
A Tableau-Based Decision Procedure for

a Fragment of Graph Theory Involving

Reachability and Acyclicity?

Domenico Cantone1 and Calogero G. Zarba2

1 University of Catania
2 University of New Mexico

Abstract. We study the decision problem for the language DGRA (di-
rected graphs with reachability and acyclicity), a quantifier-free fragment
of graph theory involving the notions of reachability and acyclicity.
We prove that the language DGRA is decidable, and that its decidability
problem is NP -complete. We do so by showing that the language enjoys
a small model property : If a formula is satisfiable, then it has a model
whose cardinality is polynomial in the size of the formula.
Moreover, we show how the small model property can be used in order
to devise a tableau-based decision procedure for DGRA.

1 Introduction

Graphs arise naturally in many applications of mathematics and computer sci-
ence. For instance, graphs arise as suitable data structures in most programs.
In particular, when verifying programs manipulating pointers [3], one needs to
reason about the reachability and acyclicity of graphs.

In this report we introduce the language DGRA (directed graphs with reach-

ability and acyclicity), a quantifier-free many-sorted fragment of directed graph
theory. The language DGRA contains three sorts: node for nodes, set for sets
of nodes, and graph for graphs. In the language DGRA graphs are modeled
as binary relations over nodes or, alternatively, as sets of pairs of nodes. The
language DGRA contains the set operators ∪, ∩, \, {·} and the set predicates
∈, and ⊆. It also contains:

– a predicate reachable(a, b, G) stating that there is a nonempty path going
from node a to node b in the graph G;

– a predicate acyclic(G) stating that the graph G is acyclic.

We prove that the language DGRA is decidable, and that its decidability
problem is NP-complete. We do so by showing that the language enjoys a small

model property: If a formula is satisfiable, then it has a model A whose cardinality
is polynomial in the size of the formula.

? This work is partly supported by grants NSF ITR CCR-0113611 and NSF CCR-
0098114.

More precisely, let ϕ be a satisfiable formula in the language DGRA, and let
m and g be, respectively, the number of variables of sort node and graph occurring
in ϕ. Then there exists a model A of ϕ such that its associated domain Anode

has cardinality less than or equal to m + m2 · g2.
At first sight, it seems that the small model property only suggests a brute

force decision procedure for DGRA, consisting in enumerating all models up to
a certain size. However, the bound on the cardinality of Anode can be cleverly
exploited in order to devise a tableau-based decision procedure for DGRA.

Roughly speaking, the idea is as follows. Suppose that T is a tableau for
the formula ϕ. We devise the tableau rules in such a way that at most m2 · g2

fresh variables of sort node are added to any branch B of T. Furthermore, the
tableau rules need to ensure that these fresh variables are to be interpreted as
distinct from each other, and distinct from every old variable of sort node already
occurring in ϕ.

We use the above intuition in order to devise a tableau calculus for DGRA
that is terminating, sound, and complete. Consequently, we obtain a decision
procedure for DGRA that is, at least potentially, more efficient than a naive
brute force approach.

Organization of the report. In Section 2 we define a notion of paths that will be
used in the rest of the report. In Section 3 we define the syntax and semantics of
the language DGRA. In Section 4 we present our tableau calculus for DGRA.
In Section 5 we show one example of our tableau calculus in action. In Section 6
we prove that our tableau calculus is terminating, sound, and complete, and
therefore it yields a decision procedure for DGRA. In Section 7 we survey on
related work. In Section 8 we draw final conclusions.

2 Paths

Definition 1 (Paths and cycles). Let A be a set. A (simple) path π over A
is a sequence

π = 〈ν1, . . . , νn〉

such that

(a) n ≥ 2;
(b) νi ∈ A, for each 1 ≤ i ≤ n;
(c) {ν1, νn} ∩ {ν2, . . . , νn−1} = ∅;
(d) νi 6= νj , for each 1 < i < j < n.

A cycle is a path π = 〈ν1, . . . , νn〉 such that ν1 = νn. �

Note that, according to Definition 1, the sequence 〈a, b, b, c〉 is not a path.
We denote with paths(A) the set of all paths over A. Let π = 〈ν1, . . . , νn〉 be

a path in paths(A), and let R ⊆ A × A be a binary relation. We write π ⊆ R
when (νi, νi+1) ∈ R, for each 1 ≤ i < n.

2

If π = 〈ν1, . . . , νn〉 is a path, we let nodes(π) = {ν1, . . . , νn}. Given a path π =
〈ν1, . . . , νn〉, we define a function—which for simplicity we continue to denote
with π—from nodes(π) to nodes(π) as follows:

π(νi) = νi+1 , for each 1 ≤ i < n ,

π(νn) = νn , if νn 6= ν1 .

Note that this function is well-defined because of conditions (c) and (d) of Defi-
nition 1.

Let π = 〈ν1, . . . , νn〉 be a path in paths(A), let X ⊆ A, and assume that
νi ∈ X . Then we write

first(νi, π, X) = νj ,

whenever j is the unique index such that:

– i ≤ j;
– νj ∈ X ;
– νk /∈ X , for each i ≤ k < j.

Definition 2 (Basic paths). Let π = 〈ν1, . . . , νn〉 be a path in paths(A), and
let X ⊆ A. We say that π is basic with respect to X if the following conditions
hold:

– ν1 ∈ X and νn ∈ X ;
– νi /∈ X , for each 1 < i < n. �

3 The language DGRA

3.1 Syntax

The language DGRA (directed graphs with reachability and acyclicity) is a
quantifier-free many-sorted language with equality [6]. Its sorts and symbols are
depicted in Figure 1. Note that some symbols of the language are overloaded.

