Robot Navigation and M ap Building with the Event Calculus
Murray Shanahan and Mark Witkowski

Department of Electrical and Electronic Engineering,
Imperial College,
Exhibition Road,
London SW7 2BT,
England.
m.shanahan@ic.ac.uk, m.witkowski@ic.ac.uk

Abstract The paper is organised as follows. After an informal

This paper presents a programmable logic-based presentatio_n of the behav_iour of these application programs
agent control system that interleaves planning, plan the theoretical underpl_nnmgs (_)f the controller are outlined
execution and perception. In this system, a program — the event calculus is descr!bed, and abductive account
is a collection of logical formulae describing the ~Of planning and perception are sketched. The
agent’s relationship to its environment. Two such implementation of the sense-plan-act cycle is then
programs for a mobile robot are described — one for discussed, and finally, the two application programs —
navigation and one for map building — that share havigation and map building — are presented.

much of their code.
1 What the Robot Can Do

Introduction The robotic platform for the experiments reported in this

In the late Sixties, when the Shakey project started [NilssoRaPer is a Khepera, a miniature robot with two drive wheels
1984], the vision of robot design based on Iogicala_nd a suite of eight |nfra—.red proximity sensors arqunq its
representation seemed both attractive and attainabl@rcumference. The robot inhabits a miniaturised office-like
Through the Seventies and early Eighties, however, tHgnvironment, depicted in Figure 1.

desire to build working robots led researchers away from
logic to more practical approaches to representation. This ! ! cl
movement away from logical representation reached its rld1 r2 2 3 O
apogee in the late Eighties and early Nineties when Brooks ' d3 13 g4 2
jettisoned the whole idea of representation, along with the 4

so-called sense-model-plan-act architecture epitomised by
Shakey [Brooks, 1991]. ds dé

However, the Shakey style of architecture, having an overtly rs ré
logic-based deliberative component, seems to offer
researchers a direct path to robots with high-level cognitive
skills, such as planning, communication, and reasoning Figure 1: The Robot’s Environmer
about other agents. Accordingly, a number of researcher.
have instigated a Shakey revival. Armed with moder
solutions to the frame problem, work in so-caltednitive

e robot has a simple repertoire of low-level actions,
executed on-board, which includes wall following, turning

robotics aims to build robots with high-level cognitive skills INt© doorways, and turning around corners. Using these, the

using logic as a representational medium [Lespéranes, high-le_/el, of_f-board controller manoeuvres the robot
1994]. around its environment.

pt's take a look at a navigation example to see how the

This paper presents an implemented logic-based, high-le b ; oo
'S Paper p mp gl '9n-eY igh-level controller functions. Suppose the robot is initially

robot control system. The controller is programmed directl d h d it has 1
in logic, specifically in theevent calculus, an established Pe€tween comers cl and c2, as shown, and suppose it has t

formalism for reasoning about action. The controllersdoal Of retrieving a package from room r6. Informally, this
underlying computational model is a sense-plan-act cycle, i oW the robot's high-level controller achieves the goal.
which both planning and sensor data assimilation arkirst, the robot plans a route. As soon as it finds a complete
abductive theorem proving tasks. Two small applicatiorfthough perhaps not fully decomposed) plan with an
programs written in this language are described in detagxecutable first action, the robot starts carrying out that
one for navigation and one for map building. Both thesglan. In this case, the first action is to go through door d4, sc
programs have been deployed and tested on actual robots.

the robot sets out along the wall until it reaches corner c2. ibllowing axioms, whose conjunction will be denoted EC.
then turns the corner, and heads off towards door d4. Their main purpose is to constrain the predicate HoldsAt.

Suppose someone now closes door d4. Unfortunatel{#0ldsAt(,T) represents that fluen holds at timer.
because of its poor sensors, the robot cannot detect clos 'Iarou_ghout_ the paper, all variables are universally
continues wall following until it reaches corner c3. HoldsAt(f,t) — Initiallyp(f) O- Clipped(0,f,t) (EC1)

Up to this point, the assimilation of the robot’'s sensor data HoldsAt(f,t3) — (EC2)

has been a trivial matter. The sensor events it receives are Happens(a,t1,t2) Initiates(a,f,t1)]

exactly what it would expect given what it has done and t2 <t30 - Clipped(t1,ft3)

what it believes about its environment. So the explanations cjipped(t1,f,t4) ~ (EC3)
of those sensor events are trivial. But this encounter with a 5 t2 t3 [Happens(a,t2,t8)tl < t30t2 < t40

corner requires a non-empty explanation. [Terminates(a,f,t2)] Releases(a,f,t2)]]

Using abduction, the robot constructs an explanation of its _, HoldsAt(f,t) — (EC4)

encounter with the corner — door d4 must have been |njtially \(f) O- Declipped(0,f,t)
closed, and it must now be at corner ¢3. But this new piece HoldsAt(f,3) (EC5)
of information conflicts with the assumptions underlying the 1) < :
o : : Happens(a,t1,t2)) Terminates(a,f,t1)
plan it's executing. So the robot is forced to replan. It now 12 < 1301 Declipped(tl f 13
finds a new route to room r6, via doors d2, d3, and d6,) ~ Declipped(t1,f,t3)
which it successfully executes and retrieves the package. ~ Declipped(tl,f,t4)- (EC®6)
Now let’s consider a map building example. Da,t2,t3 [Happens(a,i2,t8)tl < 13012 < t40]

