
1

Robot Navigation and Map Building with the Event Calculus

Murray Shanahan and Mark Witkowski

Department of Electrical and Electronic Engineering,
Imperial College,
Exhibition Road,

London SW7 2BT,
England.

m.shanahan@ic.ac.uk, m.witkowski@ic.ac.uk

Abstract
This paper presents a programmable logic-based
agent control system that interleaves planning, plan
execution and perception. In this system, a program
is a collection of logical formulae describing the
agent’s relationship to its environment. Two such
programs for a mobile robot are described — one for
navigation and one for map building — that share
much of their code.

Introduction
In the late Sixties, when the Shakey project started [Nilsson,
1984], the vision of robot design based on logical
representation seemed both attractive and attainable.
Through the Seventies and early Eighties, however, the
desire to build working robots led researchers away from
logic to more practical approaches to representation. This
movement away from logical representation reached its
apogee in the late Eighties and early Nineties when Brooks
jettisoned the whole idea of representation, along with the
so-called sense-model-plan-act architecture epitomised by
Shakey [Brooks, 1991].

However, the Shakey style of architecture, having an overtly
logic-based deliberative component, seems to offer
researchers a direct path to robots with high-level cognitive
skills, such as planning, communication, and reasoning
about other agents. Accordingly, a number of researchers
have instigated a Shakey revival. Armed with modern
solutions to the frame problem, work in so-called cognitive
robotics aims to build robots with high-level cognitive skills
using logic as a representational medium [Lespérance, et al.,
1994].

This paper presents an implemented logic-based, high-level
robot control system. The controller is programmed directly
in logic, specifically in the event calculus, an established
formalism for reasoning about action. The controller’s
underlying computational model is a sense-plan-act cycle, in
which both planning and sensor data assimilation are
abductive theorem proving tasks. Two small application
programs written in this language are described in detail,
one for navigation and one for map building. Both these
programs have been deployed and tested on actual robots.

The paper is organised as follows. After an informal
presentation of the behaviour of these application programs,
the theoretical underpinnings of the controller are outlined
— the event calculus is described, and abductive accounts
of planning and perception are sketched. The
implementation of the sense-plan-act cycle is then
discussed, and finally, the two application programs —
navigation and map building — are presented.

1 What the Robot Can Do
The robotic platform for the experiments reported in this
paper is a Khepera, a miniature robot with two drive wheels
and a suite of eight infra-red proximity sensors around its
circumference. The robot inhabits a miniaturised office-like
environment, depicted in Figure 1.

The robot has a simple repertoire of low-level actions,
executed on-board, which includes wall following, turning
into doorways, and turning around corners. Using these, the
high-level, off-board controller manoeuvres the robot
around its environment.

Let’s take a look at a navigation example to see how the
high-level controller functions. Suppose the robot is initially
between corners c1 and c2, as shown, and suppose it has the
goal of retrieving a package from room r6. Informally, this
is how the robot’s high-level controller achieves the goal.

First, the robot plans a route. As soon as it finds a complete
(though perhaps not fully decomposed) plan with an
executable first action, the robot starts carrying out that
plan. In this case, the first action is to go through door d4, so

r3r1 r2

r4

r5 r6

d1 d2

d3 d4

d5 d6

c1

c2c3

Figure 1: The Robot’s Environment

2

the robot sets out along the wall until it reaches corner c2. It
then turns the corner, and heads off towards door d4.

Suppose someone now closes door d4. Unfortunately,
because of its poor sensors, the robot cannot detect closed
doors, which are indistinguishable from walls. So the robot
continues wall following until it reaches corner c3.

Up to this point, the assimilation of the robot’s sensor data
has been a trivial matter. The sensor events it receives are
exactly what it would expect given what it has done and
what it believes about its environment. So the explanations
of those sensor events are trivial. But this encounter with a
corner requires a non-empty explanation.

Using abduction, the robot constructs an explanation of its
encounter with the corner — door d4 must have been
closed, and it must now be at corner c3. But this new piece
of information conflicts with the assumptions underlying the
plan it’s executing. So the robot is forced to replan. It now
finds a new route to room r6, via doors d2, d3, and d6,
which it successfully executes and retrieves the package.

Now let’s consider a map building example.

Where the navigation task takes for granted the prior
availability of a map of the robot’s environment, the map
building task starts with a complete tabula rasa. Nothing is
initially known of the layout of rooms, doors and corners,
and the robot’s job is to explore its environment, building a
map as it goes along. This is done by abductively explaining
the robot’s sensor data, exactly as in navigation, the chief
difference being that explanations are now bits of map
rather than door closing events. (We assume all the doors
stay open during map building.)

Suppose it starts off in corner c1. As the robot doesn’t know
what the next corner from c1 is, it starts wall following.
After travelling a certain distance, its front sensors go high,
an event which is explained by postulating an inner
(concave) corner which is the next one along from c1. So
the robot names the corner and records its relationship to
and distance from c1.

In a similar fashion, the robot discovers the near and far
corners of door d4, postulates a door, and goes on its way. It
continues like this until it has been right around the room
and arrives at a corner it already knows about. (The robot
maintains a rough idea of its co-ordinates, and knows there
is a minimum distance between two distinct corners.
Therefore it can tell when it is back where it started.) Then,
since there is a door in the room leading to somewhere
unexplored, the robot navigates to that door, goes through it,
and repeats the process for the next room. Eventually all
rooms are explored, and a complete map is built.

2 Event Calculus Basics
The formalism used throughout this paper is based on the
circumscriptive event calculus [Shanahan, 1997a]. Because
the event calculus is presented in considerable detail
elsewhere, the description here will be kept fairly brief.

A many sorted language is assumed, with variables for
fluents, actions (or events), and time points. We have the

following axioms, whose conjunction will be denoted EC.
Their main purpose is to constrain the predicate HoldsAt.
HoldsAt(β,τ) represents that fluent β holds at time τ.
Throughout the paper, all variables are universally
quantified with maximum scope, unless otherwise indicated.

