity behavior named a, as shown

in Figure 4.4(b). It is actually an n-dimensional dispatch table, which is an array of

pointers to arrays. Each array in D: ha the size of l'Hl. The leuel-0 array, Lo, is

indexed by the type of the first argument. The leuel-1 arrays, LI(-), are indexed by

Figure 4.4: Compressing The Data Structure For 6

the type of the second argument. The leuel-(k - 1) arrays, Lt-l(-), always contain

method addresses. Al1 other arrays contain pointers to arrays at the next level.

After the compression has finished, there are a Global Master Dispatch Array, M ,

K - 1 Global Index Arrays, Io, ..., 44, and a Global Behavior .4rray, B. The Global

Master Dispatch Array, M, stores method addresses of al1 methods. Each Global

Index Array, 4, contains shift indexes for Ij+i. The Global Behavior Array, B stores

the shift indices of the behaviors.

At compile time, a D,k data structure is created for each behavior. The leael-

(k - 1) arrays, Lk- l r are shifted into 1M by row displacement. The shifted indices are

stored in Lk-2. Then, the level-(k - 2) arrays, L k 4 , are shifted into the index array,

Ik-2. The shift indices are stored in Lk4. This process is repeated until the leuel-0

array, Lo, is shifted into Io, and the shift index is stored in B[a]. The whole process is

repeated for each behavior. The algorithm to compress al1 behavior data structures

is given in Section 4.4.

The dispatch formula for a call-site; o(ol, ..., a), is given by Expression 4.1, where

Ti = t ype (o i) .

As an example of dispatch with Expression 4.1, I will demonstrate how to dispatch

a call-site d(anE, a Dl aB) using the data structures in Figure 4.4(e). Since d is a 3-

arity behavior, Expression 4.1 becomes Expression 4.2.

Sutstituting the data from Figure 4.4(e) into Expression 4.2 yields the method

4, as shown in Expression 4.3.

Note that all index arrays, Io, I l , 12, ...? can be further compressed into one big

index anay by row displacement to save more memory. However, for presentation

simplicity 1 have ignored this final compression.

4.3 Improvements

4.3.1 Eliminating the Global Behavior Array

Each behavior has its own data structure to store information iinrelated to dispatch.

A field named sh@-index can be added to this behavior data structure to support

MRD. Then, the shift index of each behavior can be stored in the data structure of

each behavior, instead of a Global Behavior Array. B. The advantage of this change

is that one array lookup is eliminated from rnethod dispatch, without increasing the

memory usage. The new dispatch formula for a call-site, a(ol , ..., o ~) , after the change

is given in Expression 1.1.

M [11.-2[Ik-3[... I l [IO[o.shi ft-index + n , u m (~ ') j

+ n u m (~ ')] + ...] + n u r n (~ ~ - ')] + n ,urn(~" ')] + n u r n (~ ~) 1 (4.1)

Note that in a non-reflexive environment, the shiftindex is a compile-time con-

stant that can be inserted into the dispatch code.

4.3.2 Use a Single Global Index Array

ashi ft-index = O
P.shift-index = 5

Figure 4.5: Global Data Structure With One Index Array

For simplicity of presentation, Section 4.1 and Section 4.2 had one Index Array per

arity position. Actually, only one Global Index Array, 1, is needed to store al1 level-0

to leuel-(k - 2) arrays. Figure 4.5 shows the global data structure, after D: and L$

from Figure 4.l(b) has been compressed using a single Global I n d ~ x Array. Since a

and ,8 are both 2-arity behaviors, they use only one index array, the Index Array Io

in Figure 4.3(b). This index array has been re-named I in Figure 4.5. The effects

of using one index array are illustrated when 0: from Figure 4.4(b) is compressed

into the global data structure. Figure 4.6(a) shows the global data structure after

Lz (B x D), L2 (D x B) and L2(E x E) have been compressed into the Global Master

Array, hl. Then, Figures 4.6b and 4 . 6 ~ shows how to compress LL(B), LI (D) Li@),

and Lo into the single Global Index Array.

Figure 4.6: Global Data Structure With One Index Array

Using a single Index Array provides additional compression, and lias no negative

impact on dispatch speed. Notice that this change has sirnplified the global data

structure. Now, only 2 arrays are maintained. Expression -4.6 shows the modified

dispatch formula that accesses one Global Index Array. As an example. the formula to

dispatch the call-site, G(anE, aD, aB) using Expression 4.5 is shown in Expression 1.6.

Substituting the data from Figure 4.6 to Expression 4.6 yields method dl , as shown

in Expression 4.7. This is the same result that was derived in Section 4.2.

This irnprovement simplifies the data structure, and reduces total mernory usage,

especially memory for the high arity position Index hrray. For example. if there is

only one 10-arity behavior in the environment, for this one bchavior I8 of size (RI has

to be maintained, even though I8 is a sparse array. According to [Id] and [16], Row

Displacernent is highiy space efficient in compressing sparse short arrays. Therefore,

compressing Ig into the single Global Index Irray, 1, reduces the overall mernory

usage. The same reason applies, wher. 17, I6 and r5 are collapsed into 1.