Where the navigation task takes for granted the prior (initiates(a,f,t2)1] Releases(a.f 2)]

availability of a map of the robot’s environment, the map Happens(a,t112). t1<t2 (ECT)
building task starts with a complet@bula rasa. Nothing is A particular domain is described in terms of Initiates,
initially known of the layout of rooms, doors and corners,Terminates, and Releases formulae. Initiadet)
and the robot’s job is to explore its environment, building &epresents that fluefit starts to hold after actiam at timeT.
map as it goes along. This is done by abductively explainirfigonversely, Terminates(B,1) represents th4 starts not to
the robot’s sensor data, exactly as in navigation, the chiépld after actiona att. Releases(f,T) represents that
difference being that explanations are now bits of mafjuent is no longer subject to the common sense law of
rather than door closing events. (We assume all the dooRgrtia after actiom att.

stay open during map building.) A particular narrative of events is described in terms of
Suppose it starts off in corner c1. As the robot doesn’t knowlappens and Initially formulae. The formulae Initia()
what the next corner from c1 is, it starts wall following.and Initiallyy(B) respectively represent that flughholds at
After travelling a certain distance, its front sensors go higiime 0 and does not hold at time 0. Happensl,12)
an event which is explained by postulating an innefepresents that action or evenbccurs, starting at tintel
(concave) corner which is the next one along from c1. Sand ending at time2.

the robot names the corner and records its relationship rotwo-argument version of Happens is defined as follows.

and distance from c1. Happens(a,teqef Happens(a,t,t)

In a similar fashion, the robot discovers the near and fgt,mjae describing triggered events are allowed, and will
corners of door d4, postulates a door, and goes on its way lénerally have the form

continues like this until it has been right around the roonq '

and arrives at a corner it already knows about. (The robot HapPpPensg.t) — I

maintains a rough idea of its co-ordinates, and knows themgherell can be any formula. As we’ll see, similar formulae,
is a minimum distance between two distinct cornersin “Happens if Happens” form, can be used to define high-
Therefore it can tell when it is back where it started.) Thergvel, compound actions in terms of more primitive ones.
since there is a door in the room leading to somewherghe frame problem is overcome through circumscription.
unexplored, the robot navigates to that door, goes through iiven a conjunctior of Initiates, Terminates, and Releases
and repeats the process for the next room. Eventually 3§rmulae describing the effects of actions, a conjunation

rooms are explored, and a complete map is built. of Initially, Happens and temporal ordering formulae
describing a narrative of actions and events, and a
2 Event Calculus Basics conjunctionQ of uniqueness-of-names axioms for actions

The formalism used throughout this paper is based on tﬁienOl fluents, we're interested in,

circumscriptive event calculus [Shanahan, 1997a]. BecauseCIRCIZ ; Initiates, Terminates, Releasés]
the event calculus is presented in considerable detail CIRC[A; HappenslJECUQ.
elsewhere, the description here will be kept fairly brief. By minimising Initiates, Terminates and Releases we

A many sorted language is assumed, with variables fg¥SSume that actions have no unexpected effects, and b
fluents, actions (or events), andtime points. We have the Minimising Happens we assume that there are no

unexpected event occurrences. In most of the cases welre might comprise Happens and/or HoldsAt formulae
interested inx andA will be conjunctions of Horn clauses, describing sensor events or values, 8hdight comprise
and the circumscriptions will reduce to predicatelnitiallyy and Initiallyp formulae describing the
completions. environment’s initial configuration and/or Happens

Care must be taken when domain constraints and triggerffmulae describing the intervening actions of other agents
events are included. The former must be conjoined to E®ho have modified that configuration.

while the latter are conjoined fo There is, of course, no guarantee thainaque W exists to
explain any given collection of sensor data. So some
3 Planning and Per ception as Abduction strategy needs to be adopted for dealing with multiple

))] explanations. This can involve imposing a preference
Logically speaking, both planning and sensor datgdering on explanations, perhaps resulting in the adoptior
assimilation can be considered as abduction, the reverse @f ihe “simplest” explanation, in some sense. The whole

deduction, which in the present context means reasoningsye of multiple explanations merits further study.

from eﬁects to causes. Let's consider p.lannmg first. . Since most of the formulae we’re using are in extended
Planning can be thought of as the inverse operation {qorm clause form, these accounts of planning and perceptiol
temporal projection, and temporal projection in the even¢an pe implemented through abductive logic programming,
calculus is naturally cast as a deductive task in the followings gescribed in [Shanahan, 1999]. The present

way. Givenz, Q andA as in Section 2, we're interested injmplementation is a meta-interpreter with built-in facilities

HoldsAt formulae™ such that, for handling the axioms of the event calculus. The same
CIRCI[Z ; Initiates, Terminates, Releasés] meta-interpreter is used for both planning and sensor dati
CIRCIA ; HappensJECOQ E T. assimilation.

Conversely, planning in the event calculus can bd&he computation carried out by this system strongly
considered as an abductive task. Given a domain descripticmsembles that of a hand-coded partial-order planning
>, a conjunction of goals (HoldsAt formulae), and a algorithm, such as UCPOP [Penberthy & Weld, 1992], as
conjunction Ay of Initiallyp and Initiallyy formulae shown in [Shanahan, 1999]. In particular, the
describing the initial situation, plan is a consistent implementation has to record the negated Clipped anc
conjunctionAp of Happens and temporal ordering formulaeDeclipped formulae it has proved, and these are treated i

such that, much the same way gsotected links in a partial-order
CIRC[Z ; Initiates, Terminates, Releasés] planner. They also play a vital role in deciding when to
CIRC[AN OAp; HappensIECOQET. replan.