Definition 3. A DGRA-formula is a well-sorted many-sorted formula con-
structed using:

– the function and predicate symbols in Figure 1;
– variables of sort τ , for τ ∈ {node, set, graph};
– the equality predicate =;
– the propositional connectives ¬, ∧, ∨, and →. �

Given a DGRA-formula ϕ, we denote with varsτ (ϕ) the set of τ -variables
occurring in ϕ. Moreover, we let vars(ϕ) = varsnode(ϕ)∪vars set(ϕ)∪varsgraph(ϕ).

To increase readability, in the rest of the report we will use the abbreviations
depicted in Figure 2.

3

Sorts

node nodes

set sets of nodes

graph graphs, modeled as sets of pairs of nodes

Symbols

Function symbols Predicate symbols

Sets

∅set : set

∪,∩, \ : set × set → set

{·} : node → set

∈ : node × set

⊆ : set × set

Binary
relations

∅graph : graph

∪,∩, \ : graph × graph → graph

{(·, ·)} : node × node → graph

(·, ·) ∈ · : node × node × graph

⊆ : graph × graph

Reachability
reachable : node × node × graph

acyclic : graph

Figure 1: The language DGRA.

Syntactic sugar Official formula

a /∈ x ¬(a ∈ x)

G(a, b) (a, b) ∈ G

¬G(a, b) ¬((a, b) ∈ G)

G+(a, b) reachable(a, b, G)

¬G+(a, b) ¬reachable(a, b, G)

Figure 2: Syntactic sugar for the language DGRA.

3.2 Semantics

Definition 4. Let Vτ be a set of τ -variables, for τ ∈ {node, set, graph}, and let
V = Vnode ∪ Vset ∪ Vgraph.

A DGRA-interpretation over V is a many-sorted interpretation satisfy-
ing the following conditions:

– each sort τ is mapped to a set Aτ such that:
• Anode 6= ∅;
• Aset = P(Anode);
• Agraph = P(Anode × Anode);

– each variable u ∈ V of sort τ is mapped to an element uA ∈ Aτ ;
– the set symbols ∅set, ∪, ∩, \, {·}, ∈, and ⊆ are interpreted according to their

standard interpretation over sets of nodes;

4

– the binary relation symbols ∅graph, ∪, ∩, \, {(·, ·)}, (·, ·) ∈ ·, and ⊆ are
interpreted according to their standard interpretation over sets of pairs of
nodes;

– [reachable(a, b, G)]A = true if and only if there exists a path π ∈ paths(Anode)
such that π ⊆ GA;

– [acyclic(G)]A = true if and only if there is no cycle π ∈ paths(Anode) such
that π ⊆ GA. �

If A is a DGRA-interpretation, we denote with varsτ (A) the set of variables
of sort τ that are interpreted by A. Moreover, we let vars(A) = varsnode(A) ∪
varsset(A) ∪ varsgraph(A). If V ⊆ vars(A), we let V A =

{

uA | u ∈ V
}

.

Definition 5. A DGRA-formula ϕ is DGRA-satisfiable if there exists a
DGRA-interpretation A such that ϕ is true in A. �

3.3 Examples

The following are examples of valid statements over graphs that can be expressed
in the language DGRA:

(G+(a, b) ∧ G+(b, c)) → G+(a, c) (1)

(G ⊆ H ∧ acyclic(H)) → acyclic(G) (2)

(G+(a, b) ∧ H+(b, a)) → ¬acyclic(G ∪ H) (3)

¬acyclic({(a, b)}) → a = b (4)

In particular:

– (1) expresses the transitivity property of the reachability relation.
– (2) states that if a graph H is acyclic, then any of its subgraphs is also

acyclic.
– (3) states that if it is possible to go from node a to node b in a graph G, and

from node b to node a in a graph H , then the graph G∪H contains a cycle.
– (4) states that if a graph contains only the edge (a, b), and it is not acyclic,

then a and b must be the same node.

3.4 Normalized literals

Definition 6. A literal is flat if it is of the form x = y, x 6= y, x = f(y1, . . . , yn),
p(y1, . . . , yn), and ¬p(y1, . . . , yn), where x, y, y1, . . . , yn are variables, f is a func-
tion symbol, and p is a predicate symbol. �

Definition 7. A DGRA-literal is normalized if it is a flat literal of the form:

a 6= b ,

x = y ∪ z , x = y \ z , x = {a} ,

G = H ∪ L , G = H \ L , G = {(a, b)} ,

G+(a, b) , ¬G+(a, b) , acyclic(G) .

5

where a, b are node-variables, x, y, z are set-variables, and G, H, L are graph-
variables. �

Lemma 8. The problem of deciding the DGRA-satisfiability of DGRA-formulae

is equivalent to the problem of deciding the DGRA-satisfiability of conjunctions

of normalized DGRA literals. Moreover, if the latter problem is in NP, so is

the former. �

Proof. Clearly, if we can decide the DGRA-satisfiability of DGRA-formulae,
we can decide the DGRA-satisfiability of conjunctions of normalized DGRA-
literals.

Vice versa, assume that we can decide the DGRA-satisfiability of conjunc-
tions of normalized DGRA-literals, and let ϕ be a DGRA-formula. In order
to check ϕ for DGRA-satisfiability, we can translate ϕ in a DNF Γ1 ∨ · · · ∨ Γn

such that:

– each Γi is a conjunction of normalized DGRA-literals;
– ϕ is DGRA-satisfiable if and only if at least one of the Γi is DGRA-

satisfiable.

