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Abstract

We propose enhancements to the 2D lossless image compression method embodied in CALIC. The enhanced
version of CALIC obtained better compression than obtained by CALIC on 37 of the 45 images in our benchmark
suite. The two methods tied on 6 of the remaining 8 images. This benchmark suite includes medical, natural,
and man-made images. We also propose a lossless compression method for 3D images. Our method employs
motion estimation and obtained better compression than competing wavelet-based lossless compression methods
on all 8 3D medical images in our benchmark suite.
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I. INTRODUCTION

Image compression plays a very important role in applications like tele-video-conferencing, remote sensing,
document and medical imaging, and facsimile transmission, which depend on the efficient manipulation, stor-
age, and transmission of binary, gray scale, and color images. Image compression techniques may be classified
as either lossy or lossless. Lossy compression methods are able to obtain high compression ratios (size of orig-
inal image / size of compressed image), but the original image can be reconstructed only approximately from
the compressed image. Lossless compression methods obtain much lower compression ratios than obtained by
lossy compression methods. However, from the compressed image, we can recover the exact original image.
In this paper, we are concerned solely with lossless compression of 2D and 3D images.

Image compression is done by reducing the statistical and spatial redundancy that is present in an uncom-
pressed image. Statistical redundancy results from the fact that different symbols (e.g., gray values) occur
with different frequency. This kind of redundancy is handled using coding methods such as Huffman coding
[13], arithmetic coding [5], variable bit-length coding [3], and LZW coding [14], [15]. In Huffman coding, for
example, frequently occurring symbols are coded using codes that have a smaller number of bits than the
codes used for less frequently occurring symbols.

Naturally occurring images have coherence, smoothness, and correlation, which cause spatial redundancy.
There are mainly two approaches to reduce the spatial redundancy (i.e., to decorrelate the image). The first
is to apply a spatial method such as prediction, interpolation and segmentation on the image. The second
approach is to use a transform method such as the wavelet transform [11].

A recent survey and evaluation of coding, spatial, and transform methods for 2D image compression appears
in [4]. A comparison of lossless compression methods is also presented in [16], [17]. As concluded in [4], the best
compression ratios are obtained by the compression system called CALIC [1]. This system, which falls into
the catgory of context-based compression systems, employs both spatial and statistical redundancy methods.

In this paper, we propose enahancements to CALIC. Although these enhancements do not affect the run-
time of CALIC, they result in a greater amount of compression. We also propose a motion-based lossless
compression scheme for 3D images. This scheme utilizes the 2D image registration algorithm of [2]. Although

we also generalize CALIC so that 3D images may be compressed, this generalization does not result in better



compression than obtained by our motion-based compression method.

We begin, in Section IT with a description of the images used in the experimental evaluation of our proposed
compression methods. In Section IIT we describe the compression algorithm CALIC for later reference and
comparison. Qur enhancements to CALIC are developed in Section IV. The enhanced version of CALIC
is called ECALIC. In section IV, we also present experimental results using the benchmark image suite of
Section II. These results show that ECALIC outperforms the original CALIC on 37 of our 45 benchmark
images. The two methods are tied on 6 of the remaining 8 images. Our motion-based and contex-based 3D
image compression methods are described in Section V. Experimental results are also presented in Section V.
These results show that our motion-based 3D compression method outperforms competing methods on 7 of
the 8 images in our 3D bechmark suite and ties for first place with one of the competing methods on the 8th

image. The paper concludes in Section VI.

II. BENCHMARK IMAGE SUITES

For the experimental evaluation of ECALIC, we use a benchmark suite of 45 2D images. This suite includes
the 11 ISO test images shown in Fig. 1, the 16 medical images of Fig. 2, the 9 NASA images of Fig. 3, and
the 9 images shown in Fig. 4. These images are described below.

o Among the ISO test images, the images lenna, man, chall, coral and shuttle are natural gray level images.
The image sphere is a computer generated image. All images have a resolution of 8 bits/pixel. The images
lenna, man, chal, coral, shuttle, and sphere are 256 x 256 pixels in size. The size of the remaining images
varies. Note that cmpndl1 is an image with a combination of text and grayscale patterns.