HoldsAt(f,t) ← InitiallyP(f) ∧ ¬ Clipped(0,f,t) (EC1)

HoldsAt(f,t3) ← (EC2)
Happens(a,t1,t2) ∧ Initiates(a,f,t1) ∧

t2 < t3 ∧ ¬ Clipped(t1,f,t3)

Clipped(t1,f,t4) ↔ (EC3)
∃ a,t2,t3 [Happens(a,t2,t3) ∧ t1 < t3 ∧ t2 < t4 ∧

[Terminates(a,f,t2) ∨ Releases(a,f,t2)]]

¬ HoldsAt(f,t) ← (EC4)
Initially N(f) ∧ ¬ Declipped(0,f,t)

¬ HoldsAt(f,t3) ← (EC5)
Happens(a,t1,t2) ∧ Terminates(a,f,t1) ∧

t2 < t3 ∧ ¬ Declipped(t1,f,t3)

Declipped(t1,f,t4) ↔ (EC6)
∃ a,t2,t3 [Happens(a,t2,t3) ∧ t1 < t3 ∧ t2 < t4 ∧

[Initiates(a,f,t2) ∨ Releases(a,f,t2)]]

Happens(a,t1,t2) → t1 ≤ t2 (EC7)

A particular domain is described in terms of Initiates,
Terminates, and Releases formulae. Initiates(α,β,τ)
represents that fluent β starts to hold after action α at time τ.
Conversely, Terminates(α,β,τ) represents that β starts not to
hold after action α at τ. Releases(α,β,τ) represents that
fluent β is no longer subject to the common sense law of
inertia after action α at τ.

A particular narrative of events is described in terms of
Happens and Initially formulae. The formulae InitiallyP(β)
and InitiallyN(β) respectively represent that fluent β holds at
time 0 and does not hold at time 0. Happens(α ,τ1,τ2)
represents that action or event α occurs, starting at time τ1
and ending at time τ2.

A two-argument version of Happens is defined as follows.

Happens(a,t) ≡def Happens(a,t,t)

Formulae describing triggered events are allowed, and will
generally have the form,

Happens(α,τ) ← Π
where Π can be any formula. As we’ll see, similar formulae,
in “Happens if Happens” form, can be used to define high-
level, compound actions in terms of more primitive ones.

The frame problem is overcome through circumscription.
Given a conjunction Σ of Initiates, Terminates, and Releases
formulae describing the effects of actions, a conjunction ∆
of Initially, Happens and temporal ordering formulae
describing a narrative of actions and events, and a
conjunction Ω of uniqueness-of-names axioms for actions
and fluents, we’re interested in,

CIRC[Σ ; Initiates, Terminates, Releases] ∧
CIRC[∆ ; Happens] ∧ EC ∧ Ω.

By minimising Initiates, Terminates and Releases we
assume that actions have no unexpected effects, and by
minimising Happens we assume that there are no

3

unexpected event occurrences. In most of the cases we’re
interested in, Σ and ∆ will be conjunctions of Horn clauses,
and the circumscriptions will reduce to predicate
completions.

Care must be taken when domain constraints and triggered
events are included. The former must be conjoined to EC,
while the latter are conjoined to ∆.

3 Planning and Perception as Abduction
Logically speaking, both planning and sensor data
assimilation can be considered as abduction, the reverse of
deduction, which in the present context means reasoning
from effects to causes. Let’s consider planning first.

Planning can be thought of as the inverse operation to
temporal projection, and temporal projection in the event
calculus is naturally cast as a deductive task in the following
way. Given Σ, Ω and ∆ as in Section 2, we’re interested in
HoldsAt formulae Γ such that,

CIRC[Σ ; Initiates, Terminates, Releases] ∧
CIRC[∆ ; Happens] ∧ EC ∧ Ω

�
 Γ.

Conversely, planning in the event calculus can be
considered as an abductive task. Given a domain description
Σ, a conjunction Γ of goals (HoldsAt formulae), and a
conjunction ∆N of InitiallyP and InitiallyN formulae
describing the initial situation, a plan is a consistent
conjunction ∆P of Happens and temporal ordering formulae
such that,

CIRC[Σ ; Initiates, Terminates, Releases] ∧
CIRC[∆N ∧ ∆P ; Happens] ∧ EC ∧ Ω

�
 Γ.

In order to interleave planning, sensing and acting in a
respectable way, we need to carry out hierarchical planning.
The logical story for hierarchical planning is the same,
except that we add a conjunction of “Happens if Happens”
formulae to ∆N ∧ ∆P.

Now let’s take a look at the topic of perception (sensor data
assimilation). An abductive logical account of sensor data
assimilation (SDA) can be constructed which mirrors the
above account of planning. The need for such an account
arises from the fact that sensors do not deliver facts directly
into the robot’s model of the world. Rather they provide raw
data from which facts can be inferred. Perception involves
finding explanations of raw sensor data, hence the need for
abduction.

The methodology for supplying the required logical account
is as follows [Shanahan, 1997b]. First, using a suitable
formalism for reasoning about actions, we need to construct
a theory Σ of the effects of the robot’s actions on the world
and the impact of the world on the robot’s sensors. Then,
sensor data assimilation can be considered as abduction with
this theory. Roughly speaking (omitting details of the
circumscriptions), given a narrative ∆ of the robot’s actions,
and a description Γ of the robot’s sensor data, the robot
needs to find some Ψ such that,

Σ ∧ ∆ ∧ Ψ
�

 Γ.

Γ might comprise Happens and/or HoldsAt formulae
describing sensor events or values, and Ψ might comprise
Initially N and InitiallyP formulae describing the
environment’s initial configuration and/or Happens
formulae describing the intervening actions of other agents
who have modified that configuration.