This translation can be done with the help of the following satisfiability-preserving
rewrite rules:3

x 6= y =⇒ a ∈ x \ y ∨ a ∈ y \ x

x = ∅set =⇒ x = x \ x

x = y ∩ z =⇒ x = (y ∪ z) \ ((y \ z) ∪ (z \ y))

a ∈ x =⇒ {a} ⊆ x

x ⊆ y =⇒ y = x ∪ y

G 6= H =⇒ (a, b) ∈ G \ H ∨ (a, b) ∈ G \ H

G = ∅graph =⇒ G = G \ G

G = H ∩ L =⇒ G = (H ∪ L) \ ((H \ L) ∪ (L \ H))

G(a, b) =⇒ {(a, b)} ⊆ G

G ⊆ H =⇒ H = G ∪ H

¬acyclic(G) =⇒ G+(a, a) .

Clearly, if we can check each of the Γi for DGRA-satisfiability in nondeter-
ministic polynomial time, then we can also check ϕ for DGRA-satisfiability in
nondeterministic polynomial time. �

3.5 The small model property

Definition 9. Let A be a DGRA-interpretation, let V ⊆ varsnode(A) be a set
of node-variables, and let k ≥ 0. We say that A is k-small with respect to V if
Anode = V A ∪ A′, for some set A′ such that |A′| ≤ k. �

3 Note that some of these rewrite rules introduce new node-variables.

6

Lemma 10 (Small model property). Let Γ be a conjunction of normalized

DGRA-literals, and let Vτ = varsτ (Γ), for each sort τ . Also, let m = |Vnode|
and g = |Vgraph|. Then the following are equivalent:

1. Γ is DGRA-satisfiable;

2. Γ is true in a DGRA-interpretation A that is (m2 · g2)-small with respect

to Vnode. �

Proof. (2 ⇒ 1). Immediate.

(1 ⇒ 2). Let B be a DGRA-interpretation satisfying Γ . We want to use B in
order to construct a DGRA-interpretation A that satisfies Γ , and that is also
(m2 · g2)-small with respect to Vnode.

For each a, b ∈ Vnode and for each G ∈ Vgraph such that the literal G+(a, b) is
in Γ , we associate a shortest path πa,b,G = 〈ν1, . . . , νn〉 satisfying the following
conditions:

– ν1 = aB;
– νn = bB;
– πa,b,G ⊆ RB.

We define the following sets of paths:

Π1 = {〈ν, ν〉 | ν ∈ V B
node} ,

Π2 =

{

πa,b,G |

(

the literal G+(a, b) is in Γ and G ∈ Vgraph and
πa,b,G is basic w.r.t. V B

node

)}

,

Π = Π1 ∪ Π2 .

For each path π = 〈ν1, . . . , νn〉 ∈ Π , we select a minimal set Xπ satisfying the
following “selection conditions”:

(a) ν1, νn ∈ Xπ;
(b) ν2 ∈ Xπ;
(c) if π ∈ Π2 and π * GB, for some G ∈ Vgraph, then there must exist an index

i such that:

– 1 ≤ i < n ;
– νi ∈ Xπ;
– 〈νi, νi+1〉 /∈ GB.

Let D be the following set:

D = {(π, ν) | π ∈ Π and ν ∈ Xπ} .

We define the following equivalence relation ∼ over D:

(π1, ν) ∼ (π2, µ) ⇐⇒ ν = µ ∈ V B
node .

7

We let A be the unique DGRA-interpretation over vars(Γ) defined by letting

Anode = D/ ∼ ,

and

aA =
[(〈

aB, aB
〉

, aB
)]

∼
, for each a ∈ Vnode ,

xA =
{

[(π, ν)]∼ | ν ∈ xB
}

, for each x ∈ Vset ,

GA =

{

([(π, ν)]∼, [(π, µ)]∼) |

(

(ν, π(ν)) ∈ GB and
µ = first(ν, π, Xπ)

)}

, for each G ∈ Vgraph .

An example of this construction is depicted in Figure 3.
By construction, we have

|Anode| ≤ |Vnode| + |Π | · |Vgraph|

≤ |Vnode| + |Vnode|
2 · |Vgraph|

2

= m + m2 · g2 .

This implies that A is (m2 · g2)-small with respect to Vnode. We prove now that
A satisfies all literals in Γ .

Literals of the form a 6= b. Immediate.

Literals of the form x = {a}. We have

xA =
{

[(π, ν)]∼ | ν ∈ xB
}

=
{[(

π, aB
)]

∼

}

=
{

aA
}

.

Literals of the form x = y ∪ z. We have

xA =
{

[(π, ν)]∼ | ν ∈ xB
}

=
{

[(π, ν)]∼ | ν ∈ yB ∪ zB
}

=
{

[(π, ν)]∼ | ν ∈ yB
}

∪
{

[(π, ν)]∼ | ν ∈ zB
}

= yA ∪ zA

Literals of the form x = y \ z. We have

xA =
{

[(π, ν)]∼ | ν ∈ xB
}

=
{

[(π, ν)]∼ | ν ∈ yB \ zB
}

=
{

[(π, ν)]∼ | ν ∈ yB
}

\
{

[(π, ν)]∼ | ν ∈ zB
}

= yA \ zA

8

ν4 ν5 ν6

a ν1 ν2 ν3 b

ν7 ν8 ν9

G, H G, H G, H

G

G G

G

G, H G, H H H

Vnode = {a, b}

π1 = 〈a, ν1, ν2, ν3, ν4, ν5, ν6, b〉

π2 = 〈a, ν1, ν2, ν3, ν7, ν8, ν9, b〉

Xπ1
= {a, ν1, ν3, b}

Xπ2
= {a, ν1, ν8, b}

(π1, ν1) (π1, ν3)

a b

(π2, ν1) (π1, ν8)

G, H

G, H

G

G, H G, H H

Figure 3: Example of construction of a “small” model.