4.3.3 Row Matching

Note that the row-shifting mechanism used in my implementation of row displacement

is no t the most space-efficient technique possible. When the row-shifting algorit hm is

replaced by a more general algorithm called row-matching (based on string-matching),

a higher compression rate is obtained. In row-matching, two table entries match if

one entry is ernpty or if both entries are identical. For example, using row-shifting to

compress rows RI and R2 in Figure 4.7(a) produces a master array with 9 elements as

shown in Figure 4.7(b). However, using a row-matching algorithm to compress R1 and

R2 produces a master array with only 6 elements as shown in Figure 4.'i(c). Using row-

matching instead of row-shifting provides an additional 10-14% compression. Row-

matching cannot be used in single-receiver row displacement, since different rows

contain different behaviors, and thus different addresses.

Figure 4.7: Row-Shifting vs. Row-Matching

4.3.4 Byte vs. Word Storage (MXD-B)

MRD stores four-byte Eunction addresses in M. In a large hierarchy, M is the largest

data structure. To reduce the size of M, a method-map, can be introduced

for each behavior. Since al1 methods of a behavior are stored in a method

can be represented by an index into D $ " ~ ~ . Since it is very unlikely that more than

256 methods are defined per behavior, only one byte is needed to store the index to

the corresponding D:yMRD. If Ad stores this index instead of the function address,

the size of M is reduced to one-forth of its original size. However, there is an extra

indirection to access the method-map a t dispatch time. 1 denote the technique which

stores bytes instead of words by MRD-B.

4.3.5 Type Ordering

In single receiver row displacement, type ordering has a significant impact on compres-

sion ratios 1141. 1 have investigated type ordering in multi-method row displacement

and found that the impact is not as significant, since the fill-rate for both Global

Master Array and Global Index -4rray is higher than 95%.

4.4 The MRD Data Structure Creation Algorithm

The algorithm to build the global data structure for MRD is given below:

Array M , 1;

createGlobalDataStructure () begin

for(each behavior Bb do

BehaviorStructure D: = BD. createstructure () ;

createRecurs iveStructure (D:.Lo, O 1 ;

BO. shif t Index = DO.& . getshif t Index 0 ;
endf or

end

createRecursiveStructure(Array L , int level) begin

for(int i=O; i < h s i z e () ; i++) do

if(L[il == nul1) then

continue ;

elseif (L [il . getShift Index (1 == -1) then

if(level == k-2) then

L[i] = M.add(L[i]) ;

else

create~ecursive~tructure (L [il , level+l) ;

L [il = L [il . getShiftIndex0 ;
endif

else

L [il = L[i] .getShiftIndexo ;

endif

endf or

I.add(L) ;

end

This algorithm uses three support routines: Array . add (Array) ,
Array . getShif tIndex0, and Behavior . createstnicture 0. The

Array.add(Array) function sliifts the given array into the current array by

row-matching or row-shifting, and returns the shift index. The returned shift index

is also stored in the given array. The Array . getShif t Index (1 function returns

the shift index of the current array, which is stored in the current array when it is

added to another array. If the current array has never been added to another array,

this function returns -1. The Behavior. createStructure() function creates an

n-dimensional table for the current behavior.

4.5 Separate Compilation

With table-based dispatch, the tables must be built before they can be used. If

a language does not support separate compilation, then the tables can be built at

compile-time when the entire type hierarchy and al1 the method definitions are com-

piled. If a language supports separate compilation, then neither the complete type

hierarchy nor the set of al1 method definitions for a particular behavior are available

when a class is being compiled. In this case, the dispatch tables must be built a t

link-tirne. Fortunately, these tables only take a few seconds to build. In addition to

building the dispatch tables, call-sites in compiled code must be patched with base

table start addresses and global behavior shift indices. However, this is no more

difficult than resolving other external references in separately compilecf object files.

4.6 Non-Static Typing in MRD

As discuss in Section 2.4 and Section 3.2.3, dispatch techniques that alias different

selectors during compression may return a wrong method for invalid call-sites in non-

statically typed languages. Actually, there are two potential errors when applying

MRD to non-statically typed languages: index out of bounds, and wung method.

Two examples illustrate the errors.

Assume that the call-site 6(aC, anA, aB) is dispatched using the data structures

in Figure 4.4(e). The formula to dispatch this call-site is shown in Expression 4.8.

From Figure 4.4(e), B[b] is equal to 7, and Io[8 [6] + num(C)] = Io[? + 2] = &[9]

which is equal to 11. The next step is to find Il [11 + num(A) 1, which is I l[11 1.
Unfortunately, I l[11] does not exist, since the index 11 is out of the bounds of the

Index Array Il. This is an evample of an index out of bounds error.

Consider the call-site 6(aB, aC, anA) using the data structure in Figure 4.4(e).

The steps of the dispatch are shown in Expression 4.9. The returned method is a,
which is not a method defined for 6. This is an example of a wrong method error.

4.6.1 Eliminating the Index Out Of Bounds Error

There arc two ways to eliminate the index out of bounds error. The first approach is

to compare the index against the length of the array before each Index Array access. If

the index is bigger than the length of the Index Array, return method-not-understood,

otherwise, progress to the next step. This solution slows down dispatch, because of

the k extra testings.