There is, of course, no guarantee that a unique Ψ exists to
explain any given collection of sensor data. So some
strategy needs to be adopted for dealing with multiple
explanations. This can involve imposing a preference
ordering on explanations, perhaps resulting in the adoption
of the “simplest” explanation, in some sense. The whole
issue of multiple explanations merits further study.

Since most of the formulae we’re using are in extended
Horn clause form, these accounts of planning and perception
can be implemented through abductive logic programming,
as described in [Shanahan, 1999]. The present
implementation is a meta-interpreter with built-in facilities
for handling the axioms of the event calculus. The same
meta-interpreter is used for both planning and sensor data
assimilation.

The computation carried out by this system strongly
resembles that of a hand-coded partial-order planning
algorithm, such as UCPOP [Penberthy & Weld, 1992], as
shown in [Shanahan, 1999]. In particular, the
implementation has to record the negated Clipped and
Declipped formulae it has proved, and these are treated in
much the same way as protected links in a partial-order
planner. They also play a vital role in deciding when to
replan.

Throughout the sequel, when discussing the actual
implementation rather than the logic, the event calculus
syntax employed by the meta-interpreter will be used
instead of predicate calculus syntax. This is much like
standard Prolog syntax, with predicate and function symbols
starting with lower case letters, and variables starting with
upper case letters. For example, the predicate calculus
formula,

Initiates(Move(x,y),On(x,y),t) ←
HoldsAt(Free(x),t) ∧ HoldsAt(Free(y),t)

in meta-interpreter syntax becomes,
initiates(move(X,Y),on(X,Y),T) :-

holds_at(free(X),T), holds_at(free(Y),t) .

This serves to emphasise the distinction between
specification and implementation. Indeed, the relationship
between pure event calculus theories and the event calculus
programs they correspond to is one that needs to be
carefully policed. Ideally, we would like, not only a trivial
translation from one to the other, but also an implementation
that is both sound and complete with respect to the logic.

In [Shanahan, 1999], the abductive meta-interpreter is
proven to be sound and complete for a certain class of event
calculus theories. However, this class does not encompass
all the examples looked at in this paper, so further work is
required on this issue.

4

4 Robot Programming in the Event Calculus
This section describes the robot’s control system in more
detail. In essence, it is a general purpose high-level agent
control system, programmable directly in the event calculus.
Although the focus of the present discussion is on robotics,
the technology is applicable to other types of agent as well.

The system executes a sense-plan-act cycle. The execution
of this cycle has the following features.

• Planning and sensor data assimilation are both
resolution-based abductive theorem proving processes,
working on sets of event calculus formulae. These
processes conform to the logical specifications outlined
in the previous section.

• Planning and SDA are both resource-bounded
processes. They are subject to constant suspension to
permit the interleaving of sensing, planning and acting.

• To encourage reactivity, planning is hierarchical. This
facilitates planning in progression order, which
promotes the rapid generation of a first executable
action.

• The results of sensor data assimilation can expose
conflicts with current plan, thus precipitating
replanning.

An event calculus robot program comprises the following
five parts.

A. A set of Initiates, Terminates and Releases formulae
describing of the effects of the robot’s primitive, low-
level actions on the world.

B. A set of Happens formulae describing the causes of
robot sensor events.

C. A set of Initiates, Terminates and Releases formulae
describing the effects of high-level, compound actions.

D . A set of Happens formulae defining high-level,
compound actions in terms of more primitive ones.

E. A set of declarations, specifying, for example, what
formulae are abducible.

The formulae in A to D figure in the sense-plan-act cycle in
the following way. Initially, the system has an empty plan,
and is presented with a goal Γ in the form of a HoldsAt
formula. Using resolution against formulae in C, the
planning process identifies a high-level action α that will
achieve Γ. (If no such action is available, the planner uses
the formulae in A to plan from first principles.) The
planning process then decomposes α using resolution
against formulae in D. This decomposition may yield any
combination of the following.

• Further sub-goals to be achieved (HoldsAt formulae).

• Further sub-actions to be decomposed (Happens
formulae).

• Executable, primitive actions to be added to the plan
(Happens formulae).

• Negated Clipped or Declipped formulae, analogous to
protected links in partial-order planning, whose validity
must be preserved throughout subsequent processing.

As soon as a complete but possibly not fully decomposed
plan with an executable first action is generated, the robot
can act.

Meanwhile, the SDA process is also underway. This
receives incoming sensor events in the form of Happens
formulae. Using resolution against formulae in B, the SDA
process starts trying to find an explanation for these sensor
events. This may yield any combination of Happens,
HoldsAt and negated Clipped and Declipped formulae,
which are subject to further abductive processing through
resolution against formulae in A, taking into account the
actions the robot itself has performed.

Ultimately, the SDA process generates a set of abduced
Happens formulae describing external actions (actions not
carried out by the robot itself) which explain the incoming
sensor data. Using resolution against formulae in A, it can
be determined whether these external events threaten the
validity of the negated Clipped and Declipped formulae
(protected links) recorded by the planning process. If they
do, the system replans from scratch.

In the context of the sense-plan-act cycle, the event calculus
can be regarded as a logic programming language for
agents. Accordingly, event calculus programs have both a
declarative meaning, given by the logic of Sections 2 and 3,
and a procedural meaning, given by the execution model
outlined in this section and at the end of Section 3. The
following sections present two robotic applications written
as event calculus programs, namely navigation and map
building.

5 A Navigation Program
Appendices A and C contain (almost) the full text of a
working event calculus program for robot navigation. This
section describes the program’s construction and operation.

The robot’s environment is represented in the following
way. The formula connects(D,R1,R2) means that door
D connects rooms R1 and R2, inner(C) means that
corner C is a concave corner, door(D,C1,C2) means
corners C 1 and C 2 are door D ’s doorposts, and
next_corner(R,C1,C2) means that C2 is the next
corner from C1 in room R in a clockwise direction, where
C1 and C2 can each be either convex or concave. A set of
such formulae (a map), describing the room layout in
Figure 1, say, is a required background theory for the
navigation application, but is not given in the appendices.