In order to interleave planning, sensing and acting in ahroughout the sequel, when discussing the actual
The logical story for hierarchical planning is the sameSYyntax employed by the meta-interpreter will be used

formulae toAy 0 Ap. standard Prolog syntax, with predicate and function symbols

starting with lower case letters, and variables starting with

Now let's take a look at the topic of perception (sensor datf}pper case letters. For example, the predicate calculu:
assimilation). An abductive logical account of sensor datrF\Ormula ' '

assimilation (SDA) can be constructed which mirrors the™ "
above account of planning. The need for such an account/nitiates(Move(x,y),On(x,y),t)-

arises from the fact that sensors do not deliver facts directly ~HoldsAt(Free(x),t{J HoldsAt(Free(y),t)
into the robot’s model of the world. Rather they provide rawn meta-interpreter syntax becomes,

data from which facts can be inferred. Perception involves injtiates(move(X,Y),on(X,Y),T) -

finding explanations of raw sensor data, hence the need for holds_at(free(X),T), holds_at(free(Y),t)

abduction. This serves to emphasise the distinction between
The methodology for supplying the required logical accoungpecification and implementation. Indeed, the relationship
is as follows [Shanahan, 1997b]. First, using a suitablpetween pure event calculus theories and the event calculu
formalism for reasoning about actions, we need to construgrograms they correspond to is one that needs to be
a theoryZ of the effects of the robot’s actions on the worldcarefully policed. Ideally, we would like, not only a trivial
and the impact of the world on the robot’s sensors. Themanslation from one to the other, but also an implementation
sensor data assimilation can be considered as abduction witiat is both sound and complete with respect to the logic.
this theory. Roughly speaking (omitting details of thej, [shanahan, 1999], the abductive meta-interpreter is
circumscriptions), given a narrativeof the robot's actions, ,gyen to be sound and complete for a certain class of ever
and a descriptioni of the robot's sensor data, the robotsaicylys theories. However, this class does not encompas
needs to find somi’ such that, all the examples looked at in this paper, so further work is
SO0AOWET. required on this issue.

o « Negated Clipped or Declipped formulae, analogous to
4 Robot Programming in the Event Calculus protected links in partial-order planning, whose validity

This section describes the robot’s control system in more must be preserved throughout subsequent processing.

detail. In essence, it is a general purpose high-level agefis soon as a complete but possibly not fully decomposed
control system, programmab|e direct|y in the event Ca|cu|u§_|an with an executable first action is generated, the robot
Although the focus of the present discussion is on robotic§an act.

the technology is applicable to other types of agent as well. Meanwhile, the SDA process is also underway. This
The system executes a sense-plan-act cycle. The execut/@§eives incoming sensor events in the form of Happens
of this cycle has the following features. formulae. Using resolution against formulae in B, the SDA
Rrocess starts trying to find an explanation for these senso
events. This may yield any combination of Happens,
é—|oldsAt and negated Clipped and Declipped formulae,
&vhich are subject to further abductive processing through
resolution against formulae in A, taking into account the
actions the robot itself has performed.

processes. They are subject to constant suspensioan'mately’ the SDA process generates a set of ?‘bduce‘
permit the interleaving of sensing, planning and acting. appens formulae deSCF'b'”g extgrnal actions ("’!C“O”S. noi
= R g i carried out by the robot itself) which explain the incoming
* To encourage reactivity, planning hgerarchical. This gsensor data. Using resolution against formulae in A, it can
facilitates planning in progression order, whichpe determined whether these external events threaten th
promotes the rapid generation of a first executablgajigity of the negated Clipped and Declipped formulae
action. (protected links) recorded by the planning process. If they
» The results of sensor data assimilation can exposip, the system replans from scratch.

conflicts with current plan, thus precipitating |y the context of the sense-plan-act cycle, the event calculu

 Planning and sensor data assimilation are bot
resolution-basedbductive theorem proving processes,
working on sets of event calculus formulae. Thes
processes conform to the logical specifications outline
in the previous section.

e« Planning and SDA are bothesource-bounded

replanning. can be regarded as a logic programming language foi
An event calculus robot program comprises the followingagents. Accordingly, event calculus programs have both ¢
five parts. declarative meaning, given by the logic of Sections 2 and 3,

A. A set of Initiates, Terminates and Releases formula@Nd aprocedural meaning, given by the execution model

level actions on the world. following sections present two robotic applications written
B. A set of Happens formulae describing the causes sllgyent calculus programs, namely navigation and maj
' uilding.

robot sensor events.

C. A set of Initiates, Terminates and Releases formula

describing the effects of high-level, compound actions. SA Navigation Program

D. A set of Happens formulae defining high-level, APPendices A and C contain (almost) the full text of a
compound actions in terms of more primitive ones working event calculus program for robot navigation. This
' section describes the program’s construction and operation.

E. A set of declarations, specifying, for example, wha
pectlying P LI'he robot’s environment is represented in the following

formulae are abducible.
.) . .way. The formuleconnects(D,R1,R2) means that door
The formulae in A to D figure in the sense-plan-act cycle iy -onnects roomR1 and R 2 inner(C) means that

the f(_)llowing way. Ir_1itia||y, the_system has an empty plan.qnercis a concave cornedoor(D,C1,C2) means
and is presented with a goBlin the form of a HoldsAt .,.nars c1 and C2 are doorD’s doorposts, and
formula. Using resolution against formulae in C, theygoyt corner(R,C1,C2) means thaC?2 is thé next
planning process identifies a high-level actwrihat will comer fromC1 in roomR in a clockwise direction, where
achiever . (If no such action is available, the planner useg1 4ndC2 can each be either convex or concave. A set of
the fqrmulae in A to plan from first pr|nC|pIes.)_The such formulae (amap), describing the room layout in
planning process then decomposesusing resolution g re 1, say, is a required background theory for the
against formulae in D. This decomposition may yield any,,yigation application, but is not given in the appendices.

combination of the following. . o .
g The robot can execute a repertoire of three primitive actions:

* Further sub-goals to be achieved (HoldsAt formulae). toow wall , in which case it proceeds along the wall to
» Further sub-actions to be decomposed (Happenhie next visible corneturn(S) , in which case the robot
formulae). turns a corner in directiofs (either left or right), and
« Executable, primitive actions to be added to the plago_straight , in which case the robot crosses a doorway.
(Happens formulae). For simplicity, the current robot only proceeds in a
clockwise direction around a room, hugging the wall to its
left.