The second approach extends the improvement described in Section 4.3.2, using

a single index array. To eliminate the out of bounds error, Index .Array is extended

to be at least as long as the Global Master Array, and al1 the empty-entries in the

Index Array are replaced with the number O. The result of doing such an extension

is shown in Figure 4.8. After this extension, if the dispatch formula hits one of the

emp-entries, O will be used as the index, and O + num(T) will never be an out of

bounds error. If the dispatch formula hits an index of another behavior, that index

will never exceed)MI - 1311. Then, (11111 - 1x1) + num(T) will never be an out of

bounds, since the Index Array is at least as large as the nilaster Array.

The second solution solves the out of bounds problem, without decreasing the

dispatch speed. However, in general I do not know the size of I compared with M, so

I do not know how space inefficient this extension is. In a non-reflexive programming

Figure 4.8: Extend the Index Array

environment, where speed is more important than memory, the second solution is

the winner. However, in a refleBve environment, the first solution may be a better

choice, since once al1 enipty-entries are replaced by O, it is impossible to insert other

arrays into the Index Array. Recall that the index out of bound error only occurs

in non-statically typed languages, not statically typed ones. Unfortunately, neither

solutions solves the wrong method error.

4.6.2 Eliminating the Wrong Method Error

There are also two ways to elirninate wrong method errors. The first approach is to

attach a behavior indicator to each index in the Index Array. The behavior indicator

can be a number representing the behavior. This change has been applied to part

of the Index Xrray in Figure 4.8, and the result is shown in Figure 1.9, where rnnv

represents method-not-understood. At dispatch, the attached behavior indicator is

compared against the behavior of the call-site, after each index is retrieved. If they

match, the dispatch algorithm continues to the next step, othenvise, it returns method-

not-understood. This solution slows down dispatch by k extra testings. In addition,

memory usage for the Index Array is doubled.

'mnu swnds for methad-not-undentand. It is a rneihod thoc will tell ihc user ih;ir an invalid d l - s i l e h s ken disoaichcd.

Figure 4.9: Attaching Behavior Indicator to Indices in the Index .Array

The second approach is to delay a11 checking until the end of the dispatch pro-

cess. In order to do this, al1 empty-entries in the Global Master Array should be

replaced by rnethod-not-understood. If a call-site is invalid, either a wrong method, or

rnethod-not-understood will be returned under the original MRD algorithm. If the re-

sult method is method-not-understood, retiirn rnethod-not-understood as the dispatch

result. Otherwise, check whether the return method matches the behavior of the

current call-site. If not, return method-not-understood. If sol make sure that the type

of each argument is either the defined-type or its subtype for each arity position. If

not, return method-not-îmderstood. If sol the method address is correct.

Chapter 5

Implement at ion of Multiple Row
Displacement

MRD is implemented in Cf+, with classes being defined to represent the critical

object-oriented concepts affecting dispatch. In particular. a Behavior class represents

information about methods sharing the same name and arity; a Type class represents

types; and instances of different Table classes store precomputed dispatch rcsults.

Instances of a Table Entry class represents elements stored in tables. The following

sections provide the implernentation details for the MRD algori t hm described in the

1st chapter.

5.1 Behavior

Each Behavior instance describes a particular behavior, where a behavior is defined as

the set of methods sharing the same name and having the same arity. Each Behavior

instance consists of the following fields.

1. A name. The name of the behavior. This name is necessary in eliminating the

wrong method error.

2. An arity. The number of arguments the behavior needs. Multiple references to

the same behavior name with the same number of arity should refer to the same

behavior, so a mapping from behavior name and number of arity to behavior

instance is maintained.

3. A nvmber unique$ identifying the behauzor. An array of al1 behaviors is also

rnaintained, and the behavior a t index n has number n. In reflexive environ-

ment, this number is used as an index to access the Global Behavior Array in

dispat ch.

4. A behavior shift index. In non-reflexive environment, this shift index can be

pre-computed and stored at compile-time for the use of method dispatch.

5 . An array of product-type/method pairs. This array lists al1 explicitly (user-

defined) and implicitly (inheritance conflict) defined methods of the behavior.

MRD uses the list to construct its dispatch tables, but MRD does not refer to

the list during dispatch. The order of the list does not matter in MRD.

5.2 Type

Each type instance records the dispatch-related information about a single type in the

type hierarchy for which dispatch is being implemented. Each instance has a narne,

a unique number, an array of supertypes, an array of subtypes, and a bit vector for

subtype testing. Each Type instance has the following fields.

1. A narne. Similar to behaviors, reference to types of the same name should refer

to the same type (i.e. type narne uniquely identify type instances)

2. A number unzquely identifyzng the type. This number is used as an index to

access dispatch tables. and for subtype testing.

3. An a m a y of supertypes. This array lists only immediate supertypes. 'VIRD uses

this array to traverse the type hierarchy during dispatch table construction.

4. An array of subtgpes. This array lists only immediate subtypes. MRD uses this

array to traverse the type hierarchy during dispatch table construction.

5 . A bit vector for subtype testing. This bit vector has the size of the total number

of types in the hierarchy. If type T is a subtype (directly or indirectly) of a type

instance, the bit a t the index representing T will be set.

5.3 Table

The last critical class is Table, which is used to encapsulate the data and functionality

for rnaintaining a row displacement dispatch table. Each instance of Table stores mul-

tiple instances of Table Entry. Instances of Table can also cornpress other instances of

Table into themselves. After each compression, the shift index is returned. Whether

row matching will be applied in the row displacernent process is determined by the

instances of Table Entry in a table, which will be discussed in the next section.