The robot can execute a repertoire of three primitive actions:
follow_wall , in which case it proceeds along the wall to
the next visible corner, turn(S) , in which case the robot
turns a corner in direction S (either left or right), and
go_straight , in which case the robot crosses a doorway.
For simplicity, the current robot only proceeds in a
clockwise direction around a room, hugging the wall to its
left.

5

The navigation domain comprises just two fluents. The term
in(R) denotes that the robot is in room R. The term
loc(C,S) denotes that the robot is in corner C. The S
parameter of the loc fluent, whose value is either ahead
or behind , indicates the relative orientation of the robot to
the corner C.

The program comprises the five parts mentioned in Section
4. To begin with, let’s look at the formulae describing high-
level, compound actions (parts C and D, according to
Section 4). Let’s consider the high-level action
go_to_room(R1,R2) . The effect of this action is given
by an initiates formula.

initiates(go_to_room(R1,R2),in(R2),T) :- (A1)
holds_at(in(R1),T).

In other words, go_to_room(R1,R2) puts the robot in
R2, assuming it was in R1. The go_to_room action is
recursively defined in terms of go_through actions.

happens(go_to_room(R,R),T,T). (A2)
happens(go_to_room(R1,R3),T1,T4) :- (A3)

towards(R2,R3,R1), connects(D,R1,R2),
holds_at(door_open(D),T1),
happens(go_through(D),T1,T2),
happens(go_to_room(R2,R3),T3,T4),
before(T2,T3),
not(clipped(T2,in(R2),T3)).

In other words, go_to_room(R1,R3) has no sub-actions
if R1 = R3, but otherwise comprises a go_through action
to take the robot through door D into room R2 followed by
another go_to_room action to take the robot from R2 to
R3. Door D must be open. The towards predicate supplies
heuristic guidance for the selection of the door to go
through.

Notice that the action is only guaranteed to have the effect
described by the initiates formula if the room the robot
is in doesn’t change between the two sub-actions. Hence the
need for the negated clipped conjunct.

The go_through action itself decomposes further into
follow_wall , go_straight and turn actions that
the robot can execute directly (see Appendix A).

Now let’s consider the formulae describing the effects of
these primitive executable actions (part A of the program,
according to Section 4). The full set of these formulae is to
be found in Appendix C. Here are the formulae describing
the follow_wall action.

initiates(follow_wall, (S1)
loc(corner(C2),ahead),T) :-

holds_at(loc(corner(C1),behind),T),
next_visible_corner(C1,C2,left,T).

terminates(follow_wall, (S2)
loc(corner(C),behind),T).

A follow_wall action takes the robot to the next visible
corner in the room, where the next visible corner is the next
one that is not part of a doorway whose door is closed. It
modifies the loc fluent, where loc(corner(C),S)
denotes that the robot is in the corner C. S is either ahead
or behind , indicating respectively that the robot is facing
into the corner and away from it.

The effects of go_straight and turn are similarly
described. The formulae in Appendix C also cover the
fluents facing and pos which are used for map building
but not for navigation.

Next we’ll take a look at the formulae describing the causes
of sensor events, which figure prominently in sensor data
assimilation (part B of the program, according to Section 4).
Three kinds of sensor event can occur:
left_and_front , left_gap and left .

The left_and_front event occurs when the robot’s left
sensors are already high and its front sensors go high, as
when it’s following a wall and meets a concave corner. The
left_gap event occurs when its left sensors go low, as
when it is following a corner and meets a convex corner
such as a doorway. The left event occurs when its front
and left sensors are high and the front sensors go low, as
when it turns right in a concave corner.

In the formulae of Appendix C, each of these sensor events
has a single parameter, which indicates the distance the
robot thinks it has travelled since the last sensor event. This
parameter is used for map building and can be ignored for
the present.

Here’s the formula for left_and_front .
happens(left_and_front(X),T,T) :- (S3)

happens(follow_wall,T,T),
holds_at(co_ords(P1),T),
holds_at(facing(W),T),
holds_at(loc(corner(C1),behind),T),
next_visible_corner(C1,C2,left,T),
inner(C2),
displace(P1,X,W,P2), pos(C2,P2).

The second, third and final conjuncts on the right-hand-side
of this formula are again the concern of map building, so we
can ignore them for now. The rest of the formula says that a
left_and_front event will occur if the robot starts off
in corner C1, then follows the wall to a concave corner C2.
Similar formulae characterise the occurrence of left and
left_gap events (see Appendix C).

6 A Worked Example of Navigation
These formulae, along with their companions in Appendices
A and C, are employed by the sense-plan-act cycle in the
way described in Section 4. To see this, let’s return to the
navigation example of Section 1. The system starts off with
an empty plan, and is presented with the initial goal to get to
room r6.

holds_at(in(r6),T)

The planning process resolves this goal against clause (A1),
yielding a complete, but not fully decomposed plan,
comprising a single go_to_room(r3,r6) action.
Resolving against clause (A3), this plan is decomposed into
a g o _ t h r o u g h (d 4) action followed by a
go_to_room(r4,r6) action. Further decomposition of
the go_through action yields the plan: follow_wall ,
go_through(d4) , then go_to_room(r4,r6) . In
addition, a number of protected links (negated clipped

6

and declipped formulae) are recorded for later re-
checking, including a formula of the form,

not(clipped(τ1,door_open(d4), τ2)) .

The system now possesses a complete, though still not fully
decomposed, plan, with an executable first action, namely
f o l l o w _ w a l l . So it proceeds to execute the
follow_wall action, while continuing to work on the
plan.

When the f o l l o w _ w a l l action finishes, a
left_and_front sensor event occurs, and the SDA
process is brought to life. In this case, the sensor event has
an empty explanation — it is just what would be expected to
occur given the robot’s actions.