The navigation domain comprises just two fluents. The teriihe effects ofgo_straight andturn are similarly
in(R) denotes that the robot is in roo The term described. The formulae in Appendix C also cover the
loc(C,S) denotes that the robot is in cor@rTheS fluentsfacing andpos which are used for map building
parameter of théoc fluent, whose value is eithahead but not for navigation.

orbehind , indicates the relative orientation of the robot tonext we'll take a look at the formulae describing the causes
the cornerC. of sensor events, which figure prominently in sensor data
The program comprises the five parts mentioned in Secticassimilation (part B of the program, according to Section 4).
4. To begin with, let's look at the formulae describing highThree kinds of sensor event can occur:

level, compound actions (parts C and D, according tteft_and_ front ,left gap andleft
Section 4). Let’'s consider the high-level actionTngleft and_front event occurs when the robot’s left
go_to_room(R1,R2) . The effect of this action is given gensors are already high and its front sensors go high, a
by aninitiates formula. when it's following a wall and meets a concave corner. The
initiates(go_to_room(R1,R2),in(R2),T) :- (A1) left_ gap event occurs when its left sensors go low, as
holds_at(in(R1),T). when it is following a corner and meets a convex corner

In other wordsgo_to_room(R1,R2) puts the robot in such as a doorway. THeft event occurs when its front
R2, assuming it was ilrR1. Thego_to_room action is and left sensors are high and the front sensors go low, a

recursively defined in terms gb_through actions. when it turns right in a concave corner.
happens(go_to_room(R,R),T,T). (A2) In the formulae of Appendix C, each of these sensor event:
happens(go_to_room(R1,R3),T1,T4) - (A3) has a single parameter, which indicates the distance thi
towards(R2,R3,R1), connects(D,R1,R2), robot thinks it has travelled since the last sensor event. This
holds_at(door_open(D),T1), parameter is used for map building and can be ignored foi
happens(go_through(D),T1,T2), the present.
ngo‘:z?%g%j)to—mom(m’RB)’T&TA')’ Here’s the formula foleft_and_front
not(clipped(T2,in(R2),T3)). happens(left_and_front(X),T.T) :- (S3)
. happens(follow_wall,T,T),
In other wordsgo_to_room(R1,R3) has no sub-actions holds_at(co_ords(P1).T)
if R1=R3, but otherwise comprisesgw_through action holds_at(facing(W),T),
to take the robot through do@rinto roomR2 followed by holds_at(loc(comer(C1),behind),T),
anothergo_to_room action to take the robot froR2 to next_visible_corner(C1,C2,left,T),
R3. Door D must be open. Thewards predicate supplies inner(C2),
heuristic guidance for the selection of the door to go displace(P1,X,W,P2), pos(C2,P2).
through. The second, third and final conjuncts on the right-hand-side
Notice that the action is only guaranteed to have the effeof this formula are again the concern of map building, so we
described by thaitiates formula if the room the robot can ignore them for now. The rest of the formula says that ¢
is in doesn’t change between the two sub-actions. Hence theft_and_front event will occur if the robot starts off
need for the negatedipped conjunct. in cornerC1, then follows the wall to a concave cor@t.
The go_through action itself decomposes further into Similar formulae characterise the occurrencéedf and
follow_wall ,go_straight andturn actions that '€ft.gap events (see Appendix C).

the robot can execute directly (see Appendix A).

Now let's consider the formulae describing the effects of A Worked Example of Navigation

these primitive executable actions (part A of the progranThese formulae, along with their companions in Appendices
according to Section 4). The full set of these formulae is t& and C, are employed by the sense-plan-act cycle in the
be found in Appendix C. Here are the formulae describingiay described in Section 4. To see this, let's return to the

thefollow_wall action. navigation example of Section 1. The system starts off with
initiates(follow_wall, (S1) an empty plan, and is presented with the initial goal to get to
loc(corner(C2),ahead),T) :- room r6.
holds_at(loc(corner(C1),behind),T), holds_at(in(r6),T)
next_visible_corner(C1,C2left,T). - . .
terminates(follow,_wall (S2) T_he plannmg process resolves this goal against clause (Al)
loc(cormer(C) Eehina)T) yielding a complete, but not fully decomposed plan,
' o ... comprising a singlego_to_room(r3,r6) action.
A follow_wall ~ action takes the robot to the next visible Resolving against clause (A3), this plan is decomposed intc
corner in the room, where the next visible corneris the net g0 through(d4) action followed by a
one that is not part of a doorway whose door is closed. §5 to room(r4,r6) action. Further decomposition of
modifies theloc fluent, whereloc(corner(C),S) the_go_through action yields the plarfollow_wall ,
denotes that the robot is in the cor@6 is eitherahead go_through(d4) , thengo_to_room(r4,r6) In

or behind , indicating respectively that the robot is facingagdition, a number of protected links (negattipped
into the corner and away from it.

anddeclipped formulae) are recorded for later re- knowledge. The only effects of the robot’s actions relevant
checking, including a formula of the form, to map building are their knowledge producing effects.
not(clipped(tldoor open(dd), 12) . Similarly, the robot’s overall goal is a knowledge goal, not a

The system now possesses a complete, though still not fu hysical ong.] .
decomposed, plan, with an executable first action, nameil/he operation of the sense-plan-act cycle, in particular the

follow_wall . So it proceeds to execute the SDA process, entails that actions do indeed have knowledg
follow_wall action, while continuing to work on the producing effects. For instance, in the navigation example,
plan. following a wall can result in the robot knowing whether or
When the follow_wall action finishes, a not a door is open.