The Table class is also responsible for table access functionality. Given a shift

index and a type, the Table class returns the instance of Table Entry a t the proper

position. An instance of Table has the Following fields.

1. A master array. This master array stores instance of Table Entry.

2. A list of ernpty entries. This iist is used in table maintenance. In non-reflexive

environment, this list can be deleted after the table has been computed.

5.4 Table Entry

Each instance of Table Entry is either empty or non-empty. Each non-empty entry

stores either a method address, (in the Global Master Array), or a shift index (in the

Global Index Array). The Table Entry class implements two functions: isEmpty ()

and zsEqual(TabieEntry). The Table class uses these two fuunctions to perform row

displacement. The Table class allows two instances of Table Entry to share a space,

if one of the entries is empty, or the entries are equal.

If row-shifting is used, there are only two sets of Table Entry: empty and non-

empty. ..\ non-empty entry can ooly share space with an empty entry. Therefore, the

zsEquai(TableEntry) function retum false, unless both of the operands are empty. To

use row matching, the zsEqual(Ta6leEntry) funct ion is altered to return true, if the

content of the entries are equal. Each instance of Table Entry consists of the following

fields.

1. A field. If the entry is not empty, the field stores either a method address or a

shift indes.

Chapter 6

Performance Results

This chapter presents meniory and timing results for the new technique, MRD, and

three other techniqiies, CNT, LUA and SRP. W e n analyzing dispatch techniques.

both execution timing and mernory usage need to be addressed. -1 technique that

is extremely fast is still not viable if it uses excessive memory, and a technique that

uses very little memory is not desirable if it dispatches rnethods very slowly. Both

timing and memory results are presented for MRD, SRP, LUA and CNT. This is the

first time a cornparison of multi-method techniques has appeared in the literature.

The rest of this section is organized into three subsections. The first subsection

discusses the data-structures and dispatch code required by the various techniques.

The second subsection presents timing results. The third subsection presents memory

results.

6.1 Data Structures and Dispatch Code

This section provides a brief description of the required data-structures for each of

the four dispatch techniques in a static context. The code that needs to be gener-

ated a t each call-site is also presented. In this chapter, the code presented refers to

the code that would be generated by the compiler upon encountering the cd-si te

4 01, 9. . - - 7 Ok 1.
The notation N(oi) represents the code necessary to obtain a type number for the

object at argument position i of the call-site. Naturally, different languages implement

the relation between object and type in different ways, and dispatch is affected by this

choice. My timing results are based on an implementation in which every object is a

pointer to a structure that contains a 'typeNurnber' field (in addition to its instance

data).

6.1.1 MRD

MRD has an M array that stores function addresses, an 1 array that stores level-array

shift indices, and a B array that stores behavior shift indices.

The dispatch sequence is given in Expression 6.1.

Note that the Global Behavior Xrray, B, from Expression 4.1, is known at compile-

time, so B[o] is known a t compile-time. Thus #bu is a literal integer obtained from

B[o]. The sequence, M [...], in Expression 6.1 returns the address of the method to

be executed. Therefore, *(1\1[...]) returns the method to be executed. The method

is executed by passing the parameters, (ol, 02, ..., ok), to the rnethod *(!CI[...]). This

(*(...)) (ol, O*, ..., ok) format is used to indicated method execution in the rest of this

chapter.

6.1.2 MRD-B

The dispatch sequence for MRD-B is given in Expression 6.2.

CNT

For each behavior, CNT has a k-dimensional array, but since 1 am assuming a

non-refiexive environment, this k-dimensional array can be linearized into a one-

dimensional array. Indexing into the array requires a sequence of multiplications and

additions to convert the k indices into a single index. For a particular behavior, its

one-dimensional dispatch table is denoted by ~ t c ~ ~ .

In addition to the behavior-specific information, CNT requires arrays that map

types to type-groups. In [lï], these group arrays are compressed by selector coloring

(SC). My dispatch results are based on such a compression scheme, and assume that

the maximum number of groups is less than 256, so tliat the group array can be an

array of bytes. Furthermore, since the compiler knows exactly which group array to

use for a particular type, it is more efficient to declare n statically allocated arrays

than it is to declare an array of arrays. Thus, 1 assume that there are arrays GI, ...,
G,, and that the compiler knows which group array to use for each dimension of a

particular behavior .
If 1 assume that the compressed n-dimensional table for k-arity behavior o has

dimensions ny , nî, ..., nk, where the n4 values are behavior specific, and that the group

arrays for these dimensions are Gy, G2, ..., Gk then the call-site dispatch code is given

in Expression 6.3.

Note that since the nf are known constants, the products of the form: #(nr x ... x

n l) , can be precornputed. Shus, only k - 1 multiplications are required at run-time.

Note that Dujardin et.al assume a behavior specific function-cal1 to compute the

dispatch using Expression 6.3 [17] . Alt hough t his funct ion-cal1 reduces call-site size,

it significantly increases dispatch time. The function-cal1 has been inlined to rnake

CNT more cornpetitive in my timings.