9

Literals of the form G = {(a, b)}. We want to prove that GA = {(aA, bA)}.
Assume first that e ∈ GA. Then there exist π ∈ Π and ν, µ ∈ Xπ such that:

e = ([(π, ν)]∼, [(π, µ)]∼)

(ν, π(ν)) ∈ GB

µ = first(ν, π, Xπ) .

It follows that ν = aB and π(ν) = bB. Moreover, µ = first(ν, π, Xπ) = π(ν) = bB.
Therefore e = (aA, bA).

Vice versa, assume that e = (aA, bA). We have (aB, bB) ∈ GB. Let π = 〈ν, µ〉
where ν = aB and µ = bB. Clearly, π ∈ Π2 and first(ν, π, Xπ) = µ. It follows
that e ∈ GA, as desired.

Literals of the form G = H ∪ L. We have

GA =

{

([(π, ν)]∼, [(π, µ)]∼) |

(

(ν, π(ν)) ∈ GB and
µ = first(ν, π, Xπ)

)}

=

{

([(π, ν)]∼, [(π, µ)]∼) |

(

(ν, π(ν)) ∈ HB ∪ LB and
µ = first(ν, π, Xπ)

)}

=

{

([(π, ν)]∼, [(π, µ)]∼) |

(

(ν, π(ν)) ∈ HB and
µ = first(ν, π, Xπ)

)}

∪

{

([(π, ν)]∼, [(π, µ)]∼) |

(

(ν, π(ν)) ∈ LB and
µ = first(ν, π, Xπ)

)}

= HA ∪ LA .

Literals of the form G = H \ L. Assume that e ∈ GA. Then there exist
π ∈ Π and ν, µ ∈ Xπ such that:

e = ([(π, ν)]∼, [(π, µ)]∼)

(ν, π(ν)) ∈ GB

µ = first(ν, π, Xπ)

Then (ν, π(ν)) ∈ HB \ LB, which implies e ∈ HA. Next, suppose by contradic-
tion that e ∈ LA. If {ν, µ} \ V B

node 6= ∅, then we must have (ν, π(ν)) ∈ LB, a
contradiction. Otherwise ν, µ ∈ V B

node. But then π = πa,b,G with aB = ν and
bB = µ. By selection condition (b) above, it follows that π(ν) ∈ Xπ. Therefore
µ = first(ν, π, Xπ) = π(ν), which implies that π = 〈ν, µ〉. Thus, (ν, µ) ∈ LB, a
contradiction.

Vice versa, assume that e ∈ HA \ LA. Then e ∈ HA and e /∈ LA. It follows
that there exist π ∈ Π and ν, µ ∈ Xπ such that:

e = ([(π, ν)]∼, [(π, µ)]∼)

(ν, π(ν)) ∈ HB

µ = first(ν, π, Xπ)

10

We distinguish two cases: either (ν, π(ν)) ∈ LB or (ν, π(ν)) /∈ LB. In the former
case we have e ∈ LA, a contradiction. In the latter case, we have (ν, π(ν)) ∈ GB,
which implies e ∈ GA.

Literals of the form G+(a, b). Without loss of generality, let π = πa,b,G ∈ Π2.
By construction, we have 〈α1, . . . , αn〉 ⊆ GA where

– αi = [(π, νi)]∼;
– ν1 = aA;
– νn = bA;
– νi+1 = first(νi, π, Xπ), for 1 ≤ i < n.

Thus, [G+(a, b)]A = true.

Literals of the form ¬G+(a, b). Suppose, by contradiction, that there is a
path 〈α1, . . . , αn〉 ⊆ GA such that α1 = aA and αn = bA. By construction, there
is exactly one path π ∈ Π2 such that

– αi = [(π, νi)]∼;
– ν1 = aA;
– νn = bA;
– νi+1 = first(νi, π, Xπ), for 1 ≤ i < n.

But then, we must have (νi, π(νi)) ∈ GB, for each 1 ≤ i < n. However,
because of selection condition (c) above, there is a j such that (νj , π(νj)) /∈ GB,
a contradiction.

Literals of the form acyclic(G). Suppose, by contradiction, that there is
a cycle 〈α1, . . . , αn〉 ⊆ GA, where α1 = αn. By construction, without loss of
generality we can assume that α1 ∈ V A

node and that α2, . . . , αn−1 /∈ V A
node. But

then, [G+(a, a)]A = true, and we can obtain a contradiction by following the
same reasoning employed for the literals of the form ¬G(a, b). �

The next two theorems show how Lemma 10 entails the decidability and
NP -completeness of the language DGRA.

Theorem 11 (Decidability). The problem of deciding the DGRA-satisfiability

of DGRA-formulae is decidable. �

Proof. A decision procedure for DGRA can be obtained as follows. With-
out loss of generality, let Γ be a conjunction of normalized DGRA-literals.
Nondeterministically guess a DGRA-interpretation A over vars(Γ), and check
whether Γ is true in A. By Lemma 10, the number of DGRA-interpretations
that need to be guessed is finitely bounded. Moreover, the bound can be effec-
tively computed. �

Theorem 12 (Complexity). The problem of deciding the DGRA-satisfiability

of DGRA-formulae is NP-complete. �

11

a = a
(E1)

`(a)
a = b

`(b)
(E2)

Note: In rule (E1), a is a node-variable already occurring in the tableau. In rule (E2),
a and b are node-variables, and ` is a DGRA-literal.