left_and_front sensor event occurs, and the SDAIN the navigation example, explanations of sensor data art
process is brought to life. In this case, the sensor event hg@nstructed in terms of open door and close door events, bt

an empty explanation — it is just what would be expected tt®r map building we require explanations in terms of the
occur given the robot’s actions. relationships between corners and the connectivity of

rgoms. So the first step in turning our navigation program

Similar processing brings about the subsequent execution o a map building program is to declare a different set of

a turn(right) action then anothefollow_wall . . .
action. At the end of this secoridllow wall _action, a 2pducibles (part E of a robot program, according to Section
left_and_front sensor event occurs. This means that 4):_1he abducibles will ‘now include the predicates
formula of the form next_corner ,inner ,door , andconnects . Map
happens(eft_and fr(;nt(5. 9 building then becomes a side effect of the SDA process.
S [] , T

. . . . But how are the effects of the robot's actions on its
needs to be explained, wheras the time of execution of |6\yjedge of these predicates to be represented ant
thefollow_wall ~ action. The SDA process sets aboutieasoned with? The relationship between knowledge anc
explaining the event in the usual way, which is to resolVe oy has received a fair amount of attention in the

this formula against clause (S3). This time, though, ap,a50ning about action literature ([Levesque, 1996] is a
empty explanation will not suffice. Since door d4 wasgcent example). All of this work investigates the

initially open, aleft_gap event should have occurred (g |ationship between knowledge and action on the
instead of deft_and_front event. assumption that knowledge has a privileged role to play in
After a certain amount of work, this particular explanatiorthe logic.

task boils down to the search for an explanation of thg, the present paper, the logical difficulties consequent on
formula, embarking on such an investigation are to some degret

next_visible_comer(c2,C, 1), inner(C) sidestepped by according epistemic fluents, that is to say
(The C is implicitly existentially quantified.) The fluents that concern the state of the robot's knowledge,
explanation found by the SDA process has the followingxactly the same status as other fluents.

form. Before discussing implementation, let's take a closer look at
happens(close_door(d4), 1), before(T, 1) this issue from a logical point of view. To begin with, we'll

In other words, an externalose door action occurred introduce a generic epistemic fluent Knows. The formula

some time before the robotfisllow_wall action. Since HoldsAt(Knows(p),T) represents that the formufefollows

this close_door action terminates the fluent from the robot's knowledge at time (More precisely, to
door_open(d4) , there is a violation of one of the distinguish object- from meta-level, the formukmed by ¢

protected links recorded by the planner (see above). THgllows from the robot's knowledge. To simplify matters,
violation of this protected link causes the system to replai/e’ll assume every formula is its own name.)
this time producing a plan to go via doors d2 and d3 whickising epistemic fluents, we can formalise the knowledge

executes successfully. producing effects of the robot’s repertoire of actions. In the
present domain, for example, we have the following.
7 Map Building with Epistemic Fluents dr,c2 [Initiates(FollowWall,

; ; _— Knows(NextCorner(r,c1,c2)),td
The focus of the rest of this paper is map building. Map .
building is a more sophisticated task than navigation, and HoIdsAt(Loc(Corr?er(cl),Behlhd),t)
throws up a number of interesting issues, including how ti) other words, following a wall gives the robot knowledge
represent and reason with knowledge producing actions afithe next corner along. This formula is true, given the right

actions with knowledge preconditions, the subject of thiset of abducibles, thanks to the abductive treatment of
section. sensor data via clause (S3). In practise, the abductive SD/

To see why this issue is important, consider the fact that, B2CESS giVes a new name to that corer, if it's one it hasn’
a result of building a map of its environment, there may b)—f"s'ted before, and records whether or not it's an inner
no physical modification to that environment at all. ThecOrner:
robot may even be back in the same location it started ifimilar formulae account for the epistemic effects of the

The only change that has taken place is in the robot®bot’s other actions. Then, all we need is to describe the

initial state of the robot's knowledge, using the Initiglly this program apart from the navigation program already
and Initiallyp predicates, and the axioms of the eventiscussed are,

calculus will take care of the rest, yielding the state of the {he use of epistemic fluents,

robot’s knowledge at any time.

Epistemic fluents, as well as featuring in the descriptionsoé1 th d for techni imilar to th di
the knowledge producing effects of actions, also appear i € nee | o techmques SImuar to those used in
knowledge goals. In the present example, the overall goal is constraint logic programming (CLP).

to know the layout of corners, doors and roomsThe first issue was addressed in the previous section. Th

Accordingly, an epistemic fluent KnowsMap is defined agsecond two issues, as we’ll see shortly, arise from the

2. the need for integrity constraints, and

follows. robot’s need to recognise when it's in a corner it has already
HoldsAt(KnowsMap,t)— visited. . o
[Door(d,c1,c2)- First, though, let's see how the predicate calculus definition
0Or2 [HoldsAt(Knows(Connects(d,r1,r2)),t\] of the Explore action translates into a clause in the actua
[Pos(cl,p)- implementation. Here’s the implemented version of formula
Oc2 [HoldsAt(Knows(NextCorner(r,c1,c2)),t)]] (L1) at the end of the previous section.
Note the difference between haﬁp%ns(e§F|OEe1Tl1TEg 1) 1) (B1)
olds_at(loc(comer(C1),S),T1),
Ur2 [HoldsAt(Knows(Connects(d,r1,r2)),t)]] not(unexplored_comer(C1,T1)),
and unexplored_door(D,T1),

Or2 [Connects(d,rL,r2)]. happens(go_through(D),T1,T2),

h d7 | hat th] h hd happens(explore, T3,T4), before(T2,T3).

e second formula says that there is a room throu o . ; : C .

d, while the first formu?/a says that the robot knowsgwhag{Stead of using epistemic fluents explicitly, this clause

that room is. The robot’s knowledge might include th ggiallgrtec:jtva/gorlew p;_?\cgggtgixdpé%:]ee%_ggrfr(l)(lelgws and

second formula while not including the first. Indeed, if nepplored_corner(Cl.T)' .(BZ)

badly programmed, the robot’s knowledge could include the UN€X — -

first formula while not including the second. (There is no Pos(CL,P), not(next_comer(R,C1,C2)).

analogue to the axiom schema T (reflexivity) in modal unexplored_door(D,T) - (B3)

logic.) door(D,C1,C2), not(connects(D,R1,R2)).