6.1.4 SRP

SRP has K selector tables, denoted Si, ..., SK where Si represents the applicable

method sets for types in argument position i of al1 methods. These dispatch tables

can be compressed by any single-receiver dispatch technique, such as selector coloring

(SRPJSC), row displacement (SRP/RD), or compressed dispatch table (SRPJCT).

The timing and space results, and the code that follows, are for SRP/RD.

In addit ion to the argument-specific dispatch tables, SRP has, for each behavior,

an array that rnaps method indices to method addresses, which is denoted by ~ t l ~ ~ ~ .

The dispatch code for SRP is given in Expression 6.4, where FirstBit() is some macro

or function that implements the operation of finding the position of the first '1' bit in

a bit-vector. Holst et. al. discuss this in some detail [23]. bIy timing and space results

assume that this is a hardware-supported operation with the same performance as

shift-right.

Note that #b: is the shift index assigned to behavior O in argument-table i and

is a literal integer.

6.1.5 LUA

LUA is, in sonie ways, the most difficult technique to evaluate accurately. First, there

are a number of variations possible during implementation, that have vastly different

space vs. time performance results. For esample, in order to provide dispatch in O@),

the technique must resort to an array access in certain situations, at thc expense

of substantially more rnemory. Second, Chen et. al. do not provide any explicit

description of what the code at a particular call-site would look like [9]. Tliey discuss

the technique in terms of data structures, and do not mention that in a statically-

typed environment, a collection of if-then-else statements would be a much more

efficient implementation. It is only indicated later in [S] that method dispatch will

happen as a function-cal1 to a behavior-specific function. Given this açsumption the

call-site code for LUA is given in Expression 6.5.

Although the published discussion of LU-4 also assumes such a behavior-specific

call, 1 have provided a more time-efficient implementation of LUA by inlining the

dispatch computation (Expression 6.5), a t the expense of more memory per call-site.

Unfortunately, it is not feasible to inline the dispatch computation for LU.\ because

the cal!-site code would grow too much.

My timing results assume the best possible dispatch situation for LU.4, in which

there are only two k-arity rnethods from which to choose. In such a situation, LUA

needs to perform at most k subtype tests. Although nurnerous subtype-testing imple-

mentations are possible [25, 81, I have chosen one that provides a reasonable trade-off

between time and space efficiency. Each type, T, maintains a bitvector, s.ubT, in

which the bit corresponding to every subtype of T is set to 1, and a11 other bits are

set to O. Assuming the bit-vector is implemented as an array of bytes, 1 can pack 8

bits into each array index, so determining whether T, is a subtype of T, consists of

the espression: szlb, [nu*m(Tj) > > 3]&(1 << (nwn(T,) Sr 0x7)). However, note

that the actual subtype testing implementation does not really affect the overall dis-

patch time because LüA invokes a behavior-specific dispatch function, and this extra

function call is, in general, much more expensive than the actual computation itself.

The size of the per behavior function to be executed depends on the number

of methods defined for the behavior. In the best possible case, there are only two

methods, ml and m z defined for each behavior in a statically typed language (if there

is only one method, no dispatch is necessary). 1 reiterate that this is a rather liberal

under-estimate of the actual time a particular call-site takes to dispatch. The simplest

function that a behavior can have is shown in the code:

. . .
if (subp [N(ok) >> 31 & (1 << (N(ok) 9t 0x7)))

return call ml (ol , . . . , ok) ;

return cal1 m2 Co1, . . . , o k) ;

}

6.2 Timing Results

In order to compare the address-computation tirne of the various techniques 1 gen-

erate technique-specific C++ programs that perform the computations listed in the

previous section. Each program consists of a loop that iterates 3000 times over 500

blocks of code representing the address-computation for randomly generated call-sites,

where a call-site consists of a behavior name and a list of k applicable types (for a

k-arity behavior). Each block consists of two expressions. The first expression assigns

to a global variable the result of an address-computation (i.e. the code described in

the previous section, without the actual invocation). The second expression in each

group calls a dummy function that modifies the previously assigned variable. These

contort ions are performed in order to stop the compiler from doing optirnizations

(such as only performing the last assignment in each group of 500, or in moving the

code outside the 2000-iteration loop). Note that I am timing just the computation

of addresses, since this is the only part of the dispatch process that varies from tech-

nique to technique (the actual invocation of the cornputed address is the same in al1

techniques). I also time a loop over 500 constant assignments interleaved with calls

to the dummy function in order to time the overhead incurred (this is referred to as

noop in the results).

Thus, each execution of one of these programs computes the tirne for 1,000,000

method-address computations. For each technique, such a prograrn is generated and

executed 20 times. The program is then regenerated (thus resulting in a different

collection of 500 call-sites) an additional 9 times, and each such program is executed

20 times. This provides 200 timings of 1,000,000 call-sites for each of the techniques.

The average time and standard-deviation of these 200 timings are reported in my

results. In the graph, the histograms represent the mean, and the error-bars indicate

the potential error in the results, as plus and minus twice the standard deviation.

In order to establish the effect that architecture and optimization have on the

various techniques, the above timing results are performed on five different platforms

using optimization levels from -00 to -03. Al1 code is compiled using GNU C++ (in

future work, it would be useful to obtain timings for a variety of different compilers).