Similar processing brings about the subsequent execution of
a turn(right) action then another follow_wall
action. At the end of this second follow_wall action, a
left_and_front sensor event occurs. This means that a
formula of the form,

happens(left_and_front(δ), τ)
needs to be explained, where τ is the time of execution of
the follow_wall action. The SDA process sets about
explaining the event in the usual way, which is to resolve
this formula against clause (S3). This time, though, an
empty explanation will not suffice. Since door d4 was
initially open, a left_gap event should have occurred
instead of a left_and_front event.

After a certain amount of work, this particular explanation
task boils down to the search for an explanation of the
formula,

next_visible_corner(c2,C, τ), inner(C)

(The C is implicitly existentially quantified.) The
explanation found by the SDA process has the following
form.

happens(close_door(d4), τ'), before(τ', τ)

In other words, an external close_door action occurred
some time before the robot’s follow_wall action. Since
this c l o s e _ d o o r action terminates the fluent
door_open(d4) , there is a violation of one of the
protected links recorded by the planner (see above). The
violation of this protected link causes the system to replan,
this time producing a plan to go via doors d2 and d3 which
executes successfully.

7 Map Building with Epistemic Fluents
The focus of the rest of this paper is map building. Map
building is a more sophisticated task than navigation, and
throws up a number of interesting issues, including how to
represent and reason with knowledge producing actions and
actions with knowledge preconditions, the subject of this
section.

To see why this issue is important, consider the fact that, as
a result of building a map of its environment, there may be
no physical modification to that environment at all. The
robot may even be back in the same location it started in.
The only change that has taken place is in the robot’s

knowledge. The only effects of the robot’s actions relevant
to map building are their knowledge producing effects.
Similarly, the robot’s overall goal is a knowledge goal, not a
physical one.

The operation of the sense-plan-act cycle, in particular the
SDA process, entails that actions do indeed have knowledge
producing effects. For instance, in the navigation example,
following a wall can result in the robot knowing whether or
not a door is open.

In the navigation example, explanations of sensor data are
constructed in terms of open door and close door events, but
for map building we require explanations in terms of the
relationships between corners and the connectivity of
rooms. So the first step in turning our navigation program
into a map building program is to declare a different set of
abducibles (part E of a robot program, according to Section
4). The abducibles will now include the predicates
next_corner , inner , door , and connects . Map
building then becomes a side effect of the SDA process.

But how are the effects of the robot’s actions on its
knowledge of these predicates to be represented and
reasoned with? The relationship between knowledge and
action has received a fair amount of attention in the
reasoning about action literature ([Levesque, 1996] is a
recent example). All of this work investigates the
relationship between knowledge and action on the
assumption that knowledge has a privileged role to play in
the logic.

In the present paper, the logical difficulties consequent on
embarking on such an investigation are to some degree
sidestepped by according epistemic fluents, that is to say
fluents that concern the state of the robot’s knowledge,
exactly the same status as other fluents.

Before discussing implementation, let’s take a closer look at
this issue from a logical point of view. To begin with, we’ll
introduce a generic epistemic fluent Knows. The formula
HoldsAt(Knows(φ),τ) represents that the formula φ follows
from the robot’s knowledge at time τ. (More precisely, to
distinguish object- from meta-level, the formula named by φ
follows from the robot’s knowledge. To simplify matters,
we’ll assume every formula is its own name.)

Using epistemic fluents, we can formalise the knowledge
producing effects of the robot’s repertoire of actions. In the
present domain, for example, we have the following.

∃ r,c2 [Initiates(FollowWall,
Knows(NextCorner(r,c1,c2)),t)] ←

HoldsAt(Loc(Corner(c1),Behind),t)

In other words, following a wall gives the robot knowledge
of the next corner along. This formula is true, given the right
set of abducibles, thanks to the abductive treatment of
sensor data via clause (S3). In practise, the abductive SDA
process gives a new name to that corner, if it’s one it hasn’t
visited before, and records whether or not it’s an inner
corner.

Similar formulae account for the epistemic effects of the
robot’s other actions. Then, all we need is to describe the

7

initial state of the robot’s knowledge, using the InitiallyN
and InitiallyP predicates, and the axioms of the event
calculus will take care of the rest, yielding the state of the
robot’s knowledge at any time.

Epistemic fluents, as well as featuring in the descriptions of
the knowledge producing effects of actions, also appear in
knowledge goals. In the present example, the overall goal is
to know the layout of corners, doors and rooms.
Accordingly, an epistemic fluent KnowsMap is defined as
follows.

HoldsAt(KnowsMap,t) ←
[Door(d,c1,c2) →

∃ r2 [HoldsAt(Knows(Connects(d,r1,r2)),t)]] ∧
[Pos(c1,p) →

∃ c2 [HoldsAt(Knows(NextCorner(r,c1,c2)),t)]]

Note the difference between

∃ r2 [HoldsAt(Knows(Connects(d,r1,r2)),t)]]

and

∃ r2 [Connects(d,r1,r2)].

The second formula says that there is a room through door
d, while the first formula says that the robot knows what
that room is. The robot’s knowledge might include the
second formula while not including the first. Indeed, if
badly programmed, the robot’s knowledge could include the
first formula while not including the second. (There is no
analogue to the axiom schema T (reflexivity) in modal
logic.)

The top-level goal presented to the system will be
HoldsAt(KnowsMap,t). Now suppose we have a high-level
action Explore, whose effect is to make KnowsMap hold.

Initiates(Explore,KnowsMap,t)

Given the top-level goal HoldsAt(KnowsMap,t), the initial
top-level plan the system will come up with comprises the
single action Explore. The definition of Explore is, in effect,
the description of a map building program. Here’s an
example formula.