Figure 4: Equality rules.

Proof. NP-hardness follows by the fact that the propositional calculus is em-
bedded in the language DGRA. To show membership in NP , it is sufficient to
note that:

– In nondeterministic polynomial time in the size of a DGRA-formula ϕ,
we can guess a conjunction Γ of normalized DGRA-literals such that Γ is
DGRA-satisfiable if and only if ϕ is DGRA-satisfiable;

– In nondeterministic polynomial time in the size of Γ , we can guess a DGRA-
interpretation A such that Anode satisfies the cardinality requirement in
Lemma 10;

– In deterministic polynomial time in the size of Γ and A, we can check
whether Γ is true in A. �

4 A tableau calculus for DGRA

In this section we show how the small model property can be used in order to
devise a tableau-based decision procedure for DGRA. Our tableau calculus is
based on the insight that if a DGRA-formula ϕ is true in a k-small DGRA-
interpretation, then it is enough to generate only k fresh node-variables in order
to prove the DGRA-satisfiability of ϕ.

Without loss of generality, we assume that the input of our decision procedure
is a conjunction of normalized DGRA-literals. Thus, let Γ be a conjunction of
normalized DGRA-literals, and let Vτ = varsτ (Γ), for each sort τ . Intuitively, a
DGRA-tableau for Γ is a tree whose nodes are labeled by normalized DGRA-
literals.

Definition 13 (DGRA-tableaux). Let Γ be a conjunction of normalized DGRA-
literals, and let Vτ = varsτ (Γ), for each sort τ . An initial DGRA-tableau

for Γ is a tree consisting of only one branch B whose nodes are labeled by the
literals in Γ .

A DGRA-tableau for Γ is either an initial DGRA-tableau for Γ , or is
obtained by applying to a DGRA-tableau for Γ one of the rules in Figures 4–7.�

Definition 14. A branch B of a DGRA-tableau is closed if at least one of
the following two conditions hold:

12

x = y ∪ z
a ∈ x

a ∈ y a ∈ z
(S1)

x = y ∪ z
a ∈ y

a ∈ x
(S2)

x = y ∪ z
a ∈ z

a ∈ x
(S3)

x = y \ z
a ∈ x

a ∈ y
a /∈ z

(S4)

x = y \ z
a ∈ y

a ∈ z a /∈ z
a ∈ x

(S5)

x = {a}
b ∈ x

a = b
(S6)

x = {a}

a ∈ x
(S7)

Figure 5: Set rules.

G = H ∪ L
G(a, b)

H(a, b) L(a, b)
(G1)

G = H ∪ L
H(a, b)

G(a, b)
(G2)

G = H ∪ L
L(a, b)

G(a, b)
(G3)

G = H \ L
G(a, b)

H(a, b)
¬L(a, b)

(G4)

G = H \ L
H(a, b)

L(a, b) ¬L(a, b)
G(a, b)

(G5)

G = {(a, b)}
G(c, d)

a = c
b = d

(G6)
G = {(a, b)}

G(a, b)
(G7)

Figure 6: Graph rules.

(a) B contains two complementary literals `,¬`;

(b) B contains literals of the form acyclic(G) and G+(a, a).

A branch which is not closed is open. A DGRA-tableau is closed if all its
branches are closed; otherwise it is open. �

13

G(a, b)

G+(a, b)
(R1)

G+(a, b)
G+(b, c)

G+(a, c)
(R2)

G(a, b) ¬G(a, b)
(R3)

G+(a, b)

G(a, w)
G+(w, b)
w 6= c1

...
w 6= cm

(R4)
¬G+(a, b)

(R5)

Note: Let Γ be a conjunction of normalized DGRA-literals, and let Vτ = varsτ (Γ),
for each sort τ . Also, let m = |Vnode | and g = |Vgraph|. Finally, let B be a branch of a
DGRA-tableau form Γ .

Rule (R3) can be applied to B provided that:

(a) a, b ∈ varsnode(B).

Rule (R4) can be applied to B provided that:

(b) B is saturated with respect to rule (R3);
(c) B does not contain literals of the form G(a, d1), G(d1, d2), . . . , G(dk−1, dk), G(dk, b);
(d) varsnode(B) = {c1, . . . , cn};
(e) |varsnode(B)| < m + m2 · g2.

Rule (R5) can be applied to B provided that:

(a) a, b ∈ varsnode(B);
(b) B is saturated with respect to rule (R3);
(c) B does not contain literals of the form G(a, d1), G(d1, d2), . . . , G(dk−1, dk), G(dk, b);
(f) |varsnode(B)| = m + m2 · g2.

Intuition behind rule (R4): Conditions (b) and (c) imply the existence of a w
such that G(a,w) and G+(w, b). Furthermore, w must be distinct from all the node-
variables already occurring in B.

Intuition behind rule (R5): Conditions (b) and (c) imply the existence of a w
such that G(a,w) and G+(w, b). Furthermore, w must be distinct from all the node-
variables already occurring in B. But since we are looking for “small” models, condition
(f) tells us that we cannot add a fresh node-variables w to B. It must necessarily follow
¬G+(a, b).

Figure 7: Reachability rules.

14

1. acyclic(G)
2. acyclic(L)
3. G = H \ L
4. H(a, a)

5. L(a, a)

8. L+(a, a)
⊥

6. ¬L(a, a)
7. G(a, a)

9. G+(a, a)
⊥

Figure 8: A closed DGRA-tableau.