1 present results for two platforms, and only for optimization level -02. The other

nwp M A O MRPe Cm SRP LUA

Figure 6.1: Number of microseconds required tc compute a method at a call-site

platforrns and optimization level are similar. Furthermore, 1 only present resu!ts for 2-

arity dispatch, since al1 techniques scale similarily for higher-arity dispatch sequences.

In this chapter, Platforml refers to a 299iLIHz Sun Microsystems Ultra 5/10 running

Solaris 2.6 with 128 Mb of FLAM and Platform2 refers to a 400h.[Hz Prospec PI1

running L i n u 2.0.34 with 256Mb of RAM.

From Figure 6.1, it can be seen that MRD provides the fastest dispatch time on

both platforms, and did so for al1 five platforms tested.' Furthermore, LUA has the

slowest dispatch time on al1 platforms. However, the relztive performance of MRD-B,

SRP and CNT varied with platform, although LLRD-B was usually fastest, followed

by SRP, followed by CNT.

6.3 Memory Ut ilizat ion

Mernory usage can be divided into two different categries: 1) data-structures, and

2) call-site code-size. The amount of space taken by each of these depends on the

application, but in different ways. An application with many types and methods

will naturally require larger data-structures than an application with fewer types and

methods. As well, although the size of an individual dl -s i te is independent of the

application, the number of call-sites (and lience the amount of code generated) is

'The other three ptatforms were: a Sun SPARCstation 10 Mode1 30 running SunOS 4.1.4 with
128 Mb, an 18OMHz SGI 0 2 running IRM 6.5 with 64 Mb, and an IBM RS6000/360 running .AIX
4.1.4 with 128 Mb

MRD MRD-8 C M
rn SRP 2 LUA MRD

- - -
i

MRO-8 CNT SR1
Tœhnlqu. TuhTilquo

Figure 6.2: Call-Site Memory Usage

applicüt ion dependent.

In order to compare the call-site size of the various techniques, 1 generated an-

other set of technique-specific C++ programs. For each technique, a program was

created that represented the code for 200 consecut ive two-arity met hod invocations,

including the dispatch computation. The program placed a label at the beginning

and end of this code and reported the computed average call-site size based on the

difference between the addresses of the labels. Note t hat the call-site size for a par-

ticular technique can Vary slightly if the randomly generated arguments Liappen to

be identical. or if the constants in the dispatch computation happen to be less than

256 or less than 65536, allowing them to be stored using smaller instructions.

Figure 6.2 shows the number of bytes required by the call-site dispatch code.

Similar results are returned from higher arity behaviors.

Since the data-structure size is dependent on an application, 1 chose to mea-

sure the size required to maintain information for al1 types and al1 behaviors in two

representative applications, the Cecil Vortex3 (Cecil compiler [7]) hierarchy and the

Harlequin Dylan hierarchy (a Dylan [4] GUI hierarchy called duzm). Harlequin is a

commercial implementation of Dylan. The Cecil Vortex-3.0 hierarchy contains 1954

types, 11618 behaviors and 21395 method definitions. The Dylan hierarchy contains

666 types, 2146 behaviors and 3932 method definitions.

In order to measure the amount of space required by the various techniques, I

filtered the set of al1 possible behaviors to arrive a t the set of behaviors that tmly

~ n t y
2

Behavior
203

Arity
2

Behavior
95

I 4 II

(a) Cecil trortex3 Type Hierarchy

4

Method Count Method Count
2

(b) Harlequin Type Hierarchy

O

Behavior # Behavior
53

Figure 6.3: Type Hierarchy Details for Two Different Hierarchies

require multi-rnethod dispatch. In particular, 1 do not consider any O-arity or 1-arity

behaviors, because the address for such behaviors can be identified at compile-tirne

and with single-receiver techniques respectively. Furthermore, since my data assumes

a statically-typed language, I ignore behaviors with only one method defined on them,

since they too can be determined at compile-time. Finally, for each remaining be-

havior, I remove any arguments in which only one type participates. If there is only

one type in an argument position, no dispatch is required on tliat argument. For

example, if behavior o is defined only on A x A, B x -4 and C x A, then no dis-

patch on the second argument is required (because I am assuming statically typed

languages). By reducing behaviors down to the set of arguments upon which multiple

dispatch is truly required, 1 get an accurate measure of the amount of multi-method

support the language requires. After the reduction, the Cecil Vortex3 hierarchy has

1954 types, 226 behaviors and 1879 methods, and the Dylan hierarchy has 666 types,

108 behaviors and 738 methods. The rnethod distributions of these hierarchies are

shown in Figure 6.3. The data-structure memory usage for each technique is shown

in Figure 6.4.

In these reduced Cecil Vortex3 and Dylan hierachies, many of the method defini-

tions have arguments typed as the root-type. Whenever an argument is typed as the

Figure 6.4: Static Data Structure Memory Usage for Cecil Vortex3

LUA MRD MRDB SAP C M
Iedtniqus

Figure 6.5: Static Data Structure Memory Usage for No Root-n~ped Cecil Vortex3

root-type, MRD suffers. -411 rows on the dimension of that argument will be filled, so

that, not much compression can be claimed from row-shifting or row-matching. More

research is needed to find out whether it is a common practice to define many rneth-

ods with arguments typed as the root-type in multi-rnethod programming languages.