The top-level goal presented to the system will b he formulapos(C,P) represents that cornél is in

HoldsAt(KnowsMap,t). Now suppose we have a high-levePOS't'On P, whereP is a co-ordinate range (see below).

action Explore, whose effect is to make KnowsMap hold. By defining these two predicates, we can simulate the effec
Initiates(Explore, KnowsMap,) of the existential quantifiers in formula (L1) using negation-

. h | ’I | Hol ’ he initi Ias-failure. Furthermore, we can use negation-as-failure as .

Given the top-level goa Ho.dsAt(KnowsMap,t), the initial g ytitute for keeping track of the Knows fluent. (This trick

top-level plan the system will come up with comprises thggpqers the predicates’ temporal arguments superfluous, bt

single action Explore. The definition of Explore is, in effect,iyqy e retained for elegance.) Operationally, the formula,
the description of a map building program. Here’'s an not{next_comer(R.CLC2))

example formula.

Happens(Explore, t1,t4) (L1) serves the same purpose as the predicate calculus formula,
HoldsAt(In(r1),t) 0 HoldsAt(Loc(Corner(c1),s),t1}l = Ur2 [HoldsAt(Knows(Connects(d,r1,r2)),t1)]].
Oc2 [HoldsAt(Knows(NextCorner(rl,c1,c2)),t1)] The first formula uses negation-as-failure to determine what
0d, ¢2, c3 [Door(d,c2,c3) is provable from the robot’'s knowledge, while the second
- 0Or2 [HoldsAt(Knows(Connects(d,r1,r2)),t1)]] formula assumes that what is provable is recorded explicitly
Happens(GoThrough(d),t1,t?) through the Knows fluent.
Happens(Explore, 3,t4) Before(t2,t3) The final issue to discuss is how, during its exploration of a

This formula tells the robot to proceed through door d if it'ssoom, the robot recognises that it's back in a corner it has
in a corner it already knows about, where d is a door leadingready visited, so as to prevent the SDA process from
to an unknown room. Note the use of epistemic fluents ipostulating redundant new corners.

the thifrd a?]d fé)urth lines. A nufmberlof simi(ljar f%r.][?UIaeRecall that each sensor event has a single argument, whic
cater for the decomposition of Explore under differenfg e estimated distance the robot has travelled since th

circumstances. last sensor event. Using this argument, the robot can kee|
o track of its approximate position. Accordingly, the program
8 A Map Building Program includes a suitable set ofitiates andterminates

Appendices B and C present (almost) the full text of &lauses for theco_ords fluent, whereco_ords(P) -
denotes thaP is the robot’s current position. position is

working event calculus program for map building. This ¢ .
section outlines how it works. The three novel issues that s@¢tually a lisfX1,X2,Y1,¥Y2] , representing a rectangle,

bounded byX1 andX2 on the x-axis an&1 andY2 on the

y-axis, within which an object’s precise co-ordinates areomputational state has declarative meaning. Needless ti
known to fall. say, the ideas presented merit a good deal of further study

Using this fluent, explanations of sensor data that postula@f!d it remains to be seen whether they will scale up to
redundant new corners can be ruled out usingntegrity ~ "obots with richer sensors in more realistic environments.

constraint. (In abductive logic programming, the use ofPreliminary results are promising, though. In particular, it's
integrity constraints to eliminate possible explanations is ancouraging to see that event calculus programs for
standard technique.) Logically speaking, an integritynavigation and map building can be written that are each
constraint is a formula of the form, less than 100 lines long and, moreover, that share more tha

- [PLOP, O...0R] half their code.
where each Pis an atomic formula. Any abductive
explanation must be consistent with this formula. In metaRR€fer ences

interpreter syntax, the predicateonsistent is used to [Brooks, 1991] R.A.Brooks, Intelligence Without Reason,
represent integrity constraints, and the abductive procedureproceedings IJCAI 91, pages 569-595.

needs to be modified to take them into account. In thﬁ_espérance et al., 1994] Y.Lespérance, H.J.Levesque
present case, we need the following integrity constraint. FLin D M’arcu” R Reiter ' and RB Sc,herll .A Logical,

inconsistent([pos(C1,P1), pos(C2,P2), (B4) Approach to High-Level Robot Programming: A Progress

same_pos(P1,P2), Report, inControl of the Physical World by Intelligent
L?fcr’(rgfg(zc)]l)’m’ room_of(C2,R), Systems: Papers from the 1994 AAAI Fall Symposium, ed.

B.Kuipers, New Orleans (1994), pp. 79-85.

The formulasame_pos(P1,P2) _checks whether the [Levesque, 1996] H.Levesque, What Is Planning in the

maximum possible distance betweeh andP2 is less than

a predefined threshold. The formuleiff(X,Y) Presence. of SensingProceedings AAAI 96, pp.
represents thak # Y. If the meta-interpreter is trying to - a : .
provenot(diff(X,Y)) , it can do so by renamingtoY. [Nilsson, 1984] N.J.Nilsson, edShakey the Robot, SRI

(Terms that can be renamed in this way have to be Technical Note no. 323 (1984), SRI, Menlo Park,
declared.) In particular, to preserve consistency in the California.

presence of this integrity constraint, the SDA process willPenberthy & Weld, 1992] J.S.Penberthy and D.S.Weld,
sometimes equate a new corner with an old one, and renam&JCPOP: A Sound, Complete, Partial Order Planner for
it accordingly. ADL, Proceedings KR 92, pp. 103-114.