Happens(Explore,t1,t4) ← (L1)
HoldsAt(In(r1),t) ∧ HoldsAt(Loc(Corner(c1),s),t1) ∧
∃ c2 [HoldsAt(Knows(NextCorner(r1,c1,c2)),t1)] ∧
∃ d, c2, c3 [Door(d,c2,c3) ∧

¬ ∃ r2 [HoldsAt(Knows(Connects(d,r1,r2)),t1)]] ∧
Happens(GoThrough(d),t1,t2) ∧
Happens(Explore,t3,t4) ∧ Before(t2,t3)

This formula tells the robot to proceed through door d if it’s
in a corner it already knows about, where d is a door leading
to an unknown room. Note the use of epistemic fluents in
the third and fourth lines. A number of similar formulae
cater for the decomposition of Explore under different
circumstances.

8 A Map Building Program
Appendices B and C present (almost) the full text of a
working event calculus program for map building. This
section outlines how it works. The three novel issues that set

this program apart from the navigation program already
discussed are,

1. the use of epistemic fluents,

2. the need for integrity constraints, and

3 . the need for techniques similar to those used in
constraint logic programming (CLP).

The first issue was addressed in the previous section. The
second two issues, as we’ll see shortly, arise from the
robot’s need to recognise when it’s in a corner it has already
visited.

First, though, let’s see how the predicate calculus definition
of the Explore action translates into a clause in the actual
implementation. Here’s the implemented version of formula
(L1) at the end of the previous section.

happens(explore,T1,T4) :- (B1)
holds_at(loc(corner(C1),S),T1),
not(unexplored_corner(C1,T1)),
unexplored_door(D,T1),
happens(go_through(D),T1,T2),
happens(explore,T3,T4), before(T2,T3).

Instead of using epistemic fluents explicitly, this clause
appeals to two new predicates unexplored_corner and
unexplored_door . These are defined as follows.

unexplored_corner(C1,T) :- (B2)
pos(C1,P), not(next_corner(R,C1,C2)).

unexplored_door(D,T) :- (B3)
door(D,C1,C2), not(connects(D,R1,R2)).

The formula pos(C,P) represents that corner C is in
position P, where P is a co-ordinate range (see below).

By defining these two predicates, we can simulate the effect
of the existential quantifiers in formula (L1) using negation-
as-failure. Furthermore, we can use negation-as-failure as a
substitute for keeping track of the Knows fluent. (This trick
renders the predicates’ temporal arguments superfluous, but
they’re retained for elegance.) Operationally, the formula,

not(next_corner(R,C1,C2))

serves the same purpose as the predicate calculus formula,

¬ ∃ r2 [HoldsAt(Knows(Connects(d,r1,r2)),t1)]].

The first formula uses negation-as-failure to determine what
is provable from the robot’s knowledge, while the second
formula assumes that what is provable is recorded explicitly
through the Knows fluent.

The final issue to discuss is how, during its exploration of a
room, the robot recognises that it’s back in a corner it has
already visited, so as to prevent the SDA process from
postulating redundant new corners.

Recall that each sensor event has a single argument, which
is the estimated distance the robot has travelled since the
last sensor event. Using this argument, the robot can keep
track of its approximate position. Accordingly, the program
includes a suitable set of initiates and terminates
clauses for the co_ords fluent, where co_ords(P)
denotes that P is the robot’s current position. A position is
actually a list [X1,X2,Y1,Y2] , representing a rectangle,
bounded by X1 and X2 on the x-axis and Y1 and Y2 on the

8

y-axis, within which an object’s precise co-ordinates are
known to fall.

Using this fluent, explanations of sensor data that postulate
redundant new corners can be ruled out using an integrity
constraint. (In abductive logic programming, the use of
integrity constraints to eliminate possible explanations is a
standard technique.) Logically speaking, an integrity
constraint is a formula of the form,

¬ [P1 ∧ P2 ∧ . . . ∧ Pn]

where each Pi is an atomic formula. Any abductive
explanation must be consistent with this formula. In meta-
interpreter syntax, the predicate inconsistent is used to
represent integrity constraints, and the abductive procedure
needs to be modified to take them into account. In the
present case, we need the following integrity constraint.

inconsistent([pos(C1,P1), pos(C2,P2), (B4)
same_pos(P1,P2),
room_of(C1,R), room_of(C2,R),
diff(C1,C2)]).

The formula same_pos(P1,P2) checks whether the
maximum possible distance between P1 and P2 is less than
a predefined threshold. The formula diff(X,Y)
represents that X ≠ Y. If the meta-interpreter is trying to
prove not(diff(X,Y)) , it can do so by renaming X to Y.
(Terms that can be renamed in this way have to be
declared.) In particular, to preserve consistency in the
presence of this integrity constraint, the SDA process will
sometimes equate a new corner with an old one, and rename
it accordingly.

Having determined, via (B4), that two apparently distinct
corners are in fact one and the same, the robot may have two
overlapping positions for the same corner. These can be
subsumed by a single, more narrowly constrained position
combining the range bounds of the two older positions.

This motivates the addition of the final component of the
system, namely a rudimentary constraint reduction
mechanism along the lines of those found in constraint logic
programming languages. This permits the programmer to
define simple constraint reduction rules whereby two
formulae are replaced by a single formula that implies them
both. In the present example, we have the following rule.

common_antecedent(pos(C,[X1,X2,Y1,Y2]),
pos(C,[X3,X4,Y3,Y4]),
pos(C,[X5,X6,Y5,Y6) :-

max(X1,X3,X5), min(X2,X4,X6),
max(Y1,Y3,Y5), min(Y2,Y4,Y6).

The formula common_antecedent(P1,P2,P3)
represents that P3 implies both P1 and P2, and that any
explanation containing both P1 and P2 can be simplified by
replacing P1 and P2 by P3.

Concluding Remarks
The aim of the ongoing work reported here is to design and
build theoretically well-founded, general purpose systems
for high-level robot control, in which each computational
step is also a step of logical inference, and each

computational state has declarative meaning. Needless to
say, the ideas presented merit a good deal of further study,
and it remains to be seen whether they will scale up to
robots with richer sensors in more realistic environments.