However, if I remove a11 methods with root-typed argument(s) from the reduced Cecil

Vortex3 hierarchy, the data structure size of each technique is profoundly different

from those shown in Figure 6.4. As multi-methods become more common, I ex-

pect that the actual distribution of methods will be somewhere between these two

extremes.

After removing al1 met hods wit h root- t yped argument (s) , there are 166 1 types,

660 behaviors and 1299 methods remaining in the Cecil Vortex3 hierarchy. The data

structure size of each technique for this no root-type Cecil Vortex3 hierarchy is shown

in Figure 6.5. The results for the Dylan hierarchy are similar.

Chapter 7

Future Work and Conclusion

7.1 Implement at ion

The research that produced MRD is part of a larger research project analyzing various

multi-method dispatch techniques. Numerous issues impact the performance results

given in this paper. For example, the simple loop-based timing approach poses a

problem. It reports an artificially deflated execution tirne due to caching effects.

Since the sarne data is being executed 10 million times, it stays hot. This problern

can be partially solved by generating large sequences of random call-sites on different

behaviors wit h different arguments. However, t his approach might actually discount

caching effects that would occur in a real prograrn, since random distributions of

call-sites will have poorer cache performance than real-world applications that have

locality of reference.

Furthermore, sorne of the techniques sllow for a variety of implementations. The

implementations usually trade space for tirne, so an implementation can be chosen

with the execution and memory footprint that most closely satisfies the requirements

of a particular application. Also related to the issue of implementation is the impact

of inlining of dispatch code. In single-receiver languages, the dispatch code is placed

inline a t each call-site, but sorne of the multi-method dispatch techniques have large

call-site code chunks. For example, LUA defines a single dispatch function for each

behavior. This function reduces call-site size, but significantly increases dispatch

time. Rather than always calling a function, conditional inlining of a call-site is an

open area of future research.

For al1 of the multi-rnethod table-based dispatch techniques introduced in this

thesis, except LUA, dispatch code is placed inline. Therefore, as the size of a program

grows, the nurnber of call-sites increases, so the dispatch memory usage increases.

Alternatively, function calls can be used instead of inline code for al1 techniques. In

this case, memory usage will not increase as the number of call-sites increase. blore

expermentation is needed to assess the time and space trade-off for function calls

instead of inline code.

7.2 Non-Statically Typed Languages

In the thesis, 1 have investigated multi-method table-based dispatch techniques For

statically typed languages only. Al1 table-based techniques described in this thesis

can be extended to handle non-statically typed languages. Each technique can be ex-

tended in many different ways to handle non-statically typed variables. -4s described

in Section 4.6, MRD has two ways to solve the index out of bounds error. and two

ways to solve the wrong method error. Each strategy has its own advaiitages and dis-

adwntages. Therefore, a detailed investigation is needed to find out which strategy

has the best time and space trade off for each dispatch technique. Then, different

techniques can be compared on their performance for non-statically typed languages.

7.3 Reflexive Environment

Currently not much effort has been spent on estending multi-method table-based

dispatch techniques to handle a reflexive environment. Obviously, N-Dimensional

Tables can handle reflexivity easily, however it has been ruled out because of its huge

memory usage. Nothing has been done on extending CNT, LUA or MRD to handle

incremental environment changes. Since it takes only a few seconds to rebuild the

whole data structure for each of these techniques, it may be acceptable to rebuild the

whole data structure for each environment change. The only table-based technique

that has an advantage in a refiexive environment is SRP. SRP is based on single-

receiver table-based dispatch techniques. Holst et. al. described how single-receiver

table-based techniques handle incrementally environment changes [22]. Therefore,

there is still a lot of study necessary for table-based dispatch techniques for reflexive

environments.

Another question is how to compare different techniques on their performance for

reflexive environments. What should be meaured'?

7.4 Object-Oriented Language Usage Metrics

Randomly generated cali-sites are used in performance evaliiation in this thesis. How-

ever, in order to obtain the best possible analysis of the various techniques, we need

sorne indept h metrics on the distribution of behaviors in multi-mct hod languages. In

particular, the nurnber of behaviors of each arity, and the numbers of methods defined

per behavior are critical. -4s more and more rnulti-method languages are introduced,

we will be able to get a better Feel for realistic distributions. Note that call-site distri-

butions are especially important for accurate analysis of LUA. since its dispatch time

depends on the average number of types that need to be tested before a successful

match occurs.

7.5 Summary

As described in the Introduction, mu tli-met hod languages have more expressive power

than single-receiver lanugages. When dispatch algorithms becorne more efficient ancl

computing power increases, multi-method languages will be more popular. In this

thesis. a new tirne and space efficient rnulti-method dispatch technique. Multiple

Row Displacement (MRD), is presented. MRD compresses an n-climensional table

by row displacement. It has been compared with existing table-based multi-rnethod

techniques, CNT, LU.& and SRP. MRD has the fastest dispatch time and the second

smallest per-cd-site code size (next to LUA, which uses a function c d) . If' the other

techniques used a function call, they could reduce their call-site size at the expense

of dispatch tirrie.

In addition to presenting the new technique, this thesis has provided a performance

corn parison of exist ing table-based multi-met hod dispatch techniques. This t hesis is

one step in making multi-method languages more suitable for general use.