o heart is a 256 x 256 8 bits/pixel image. The images braini, brain2, brain3, slicel0, slice45, slice90 and
head are slices from different MRI volume image data sets of the brain. All are 256 x 256 pixels in size
and have a resolution of 8 bits/pixel.

o The images skull, wrist, carotid, Aperts are slices from different MR volume image data sets and liverl,
liver2, sag, ped_chest are from different CT volume image datasets. All are 256 x 256 pixels in size and
have a resolution of 8 bits/pixel. These images were obtained from Washington University, St. Louis,

Medical image library, Mar. 1995, ftp://carlos.wustl.edu/dist/imagelib.
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Fig. 1. ISO Images

o The images of Fig. 3 are from the NASA image research database. All have a resolution of 8 bits/pixel.
They are of varying size and are mostly rectangular in shape.

o The images mandrill, fprint, pepper, country, city, animals, miranda, w6 and w7 are a mixed bag of
images containing various natural scenes, finger print images, and two ocean images w6 amd w7. These

images have a resolution of 8 bits/pixel and are of varying size.
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Fig. 2. Medical Images



For the evaluation of the 3D compression methods, we use the suite of 8 medical images used in [24]. These
images have a resolution of 8 bits/pixel and are composed of a varying number of slices (between 16 and 192).

Each slice is a 256 x 256 image.

III. CALIC: A CONTEXT BASED ADAPTIVE LOSSLESS IMAGE CODER

CALIC is a context based adaptive lossless image coder that was developed by Wu and Memon [1]. Basically,
it is a lossy+residual approach. In the first stage, the algorithm uses a gradient-based non-linear prediction to
get a lossy image and a residual image. In the second stage, it uses arithmetic coding to encode the residuals
based on the conditional probability of the symbols in different contexts. CALIC also has a mechanism to
automatically trigger a binary mode which is used to code uniform and/or binary subregions of the image.
CALIC is currently the best lossless image compression scheme reported in the literature. In the following we
describe the main stages of the CALIC algorithm.

o Gradient-based Prediction

CALIC scans a 2D image in row-major order and uses a nonlinear predictor to predict the gray value of
the next pixel in the same order. The predictor adapts itself to the image gradient near the predicted
pixel, thereby achieving good prediction even at sharp edges.

Let I[i, j] be the gray value of image pixel [i, j]. The horizontal and vertical gradients at the current pixel
z (see Fig. 5) are estimated using the values of pixels in the neighborhood of z. Notice that all labeled
pixels of Fig. 5 precede pixel z in row-major order. The horizontal, dj, and vertical, d,, gradients at pixel

x are estimated as follows:

dp = |lw — ww| + |n — nw| + |ne — n|

dy = |w —nw| + |n — nn| + |ne — nne|
Where: n = I[i — 1,j], w = I[i,j — 1], ne = I[i — 1,5 + 1], nne = I[i — 2,j + 1], nw = I[i — 1,5 — 1],
nn = I[i —2,j], ww = I[i,j — 2].

Based on dj, and d,, a gradient-adjusted prediction is defined as:



3/4w + 1/4n + (ne — nw) /8
5/8w + 3/8n + 3(ne — nw)/16
3/4n + 1/4w + (ne — nw)/8
5/8n + 3/8w + 3(ne — nw)/16
(w+n)/2 + (ne — nw)/4

I[i, 7] = ¢

dy — dp, > 80){sharp horizontal edge}
dy, — d, > 80){sharp vertical edge}
d, — dp > 32){horizontal edge}

d, — dp, > 8){weak horizontal edge}
dy, — d, > 32){vertical edge}

dyp, — dyy > 8){weak vertical edge}
otherwise

NN N N N
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However, this prediction is not precise enough to completely remove the spatial redundancy in the image.
CALIC uses an error energy to estimate the prediction error e[i,j] = I[i,5] — I[,j] for subsequent
refinement of the prediction. The error energy is defined as: A = dp, + d, + 2 * |ew|, which is the least
square estimator of e[z, j| (ew is the prediction error at the preceding pixel I[i,j — 1]). By conditioning
the error distribution on A, the prediction errors are separated into classes of different variances. Thus,
entropy coding of errors using estimated conditional probability p(e|A) improves coding efficiency over
using p(e). To achieve coding efficiency, A is further quantized into L levels (denoted as Q(A)).
Context Modeling