Given a DGRA-tableau T, we can associate to it a DGRA-formula φ(T)
in disjunctive normal form as follows. For each branch B of T we let

φ(B) =
∧

`∈B

` ,

where ` denotes a DGRA-literal. Then, we let

φ(T) =
∨

B∈T

φ(B) .

Definition 15. A DGRA-tableau T is satisfiable if there exists a DGRA-
interpretation A such that φ(T) is true in A. �

Definition 16. A branch B of a DGRA-tableau is saturated if no applica-
tion of any rule in Figures 4–7 can add new literals to B. A DGRA-tableau is
saturated if all its branches are saturated. �

5 An example

Figure 8 shows a closed DGRA-tableau for the following DGRA-unsatisfiable
conjunction of normalized DGRA-literals:

Γ =















acyclic(G) ,
acyclic(L) ,
G = H \ L ,
H(a, a)















.

The inferences in the tableau can be justified as follows:

– Nodes 5 thru 7 are obtained by means of an application of rule (G5).
– Node 8 is obtained by means of an application of rule (R1). The resulting

branch is closed because it contains the literals acyclic(L) and L+(a, a).
– Node 9 is obtained by means of an application of rule (R1). The resulting

branch is closed because it contains the literals acyclic(G) and G+(a, a).

15

6 Correctness

In this section we prove that our tableau calculus for DGRA is terminating,
sound, and complete, and therefore it yields a decision procedure for DGRA.
We follow standard arguments in the proofs of termination and completeness.
Nonetheless, the proof of soundness is somewhat tricky, and it is based on the
small model property.

6.1 Termination

Lemma 17 (Termination). The tableau rules in Figure 4–7 are terminating.�

Proof. Let Γ be a conjunction of DGRA-literals, and let T be a saturated
DGRA-tableaux. We want to show that T is finite.

Note that all rules in Figure 4–7 deduce only flat DGRA-literals. Further-
more, by inspecting rule (R4), it follows that the number of fresh variables
that can be generated is bounded by m2 · g2, where m = |varsnode(Γ)| and
g = |varsgraph(Γ)|.

Thus, if B is any branch of T, then B contains only flat literals constructed
using a finite number of variables. It follows that the number of literals occurring
in B is finite. Since all branches in T are finite, T is also finite. �

Note on complexity. Let Γ be a conjunction of normalized DGRA-literals,
and let T be a saturated DGRA-tableau for Γ . By inspection of the proof of
Lemma 17, it follows that the size of each branch in T is polynomially bounded
by the size of Γ . This implies that our tableau-based decision procedure for
DGRA is in NP , confirming the complexity result of Theorem 12.

6.2 Soundness

At first glance, it seems that our tableau calculus is not sound. “How can rule
(R5) be sound?”, may wonder the reader. Nonetheless, the following lemma
shows that all the rules of our tableau calculus are sound in the sense that they
preserve DGRA-satisfiability with respect to k-small DGRA-interpretations.

Lemma 18. Let Γ be a conjunction of normalized DGRA-literals, and let Vτ =
varsτ (Γ), for each sort τ . Also, let m = |Vnode| and g = |Vgraph|. Finally, let T

be a DGRA-tableau, and let T′ be the result of applying to T one of the rules

in Figures 4–7. Assume that there exists a DGRA-interpretation A such that:

(α1) φ(T) is true in A;

(α2) A is (m2 · g2)-small with respect to Vnode;

(α3) cAi 6= cAj , whenever ci is a fresh node-variable not occurring in varsnode(Γ),
and cj is a node-variable distinct from ci.

Then there exists a DGRA-interpretation B such that:

(β1) φ(T′) is true in B;

16

(β2) B is (m2 · g2)-small with respect to Vnode;

(β3) cBi 6= cBj , whenever ci is a fresh node-variable not occurring in varsnode(Γ),
and cj is a node-variable distinct from ci. �

Proof. We concentrate only on rules (R4) and (R5), since the proof goes
straightforwardly for the other rules.

Concerning rule (R4), assume that the literal G+(a, b) is in B, and that
conditions (b), (c), (d), and (e) in Figure 7 hold. Also, let A be a DGRA-
interpretation A satisfying conditions (α1), (α2), and (α3). By condition (b)
and (c) and the fact that (aA, bA) ∈ (GA)+, it follows that there exists a node
ν ∈ Anode such that (aA, ν) ∈ GA, (ν, bA) ∈ (GA)+, and ν 6= cAi , for each
ci ∈ varsnode(B). Clearly, φ(T′) is true in the DGRA-interpretation B obtained
from A by letting wB = ν. By condition (e), B is (m2 · g2)-small with respect to
Vnode. Moreover, condition (α3) implies condition (β3).

Concerning rule (R5), assume that conditions (a), (b), (c), and (f) in Figure 7
hold. Also, let A be a DGRA-interpretation A satisfying conditions (α1), (α2),
and (α3). By condition (f), it follows that Anode = varsnode(B). But then, by
conditions (b) and (c), we have (aA, bA) /∈ (GA)+, and soundness of rule (R5)
follows by letting B = A. �

Lemma 19 (Soundness). Let Γ be a conjunction of DGRA-literals. If there

exists a closed DGRA-tableau for Γ , then Γ is DGRA-unsatisfiable. �

Proof. Let T be a closed DGRA-tableau for Γ , and suppose by contradiction
that Γ is DGRA-satisfiable. Let m = |varsnode(Γ)| and g = |varsgraph(Γ)|. By
Lemmas 10 and 18, there exists an DGRA-interpretation A that is (m2 · g2)-
small with respect to varsnode(Γ), and such that φ(T) is true in A. It follows
that T is satisfiable. But this is a contradiction because T is closed, and closed
DGRA-tableaux cannot be satisfiable. �

6.3 Completeness

Lemma 20. Let Γ be a conjunction of normalized DGRA-literals, and let B

be a an open and saturated branch of a DGRA-tableau for Γ . Then B is satis-

fiable. �

Proof. Our goal is to define a DGRA-interpretation A satisfying B.