Preliminary results are promising, though. In particular, it’s
encouraging to see that event calculus programs for
navigation and map building can be written that are each
less than 100 lines long and, moreover, that share more than
half their code.

References
[Brooks, 1991] R.A.Brooks, Intelligence Without Reason,

Proceedings IJCAI 91, pages 569-595.

[Lespérance, et al., 1994] Y.Lespérance, H.J.Levesque,
F.Lin, D.Marcu, R.Reiter, and R.B.Scherl, A Logical
Approach to High-Level Robot Programming: A Progress
Report, in Control of the Physical World by Intelligent
Systems: Papers from the 1994 AAAI Fall Symposium, ed.
B.Kuipers, New Orleans (1994), pp. 79–85.

[Levesque, 1996] H.Levesque, What Is Planning in the
Presence of Sensing? Proceedings AAAI 96, pp.
1139–1146.

[Nilsson, 1984] N.J.Nilsson, ed., Shakey the Robot, SRI
Technical Note no. 323 (1984), SRI, Menlo Park,
California.

[Penberthy & Weld, 1992] J.S.Penberthy and D.S.Weld,
UCPOP: A Sound, Complete, Partial Order Planner for
ADL, Proceedings KR 92, pp. 103–114.

[Shanahan, 1997a] M.P.Shanahan, Solving the Frame
Problem: A Mathematical Investigation of the Common
Sense Law of Inertia, MIT Press (1997).

[Shanahan, 1997b] M.P.Shanahan, Noise, Non-Determinism
and Spatial Uncertainty, Proceedings AAAI 97, pp.
153–158.

[Shanahan, 1999] M.P.Shanahan, An Abductive Event
Calculus Planner, Journal of Logic Programming, to
appear (provisionally accepted).

Appendix A: Navigation Code
/* Navigation Compound Actions */

happens(go_to_room(R,R),T,T).

happens(go_to_room(R1,R3),T1,T4) :-
 towards(R2,R3,R1), connects(D,R1,R2),
 holds_at(door_open(D),T1),
 happens(go_through(D),T1,T2),
 happens(go_to_room(R2,R3),T3,T4),
 before(T2,T3),
 not(clipped(T2,in(R2),T3)).

happens(go_to_room(R1,R3),T1,T4) :-
 connects(D,R1,R2),
 holds_at(door_open(D),T1),
 happens(go_through(D),T1,T2),
 happens(go_to_room(R2,R3),T3,T4),
 before(T2,T3),
 not(clipped(T2,in(R2),T3)).

9

initiates(go_to_room(R1,R2),in(R2),T) :-
 holds_at(in(R1),T).

happens(go_through(D),T1,T2) :-
 holds_at(loc(corner(C1),ahead),T1),
 door(D,C1,C2),
 happens(turn(left),T1),
 happens(turn(left),T2),
 before(T1,T2),
 not(clipped(T1,door_open(D),T2)).

happens(go_through(D1),T1,T3) :-
 holds_at(loc(corner(C1,ahead)),T1),
 door(D2,C1,C2), diff(D1,D2),
 holds_at(door_open(D2),T1),
 happens(go_straight,T1),
 happens(go_through(D1),T2,T3),
 before(T1,T2).

happens(go_through(D),T1,T3) :-
 holds_at(loc(corner(C),behind),T1),
 happens(follow_wall,T1),
 happens(go_through(D),T2,T3),
 before(T1,T2),
 not(clipped(T1,door_open(D),T2)).

happens(go_through(D),T1,T3) :-
 holds_at(loc(corner(C),ahead),T1),
 inner(C),
 happens(turn(right),T1),
 happens(go_through(D),T2,T3),
 before(T1,T2),
 not(clipped(T1,door_open(D),T2)).

/* Navigation Heuristics */

towards(R1,R1,R2).

towards(R1,R2,R3) :- connects(D,R1,R2).

towards(R1,R2,R3) :-
 connects(D1,R1,R4), connects(D2,R4,R2).

/* External Actions */

terminates(close_door(D),door_open(D),T).

initiates(open_door(D),door_open(D),T).

Appendix B: Map Building Code
/* Map Building Compound Actions */

happens(explore,T1,T6) :-
 holds_at(loc(corner(C1),ahead),T1),
 inner(C1),
 unexplored_corner(C1,T1),
 happens(turn(right),T1,T2),
 happens(follow_wall,T3,T4), before(T2,T3),
 happens(explore,T5,T6), before(T4,T5).

happens(explore,T1,T4) :-
 holds_at(loc(corner(C1),ahead),T1),
 not(inner(C1)),
 unexplored_corner(C1,T1),
 happens(go_straight,T1,T2),
 happens(explore,T3,T4), before(T2,T3).

happens(explore,T1,T4) :-
 holds_at(loc(corner(C1),behind),T1),
 unexplored_corner(C1,T1),
 happens(follow_wall,T1,T2),
 happens(explore,T3,T4), before(T2,T3).

happens(explore,T1,T4) :-
 holds_at(loc(corner(C1),S),T1),
 not(unexplored_corner(C1,T1)),
 unexplored_door(D,T1),
 happens(go_through(D),T1,T2),
 happens(explore,T3,T4), before(T2,T3).

initiates(explore,knows_map,T).

holds_at(knows_map,T) :-
 not(unexplored_door(D,T)),
 not(unexplored_corner(C,T)).

unexplored_corner(C1,T) :-
 pos(C1,P), not(next_corner(R,C1,C2)).

unexplored_door(D,T) :-
 door(D,C1,C2), not(connects(D,R1,R2)).

/* Integrity constraints */

inconsistent([pos(C1,P1), pos(C2,P2),
 same_pos(P1,P2),
 room_of(C1,R), room_of(C2,R),
 diff(C1,C2)]).

inconsistent([next_corner(R,C1,C2),
 next_corner(R,C1,C3), not(eq(C2,C3))]).

inconsistent([next_corner(R1,C1,C2),
 next_corner(R2,C1,C2), not(eq(R1,R2))]).