Bibliography

[Il - . ECOOP '97 Con ference Proceedzngs, 1997.

[2] Eric Amiel, Olivier Gruber, and Eric Simon. Optimizing multi-method dispatch
using compressed dispatch tables. In 0 0 P S L i î '94 Con ference Proceedings. 1994.

[3] P. .Indre and J-C. Royer. Optimizing method search with lookup caches and
incrnmental coloring. In 0 0 P S L A '92 Conference Proceedings, 1992.

[4] Apple Cornputer, Inc. Dylan Interim Reference hfanual, 1994.

151 Daniel G. Bobrow. Linda G. DeMichiel, Richard P. Gabriel. Sonya E. b e n e .
Gregor Kiczales, and David .A. bioon. Cornmon Lisp Object System specification.
June 1988. S3.J 13 Document 88-OOIR.

[6] Daniel G. Bobrow, Kenneth Kahn, Gregor Iiiczales, Larry Masinter, .Clark Stefik.
and Frank Zdybel. CommonIuops: Merging Iisp and object-orienteci program-
ming. In 00 PSLA '86 Conjerence Proceedings, pages 17-29? 1986.

[î] Craig Chambers. O bject-oriented multi-methocls in cecil. In ECOOPY:! Con-
ference Proceedings, 1992.

[8] Craig Chambers and Weimin Chen. Efficient predicate dispatch, 1998. Technical
Report UW-CSE-98-12-03.

[9] Weimin Chen. Efficient multiple dispatching based on automata. Master's t hesis.
Darmstadt, Germany, 1995.

] Weimin Chen, Volker Turau. and Wolfgang Elas. Efficient dynamic look-icp
strstegy for multimethods. In ECOOP'94 Con ference Proceedings, 1994.

] Brad Cox. Object- Orient ed Programming, A n Euo blionanj Approach. Addison-
Wesley, 1987.

] L. Peter Deutsch and Alan Schiffman. Efficient implementation of the Smalltalk-
80 systern. In Princzples of Programmzng Languages, Salt Lake City, UT. 1994.

[13] R. Dixon. T. Mck'ee, P. Schweizer, and M. Vaughan. A fast method dispatcher
for compiled languages with multiple inheritance. In 0 0 P S L d '89 Conference
Proceedzngs, 1989.

[l4] K. Driesen and U. Holzle. 'vfinimizing row displacernent dispatch tables. In
0 0PSL A '95 Con ference Proceedings, l995.

[15] K. Driesen? U. Holzle, and J. Vitek. Message dispatch on pipelined processors.
In ECOOP '95 Con ference Proceedzngs, 19%.

[16] Karel Driesen. Selector table indexing and sparse arrays. In OOPSLA '93 Con-
feren ce Proceed2ngs, 1993.

[17] Eric Dujardin, Eric Amiel, and Eric Simon. Fast algorithms for compressed multi-
met hod dispatch table generation. In Transactions on Programming Lanpages
and Systems, 1996.

[18] MA. Ellis and B. Stroustrup. The Annotated C++ Reference IlIanual. Addison-
Wesley, 1990.

[19] A. Goldberg and David Robson. Srnalltalk-80: The Language and its Implemen-
tation. Addison-PVesley, 1983.

[20] CVade Holst and Duane Szafron. inheritance management and method dispatch
in reflexive O bject-oriented languages. Technical Report TR-96-27, University of
Alberta, Edmonton, Canada, 1996.

[21] Wade Holst and Duane Szafron. A general framework for inheritance manage-
ment and method dispatch in object-oriented languages. In ECOOPr97 Coder-
ence Proceedings (11.

[22] Wade Holst and Duane Szafron. Incrcmental table-based met hod clispatch for
reflexive ob ject-oriented languages. In Technology of Object- Oriented Lungîlages
and Sjstems, 1997.

[23] PVade Holst . Duane Szafron, Yuri Leont iev, and Cand y Pang. Mu1 t i-me t hod
dispatch using single-receiver projections. Technical Report TR-98-03, University
of Alberta, Edmonton, Canada. 1998.

[24] Urs Holzle, Craig Chambers, and David Ungar. Optimizing dyriamicall-typed
object oriented languages with polyrnorphic inline caches. In ECOOP'SI Con-
ference Proceedzngs, 199 1.

[25] Andreas Krall, .Jan Vitek, and R. Nigel Horspool. Near optimal hietarchical
encoding of types. In ECOOP '97 Con ference Proceedings [l] .

[26] Glenn Krasner. Sntalltalk-80: Bits of /&ton?, CCürds of Advice. Addison-CVesley,
Reading, MA, 1983.

[27] M.T. Ozsu, R.J. Peters, D. Szafron. B. Irani, -1. Lipka, , and A. Munoz. Tigiikat:
A uniform behavioral objectbase management systern. In The VLDB Journal.
pages 100-147, 1995.

[28] Jan Vitek and £3.. Xigel Horspool. Taming message passing: Efficient method
lookup for dynamically typed languages. In ECOOP '94 Con ference Proceedzngs,

[29] Jan Vitek and R. Nigel Horspool. Compact dispatch tables for dynamically typed
programming languages. In Proceedings of the Intl. Conference on Compiler
C o n s t m c t i o ~ ~ 1996.