Having determined, via (B4), that two apparently distinc{Shanahan, 1997a] M.P.Shanah&ulving the Frame
corners are in fact one and the same, the robot may have tw@roblem: A Mathematical Investigation of the Common
overlapping positions for the same corner. These can beSense Law of Inertia, MIT Press (1997).

SUbSqmed by a single, more narrowly constrain.e.d pOSitiO['éhanahan, 1997b] M.P.Shanahan, Noise, Non-Determinisn
combining the range bounds of the two older positions. and Spatial UncertaintyProceedings AAAI 97, pp.

This motivates the addition of the final component of the 153-158.

system, namely a rudimentary constraint reductio Shanahan, 1999] M.P.Shanahan, An Abductive Event
mechanism along the lines of those found in constraint 10giC ~4|culus PlannerJournal of Logic Programming, to

programming languages. This permits the programmer to appear (provisionally accepted).
define simple constraint reduction rules whereby two

formulae are replaced by a single formula that implies the . . L
both. In the present example, we have the following rule. %ppendlx A: Navigation Code

common_antecedent(pos(C,[X1,X2,Y1,Y2]), I* Navigation Compound Actions */
pos(C,[X3,X4,Y3,Y4]),

D0S(C.[X5.X6,Y5,Y6) - happens(go_to_room(R,R),T,T).
max(X1,X3,X5), min(X2,X4,X6), happens(go_to_room(R1,R3),T1,T4) -
max(Y1,Y3,Y5), min(Y2,Y4,Y6). towards(R2,R3,R1), connects(D,R1,R2),

The formula common_antecedent(P1,P2,P3) EoIds_at(doortﬁopenéDI%,T_l}%T2
represents thaP3 implies bothP1 andP2, and that any appens(go_through(D), T1,T2),

explanation containing botAl andP2 can be simplified by E:%eg?%g_%)to_room(m,R3),T3,T4),

replacingPl andP2 by P3. not(clipped(T2,in(R2),T3)).
: happens(go_to_room(R1,R3),T1,T4) :-
Concluding Remarks DR LRTLTY

The aim of the ongoing work reported here is to design and holds_at(door_open(D), T1),
build theoretically well-founded, general purpose systems happens(go_through(D),T1,T2),
for high-level robot control, in which each computational haPPens(go_to_room(R2,R3),T3,T4),

) . . before(T2,T3),
step is also a step of logical inference, and each not(clipped(T2,in(R2). T3)).

initiates(go_to_room(R1,R2),in(R2),T) :-
holds_at(in(R1),T).

happens(go_through(D),T1,T2) :-
holds_at(loc(corner(C1),ahead),T1),
door(D,C1,C2),
happens(turn(left), T1),
happens(turn(left), T2),
before(T1,T2),
not(clipped(T1,door_open(D),T2)).

happens(go_through(D1),T1,T3) -
holds_at(loc(corner(C1,ahead)),T1),
door(D2,C1,C2), diff(D1,D2),
holds_at(door_open(D2),T1),
happens(go_straight, T1),
happens(go_through(D1),T2,T3),
before(T1,T2).

happens(go_through(D),T1,T3) :-
holds_at(loc(corner(C),behind),T1),
happens(follow_wall, T1),
happens(go_through(D),T2,T3),
before(T1,T2),
not(clipped(T1,door_open(D),T2)).

happens(go_through(D),T1,T3) :-
holds_at(loc(corner(C),ahead),T1),
inner(C),
happens(turn(right), T1),
happens(go_through(D),T2,T3),
before(T1,T2),
not(clipped(T1,door_open(D),T2)).

[* Navigation Heuristics */
towards(R1,R1,R2).
towards(R1,R2,R3) :- connects(D,R1,R2).

towards(R1,R2,R3) :-
connects(D1,R1,R4), connects(D2,R4,R2).

[* External Actions */
terminates(close_door(D),door_open(D),T).

initiates(open_door(D),door_open(D),T).

Appendix B: Map Building Code
[/ Map Building Compound Actions */

happens(explore,T1,T6) -
holds_at(loc(corner(C1),ahead),T1),
inner(C1),
unexplored_corner(C1,T1),
happens(turn(right), T1,T2),
happens(follow_wall, T3,T4), before(T2,T3),
happens(explore, T5,T6), before(T4,T5).

happens(explore, T1,T4) :-
holds_at(loc(corner(C1),ahead),T1),
not(inner(C1)),
unexplored_corner(C1,T1),
happens(go_straight, T1,T2),
happens(explore,T3,T4), before(T2,T3).

happens(explore,T1,T4) :-
holds_at(loc(corner(C1),behind),T1),
unexplored_corner(C1,T1),
happens(follow_wall, T1,T2),
happens(explore,T3,T4), before(T2,T3).

happens(explore,T1,T4) -
holds_at(loc(corner(C1),S),T1),
not(unexplored_corner(C1,T1)),
unexplored_door(D,T1),
happens(go_through(D),T1,T2),
happens(explore, T3,T4), before(T2,T3).

initiates(explore,knows_map,T).

holds_at(knows_map,T) :-
not(unexplored_door(D,T)),
not(unexplored_corner(C,T)).

unexplored_corner(C1,T) :-
pos(C1,P), not(next_corner(R,C1,C2)).

unexplored_door(D,T) :-
door(D,C1,C2), not(connects(D,R1,R2)).