/* Constraints */

common_antecedent(pos(C,[X1,X2,Y1,Y2]),
 pos(C,[X3,X4,Y3,Y4]),
 pos(C,[X5,X6,Y5,Y6) :-
 max(X1,X3,X5), min(X2,X4,X6),
 max(Y1,Y3,Y5), min(Y2,Y4,Y6).

Appendix C: Shared Code
/* Primitive Actions */

initiates(follow_wall,
 loc(corner(C2),ahead),T) :-
 holds_at(loc(corner(C1),behind),T),
 next_visible_corner(C1,C2,left,T).

terminates(follow_wall,loc(corner(C),behind),T).

next_visible_corner(C1,C2,left,T) :-
 holds_at(in(R),T),
 next_corner(R,C1,C2),
 not(invisible_corner(C2,T)).

next_visible_corner(C1,C3,left,T) :-
 holds_at(in(R),T),
 next_corner(R,C1,C2),
 invisible_corner(C2,T),
 next_visible_corner(C2,C3,left,T).

invisible_corner(C1,T) :-
 door(D,C1,C2),holds_at(neg(door_open(D)),T).

10

invisible_corner(C1,T) :-
 door(D,C2,C1),holds_at(neg(door_open(D)),T).

initiates(go_straight,
 loc(corner(C2),behind),T) :-
 holds_at(loc(corner(C1),ahead),T),
 door(D,C1,C2).

terminates(go_straight,
 loc(corner(C1),ahead),T) :-
 holds_at(loc(corner(C1),ahead),T),
 door(D,C1,C2).

initiates(turn(left),loc(door(D),in),T) :-
 holds_at(loc(corner(C1),ahead),T),
 door(D,C1,C2),
 holds_at(door_open(D),T).

terminates(turn(left),
 loc(corner(C1),ahead),T) :-
 holds_at(loc(corner(C1),ahead),T),
 door(D,C1,C2),
 holds_at(door_open(D),T).

initiates(turn(left),
 loc(corner(C2),behind),T) :-
 holds_at(loc(door(D),in),T),
 holds_at(in(R1),T),
 connects(D,R1,R2), door(D,C1,C2),
 next_corner(R2,C1,C2).

terminates(turn(left),loc(door(D),in),T) :-
 holds_at(loc(door(D),in),T).

initiates(turn(left),in(R2),T) :-
 holds_at(loc(door(D),in),T),
 holds_at(in(R1),T), connects(D,R1,R2).

terminates(turn(left),in(R1),T) :-
 holds_at(loc(door(D),in),T),
 holds_at(in(R1),T).

initiates(turn(right),
 loc(corner(C),behind),T) :-
 holds_at(loc(corner(C),ahead),T),
 inner(C).

terminates(turn(right),
 loc(corner(C),ahead),T) :-
 holds_at(loc(corner(C),ahead),T), inner(C).

initiates(turn(right),facing(W1),T) :-
 holds_at(facing(W2),T), plus_90(W2,W1).

terminates(turn(right),facing(W),T) :-
 holds_at(facing(W),T).

initiates(turn(left),facing(W1),T) :-
 holds_at(facing(W2),T), minus_90(W2,W1).

terminates(turn(left),facing(W),T) :-
 holds_at(facing(W),T).

initiates(follow_wall,co_ords(P),T) :-
 holds_at(loc(corner(C1),behind),T),
 next_visible_corner(C1,C2,left,T),
 pos(C2,P).

terminates(follow_wall,co_ords(P),T) :-
 holds_at(co_ords(P),T).

initiates(go_straight,co_ords(P),T) :-
 holds_at(loc(corner(C1),ahead),T),
 door(D,C1,C2), pos(C2,P).

terminates(go_straight,co_ords(P),T) :-
 holds_at(co_ords(P),T).

initiates(turn(left),co_ords(P),T) :-
 holds_at(loc(door(D),in),T),
 holds_at(in(R1),T),
 connects(D,R1,R2),
 door(D,C1,C2), next_corner(R2,C1,C2),
 pos(C2,P).

terminates(turn(left),co_ords(P),T) :-
 holds_at(loc(door(D),in),T),
 holds_at(co_ords(P),T).

/* Sensor events */

happens(left_and_front(X),T,T) :-
 happens(follow_wall,T,T),
 holds_at(co_ords(P1),T),
 holds_at(facing(W),T),
 holds_at(loc(corner(C1),behind),T),
 next_visible_corner(C1,C2,left,T),
 inner(C2),
 displace(P1,X,W,P2), pos(C2,P2).

happens(left(X),T,T) :-
 happens(turn(right),T,T),
 holds_at(loc(corner(C),ahead),T), inner(C).

happens(left(X),T,T) :-
 happens(turn(left),T,T),
 holds_at(loc(door(D),in),T),
 holds_at(in(R1),T),
 connects(D,R1,R2), connects(D,R2,R1),
 holds_at(co_ords(P1),T),
 holds_at(facing(W1),T),
 next_corner(R2,C3,C2), door(D,C3,C2),
 wall_thickness(Y1), displace(P1,Y1,W1,P2),
 pos(C2,P2), door_width(Y2), plus_90(W1,W2),
 displace(P2,Y2,W2,P3), pos(C3,P3).

happens(left(X),T,T) :-
 happens(go_straight,T,T),
 holds_at(co_ords(P1),T),
 holds_at(facing(W),T),
 holds_at(loc(corner(C1),ahead),T),
 holds_at(in(R),T),
 next_corner(R,C1,C2), door(D,C1,C2),
 displace(P1,X,W,P2), pos(C2,P2).

happens(left_gap(X),T,T) :-
 happens(follow_wall,T,T),
 holds_at(co_ords(P1),T),
 holds_at(facing(W),T),
 holds_at(loc(corner(C1),behind),T),
 next_visible_corner(C1,C2,left,T),
 not(inner(C2)),
 displace(P1,X,W,P2), pos(C2,P2).