Since image gradients are inadequate for characterizing some of the more complex relationships between
the predicted pixel Iz, j] and its neighbors, context modeling of the prediction error is used in CALIC.
Context modeling of the prediction error e = 1 —1I exploits higher-order structures such as texture patterns

in the image for further compression gains. The texture pattern is defined as
P ={xg,...,z¢, 27} = {n,w, nw, ne, nn, ww, 2n — nn, 2w — ww}.
For space and time efficiency, P is quantized to an 8-bit binary number B = b7bgbsbsb3b2b1by where:

o

We can now condition the prediction errors by the context C(Q(A), B). Note that C(Q(A), B) denotes

0 if @ > I[i, ]
1 if o < I3, §]

0<k<8

a tuple of two items (Q(A), B). In this paper, we use the notation C(Q(A), B) as was used in [1].
Basically, the definition of the context (tuple C(Q(A), B)) is the structure function defined in [20], [19].
In CALIC, the context C(Q(A), B) is not only used to condition or partition the prediction errors in
the encoding phase but also used to estimate the prediction errors. The prediction errors in CALIC

are estimated as the conditional expectations E{e|C(Q(A),B)} using the corresponding sample means



e(Q(A), B) for different contexts. Computing e(Q(A), B) involves accumulating the errors of processed
pixels with the same context and maintaining a count of the occurrence of this context. Thus the context
model €(Q(A), B) is updated on the fly, a process involving the training of the context model to obtain
accurate estimates of the prediction errors under the context C(Q(A), B). After the error estimation,

error feedback can be applied on the prediction error: I = I + E{e|C(Q(A), B))} to get a smaller error

« Encoding

The next stage is encoding the errors ¢/. CALIC uses an adaptive arithmetic coding technique based on
the conditional probability of the adjusted errors: p(e|Q(A)). The errors are classified into several classes
according to Q(A) and each class forms a model in the arithmetic coding as described in Section III.

If we examine the histograms of the errors in each class, for example Fig. 6, we see that large errors
occur with diminishing frequency, but still occupy positions in the symbol table. This not only wastes
memory space for storing frequency tables in arithmetic coding, but also introduces many unnecessary
symbols. In the case of arithmetic coding, particularly for sharp conditional error probabilities p(e|d) for
small 6 = Q(A), we have to assign 1 to the frequency counts of the zero frequency symbols to safeguard
the occurrence of an event of small probability. The forced counting of 1 in the error histograms can
significantly distort the underlying error statistics, and thus reduce coding efficiency. This problem is
called the zero frequency problem.

CALIC uses a simple and effective way to solve this problem: it truncates the tails of the error histogram
and uses an escape character to code the errors beyond the truncated code range. Specifically, it limits
the size of each conditional error histogram to some value Ns, 1 < § < L, such that a large majority of
errors to be coded under the coding context ¢ fall into the range of the Ng largest entries of the d’th error
histogram. Essentially the symbol Nj for each coding context § serves as an escape symbol. Symbols
greater than or equal to N; are encoded using more than one codeword. The value of each Ns here is
crucial because too small a value causes a large number of escape symbols to be coded, whereas too large
a value does not overcome the zero frequency problem. CALIC’s authors empirically set the value for Ny,

based on experiments with an image set.



+ Binary Mode
CALIC can dynamically trigger a binary mode when the neighbors of a pixel contain very few gray levels.
In binary mode, CALIC encodes the pixel value instead of prediction errors. During the scanning process,
the algorithm checks the neighbors of the pixel z: {n,w, nw, ww,nn,ne} (see Fig. 5) and if they contain
only two gray values, CALIC goes into binary mode and encodes a 0 or a 1 when z belongs to one of
these two gray values. It encodes a 2 as an escape character when z is neither of the two gray values and
then switches back to its normal mode to encode the prediction error of . Binary mode is effective for

binary images and very smooth images.