Let Vτ = varsτ (Γ), for each sort τ . Also, let Wnode be the set of fresh node-
variables introduced by applications of rule (R4), that is, Wnode = varsnode(B) \
Vnode. Finally, let ∼ be the equivalence relation over Vnode ∪ Wnode induced by
the literals of the form a = b occurring in B.

We let A be the unique DGRA-interpretation over vars(B) defined by letting

Anode = (Vnode ∪ Wnode)/ ∼ ,

17

and

aA = [a]∼ , for each a ∈ Vnode ∪ Wnode ,

xA = {[a]∼ | the literal a ∈ x is in B} , for each x ∈ Vset ,

GA = {([a]∼, [b]∼) | the literal G(a, b) is in B} , for each G ∈ Vgraph .

We claim that all literals occurring in B are true in A.

Literals of the form a = b, a 6= b, a ∈ x, and G(a, b). Immediate.

Literals of the form a /∈ x. Let the literal a /∈ x be in B, and assume by
contradiction that aA ∈ xA. Then there exists a node-variable b such that a ∼ b,
and the literal b ∈ x is in B. By saturation with respect to the equality rules,
the literal a ∈ x is also in B, which implies that B is closed, a contradiction.

Literals of the form ¬G(a, b). This case is similar to the case of literals of
the form a /∈ x.

Literals of the form x = y ∪ z. Let the literal x = y ∪ z be in B. We want
to prove that xA = yA ∪ zA.

Assume first that ν ∈ xA. Then there exists a node-variable a such that
ν = aA and the literal a ∈ x is in B. By saturation with respect to rule (S1),
either the literal a ∈ y is in B or the literal a ∈ z is in B. In the former case,
ν ∈ yA; in the latter, ν ∈ zA.

Vice versa, assume that ν ∈ yA ∪ zA and suppose, without loss of generality,
that ν ∈ yA. Then there exists a node-variable a such that ν = aA and the literal
a ∈ y is in B. By saturation with respect to rule (S2), the literal a ∈ x is in B.
Thus, ν ∈ xA.

Literals of the form x = y \ z, and x = {a}. These cases are similar to
the case of literals of the form x = y ∪ z.

Literals of the form G = H ∪ L, G = H \ L, and G = {(a, b)}. These
cases are similar to the cases of literals of the form x = y ∪ z, x = y \ z, and
x = {a}.

Literals of the form G+(a, b). Let the literal G+(a, b) be in B. If B contains
literals of the form G(a, d1), G(d1, d2), . . . , G(dk−1, dk), G(dk, b) then we clearly
have (aA, bA) ∈ (GA)+. Otherwise, conditions (a), (b), (c), and (f) in Figure 7
hold, which implies that the literal ¬G+(a, b) is in B. It follows that B is closed,
a contradiction.

18

Literals of the form ¬G+(a, b). Let the literal ¬G+(a, b) be in B, and as-
sume by contradiction that [G+(a, b)]A = true. Then there exist node-variables
c1, . . . , cn, with n ≥ 0, such that the literals G(a, c1), G(c1, c2), . . . , G(cn−1, cn),
and G(cn, b) are in B. By saturation with respect to rules (R1) and (R2), the
literal G+(a, b) is in B, a contradiction.

Literals of the form acyclic(G). Let the literal acyclic(G) be in B, and
assume by contradiction that [acyclic(G)]A = false . Then there exist node-
variables a1, . . . , an, with n ≥ 1, such that the literals G(a1, a2), G(a2, a3), . . . ,
G(an−1, an), and G(an, a1) are in B. By saturation with respect to rules (R1)
and (R2), the literal G+(a1, a1) is in B, a contradiction. �

Lemma 21 (Completeness). Let Γ be a conjunction of normalized DGRA-

literals. If Γ is DGRA-unsatisfiable then there exists a closed DGRA-tableau

for Γ . �

Proof. Assume, by contradiction, that Γ has no closed DGRA-tableau, and let
T be a saturated DGRA-tableau for Γ . Since Γ has no closed DGRA-tableau,
T must contain an open and saturated branch B. By Lemma 20, B is DGRA-
satisfiable, which implies that Γ is also DGRA-satisfiable, a contradiction. �

7 Related work

7.1 Graph theory

To our knowledge, the decision problem for graph theory was first addressed by
Moser [8], who presented a decision procedure for a quantifier-free fragment of
directed graph theory involving the operators of singleton graph construction,
graph union, and graph intersection.

This result was extended by Cantone and Cutello [5], who proved the decid-
ability of a more expressive quantifier-free fragment of graph theory. Cantone
and Cutello’s language can deal with both directed and undirected graphs, and it
allows one to express the operators singleton, union, intersection, and difference,
as well as some notions which are characteristic of graphs such as transitivity,
completeness, cliques, independent sets, and the set of all self-loops. Cantone
and Cutello’s language does not deal with reachability and acyclicity.