* Integrity constraints */

inconsistent([pos(C1,P1), pos(C2,P2),
same_pos(P1,P2),
room_of(C1,R), room_of(C2,R),
diff(C1,C2)]).

inconsistent(next_corner(R,C1,C2),
next_corner(R,C1,C3), not(eq(C2,C3)))).

inconsistent([next_corner(R1,C1,C2),
next_corner(R2,C1,C2), not(eq(R1,R2)))).

f* Constraints */

common_antecedent(pos(C,[X1,X2,Y1,Y2)),
pos(C,[X3,X4,Y3,Y4]),
pos(C,[X5,X6,Y5,Y6) :-
max(X1,X3,X5), min(X2,X4,X6),
max(Y1,Y3,Y5), min(Y2,Y4,Y6).

Appendix C: Shared Code
/* Primitive Actions */

initiates(follow_wall,
loc(corner(C2),ahead),T) :-
holds_at(loc(corner(C1),behind), T),
next_visible_corner(C1,C2 left,T).

terminates(follow_wall,loc(corner(C),behind),T).

next_visible_corner(C1,C2,left,T) :-
holds_at(in(R),T),
next_corner(R,C1,C2),
not(invisible_corner(C2,T)).

next_visible_corner(C1,C3,left,T) :-
holds_at(in(R),T),
next_corner(R,C1,C2),
invisible_corner(C2,T),
next_visible_corner(C2,C3,left,T).

invisible_corner(C1,T) :-

door(D,C1,C2),holds_at(neg(door_open(D)),T).

invisible_corner(C1,T) :-

door(D,C2,C1),holds_at(neg(door_open(D)),T).

initiates(go_straight,
loc(corner(C2),behind),T) :-
holds_at(loc(corner(C1),ahead),T),
door(D,C1,C2).

terminates(go_straight,
loc(corner(C1),ahead),T) -
holds_at(loc(corner(C1),ahead),T),
door(D,C1,C2).

initiates(turn(left),loc(door(D),in), T) :-
holds_at(loc(corner(C1),ahead),T),
door(D,C1,C2),
holds_at(door_open(D),T).

terminates(turn(left),
loc(corner(C1),ahead),T) :-
holds_at(loc(corner(C1),ahead),T),
door(D,C1,C2),
holds_at(door_open(D),T).

initiates(turn(left),
loc(corner(C2),behind),T) :-
holds_at(loc(door(D),in),T),
holds_at(in(R1),T),
connects(D,R1,R2), door(D,C1,C2),
next_corner(R2,C1,C2).

terminates(turn(left),loc(door(D),in),T) :-
holds_at(loc(door(D),in),T).

initiates(turn(left),in(R2),T) :-
holds_at(loc(door(D),in),T),
holds_at(in(R1),T), connects(D,R1,R2).

terminates(turn(left),in(R1),T) :-
holds_at(loc(door(D),in),T),
holds_at(in(R1),T).

initiates(turn(right),
loc(corner(C),behind),T) :-
holds_at(loc(corner(C),ahead),T),
inner(C).

terminates(turn(right),
loc(corner(C),ahead),T) :-
holds_at(loc(corner(C),ahead), T), inner(C).

initiates(turn(right),facing(W21),T) :-
holds_at(facing(W2),T), plus_90(W2,W1).

terminates(turn(right),facing(W),T) -
holds_at(facing(W),T).

initiates(turn(left),facing(W1),T) :-
holds_at(facing(W2),T), minus_90(W2,W1).

terminates(turn(left),facing(W),T) :-
holds_at(facing(W),T).

initiates(follow_wall,co_ords(P),T) :-
holds_at(loc(corner(C1),behind),T),
next_visible_corner(C1,C2,left,T),
pos(C2,P).

terminates(follow_wall,co_ords(P),T) :-
holds_at(co_ords(P),T).

10

initiates(go_straight,co_ords(P),T) :-
holds_at(loc(corner(C1),ahead),T),
door(D,C1,C2), pos(C2,P).

terminates(go_straight,co_ords(P),T) :-
holds_at(co_ords(P),T).

initiates(turn(left),co_ords(P),T) :-
holds_at(loc(door(D),in),T),
holds_at(in(R1),T),
connects(D,R1,R2),
door(D,C1,C2), next_corner(R2,C1,C2),
pos(C2,P).

terminates(turn(left),co_ords(P),T) :-
holds_at(loc(door(D),in), T),
holds_at(co_ords(P),T).

[* Sensor events */

happens(left_and_front(X),T,T) :-
happens(follow_wall,T,T),
holds_at(co_ords(P1),T),
holds_at(facing(W),T),
holds_at(loc(corner(C1),behind), T),
next_visible_corer(C1,C2left,T),
inner(C2),
displace(P1,X,W,P2), pos(C2,P2).

happens(left(X),T,T) :-
happens(turn(right),T,T),
holds_at(loc(corner(C),ahead),T), inner(C).

happens(left(X),T,T) :-
happens(turn(left),T,T),
holds_at(loc(door(D),in),T),
holds_at(in(R1),T),
connects(D,R1,R2), connects(D,R2,R1),
holds_at(co_ords(P1),T),
holds_at(facing(W1),T),
next_corner(R2,C3,C2), door(D,C3,C2),
wall_thickness(Y1), displace(P1,Y1,W1,P2),
pos(C2,P2), door_width(Y?2), plus_90(W1,W2),
displace(P2,Y2,W2,P3), pos(C3,P3).

happens(left(X),T,T) :-
happens(go_straight,T,T),
holds_at(co_ords(P1),T),
holds_at(facing(w),T),
holds_at(loc(corner(C1),ahead),T),
holds_at(in(R),T),
next_corner(R,C1,C2), door(D,C1,C2),
displace(P1,X,W,P2), pos(C2,P2).

happens(left_gap(X),T,T) :-
happens(follow_wall,T,T),
holds_at(co_ords(P1),T),
holds_at(facing(W),T),
holds_at(loc(corner(C1),behind), T),
next_visible_corer(C1,C2left,T),
not(inner(C2)),
displace(P1,X,W,P2), pos(C2,P2).