Cantone and Cincotti [4] studied the decision problem for the language
UGRA (undirected graphs with reachability and acyclicity). Intuitively, UGRA
is the same as DGRA, except that it deals with undirected graphs. Unfortu-
nately, due to a flaw in [4], it is still an open problem whether the language
UGRA is decidable. Nonetheless, the ideas presented in [4] are very promising.
Our proof of the small model property for DGRA is inspired by these ideas.

19

7.2 Static analysis and verification

Graph-based logics are of particular interest in the fields of static analysis and
verification, where researchers use various abstractions based on graphs in order
to represent the states of the memory of a program. We mention here four of
such logics.

Benedikt, Reps, and Sagiv [2] introduced a logic of reachability expressions
Lr. In this logic, one can express that it is possible to go from a certain node a
to another node b by following a path that is specified by a regular expression
R. For instance, in Lr the expression a〈(R1 | R2)

∗〉b asserts that it is possible to
go from node a to node b by following 0 or more edges labeled by either R1 or
R2.

Kuncak and Rinard [7] introduced the role logic RL, a logic that has the same
expressivity of first-order logic with transitive closure. They also proved that a
fragment RL2 of role logic is decidable by reducing it to the two-variable logic
with counting C2.

Resink [10] introduced the local shape logic LSL. In this logic, it is possible
to constrain the multiplicities of nodes and edges in a given graph. The logic
LSL is equivalent to integer linear programming.

Ranise and Zarba [9] are currently designing together a logic for linked lists
LLL, with the specific goal of verifying C programs manipulating linked lists. In
this logic, graphs are specified by functional arrays, with the consequence that
each node of a graph has at most one outgoing edge.

7.3 Description logics

Baader [1] introduced description logic languages with transitive closure on roles.
These languages are related to DGRA because sets of nodes are akin to con-
cepts, roles are akin to graphs, and transitive closure of roles is akin to reach-
ability. Therefore, we envisage a bright future in which advances in description
logics will lead to advances in graph theory, and vice versa, advances in graph
theory will lead to advances in description logics.

8 Conclusion

We presented a tableau-based decision procedure for the language DGRA, a
quantifier-free fragment of directed graph theory involving the notions of reacha-
bility and acyclicity. We showed that the decidability of DGRA is a consequence
of its small model property: If a formula is satisfiable, then it has a model whose
cardinality is polynomial in the size of the formula. The small model property
is at the heart of our tableau calculus, which can be seen as a search strategy of
“small” models of the input formula.

We plan to continue this research by using (extensions of) DGRA in order
to formally verify programs manipulating pointers. Finally, we want to study the
decision problem for the language UGRA (undirected graphs with reachability

20

and acyclicity) originally introduced in [4]. Although we do not know whether
the language UGRA is decidable, we conjecture that decidability holds, at least
in the case in which the acyclicity predicate is removed from the language.

Acknowledgments

This report could not have existed without the exciting discussions with the
following members of the research community: Aaron R. Bradley, Gianluca
Cincotti, Jean-Christophe Filliâtre, Bernd Finkbeiner, Thomas In der Rieden,
Jean Goubault-Larrecq, Deepak Kapur, Yevgeny Kazakov, Dirk Leinenbach,
Claude Marché, David Nowak, Silvio Ranise, Sriram Sankaranarayanan, Viorica
Sofronie-Stokkermans, Uwe Waldmann, and Thomas Wies.

We are also grateful to three anonymous peers for pointing out a mistake in
an earlier version of this report, and for providing instructive references to the
literature.

References

1. Franz Baader. Augmenting concept languages by transitive closure of roles: An
alternative to terminological cycles. In John Mylopoulos and Raymond Reiter,
editors, International Joint Conference on Artificial Intelligence, pages 446–451,
1991.

2. Michael Benedikt, Thomas W. Reps, and Shmuel Sagiv. A decidable logic for
describing linked data structures. In S. Doaitse Swierstra, editor, European Sym-

posium on Programming, volume 1576 of Lecture Notes in Computer Science, pages
2–19. Springer, 1999.

3. Rodney M. Burstall. Some techniques for proving correctness of programs which
alter data structures. Machine Intelligence, 7:23–50, 1972.

4. Domenico Cantone and Gianluca Cincotti. The decision problem in graph theory
with reachability related constructs. In Peter Baumgartner and Hantao Zhang,
editors, First-Order Theorem Proving, Technical Report 5/2000, pages 68–90. Uni-
versität Koblenz-Landau, 2000.

5. Domenico Cantone and Vincenzo Cutello. A decidable fragment of the elementary
theory of relations and some applications. In International Symposium on Symbolic

and Algebraic Computation, pages 24–29, 1990.

6. Jean H. Gallier. Logic for Computer Science: Foundations of Automatic Theorem

Proving. Harper & Row, 1986.

7. Viktor Kuncak and Martin C. Rinard. Generalized records and spatial conjunction
in role logic. In Roberto Giacobazzi, editor, Static Analysis, volume 3148 of lncs,
pages 361–376. Springer, 2004.

8. Louise E. Moser. A decision procedure for unquantified formulas of graph theory.
In Ewing L. Lusk and Ross A. Overbeek, editors, 9th International Conference on

Automated Deduction, volume 310 of Lecture Notes in Computer Science, pages
344–357. Springer, 1988.

9. Silvio Ranise and Calogero G. Zarba. A decidable logic for pointer programs
manipulating linked lists. Unpublished, 2005.

21

10. Arend Rensink. Canonical graph shapes. In David A. Schmidt, editor, European

Symposium on Programming, volume 2986 of Lecture Notes in Computer Science,
pages 401–415. Springer, 2004.

22