IV. ENHANCED CALIC

In this section we propose several enhancements to CALIC. These enhancements result in a consistent

improvement in the compression ratio obtained.

A. Adaptive Binary Mode

As noted in Section III, CALIC switches into a binary mode when in a pixel neighborhood where pixels
have at most two values. Although there is no compression overhead incurred to switch into the binary mode,
an escape symbol is inserted into the compressed file when switching out of binary mode. The number of
pixels coded between the time CALIC switches into binary code and the time it switches out of this mode
is called the length of binary mode. When the length of binary mode is large, the overhead of the escape
symbol is compensated for by the savings obtained from being in binary mode. However, when the length of
binary mode is small, better compression is obtained by not switching into binary mode. Thus binary mode
improves the compression performance only for uniform or nearly uniform images and natural images which
are expected to have large binary mode lengths.

CALIC works well for images with large smooth areas because the average length of binary mode is large
and CALIC can trade off the overhead of encoding escape symbols. CALIC also works well for many textured
images like lenna—which have very few nearly uniform areas—for which binary mode is not triggered and
hence no overhead is incurred. When an image contains a fast changing textured background (e.g., the image

man of Fig. 1(b)), or when an image has a lot of noise (e.g., the brain image of Fig. 2(b)), binary mode is
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TABLE I
CoOMPARISON OF CALIC WITH AND WITHOUT BINARY MODE

Image Bin_mode | avg_length | with binary | without binary
lenna 0.46% 1.65 1.82 1.82
finger 0.002% 1.00 1.47 1.47
cmpndl 75.1% 132.04 6.2371 4.25
wb6 79.5% 16.85 7.607 7.05
carotid 47.5% 71.10 4.877 4.73
man 10.1% 5.66 2.78 2.807%
brainl 4.64% 2.43 2.24 2.257
mri 16.0% 4.80 2.83 2.87%
slice0 12.5% 3.60 2.70 2.73%

triggered thousands of times resulting in very short binary mode lengths. For these images, the overhead of
encoding an escape symbol each time we exit binary mode degrades the compression performance of CALIC.

Columns 2 and 3 of Table I give the percentage of pixels that are coded in binary mode and the average
length of binary mode for a subset of our benchmark images. Columns 4 and 5 give the compression ratio
resulting when CALIC is used with and without binary mode. Best compression ratios are identified with
a 1. The images lenna and finger have very few uniform areas, so the overhead of escape symbols does not
have a profound effect on the compression ratio. Two thirds of (¢mpndl) is binary text which has only two
gray values. Therefore, binary mode makes a significant difference on the compression obtained. For the very
smooth and clean images w6— an ocean image and carotid— a medical image, the use of binary mode also
results in a significant improvement in the compression ratio. The remaining four images have a lot of noise
and fast changing texture. For these images, the use of binary mode results in a reduced compression ratio.

When CALIC is in binary mode, the context model of prediciton errors is not updated. This means that
no prediction occurs on binary mode pixels and thus no prediction error is accumulated in the model for the
future computation of €(Q(A), B). Therefore, for normal images where the average length of binary mode is
small, we lose numerous opportunities to train the context model via omission of the prediction step in binary
mode. Since the context model can only be updated on the fly, the earlier the model reaches its steady state,
the more accurate the subsequent error estimations will be.

The above analysis leads us to introduce a preprocessing step in which we scan the image to decide whether

or not to enable binary mode globally. This decision is made by computing the average length of binary mode
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TABLE II
COMPARISON OF ALGORITHM WITH DIFFERENT CONTEXTS

Image (Q(Aa B)) (Q(A)a B, eneighbor)
man 2.799 2.814%
ct 6.265 6.321%
finger 1.469 1.477%
skull 2.923 2.93071
wrist 4.616 4.6297
aperts 7.188 7.212¢%
liver2 3.573 3.5807
carotid 4.734 4.744%

and the number of escape symbols that will need to be introduced. If the average length of binary mode is
less than 3 or if there are too many escapes (> 2% of the total number of pixels in the image), then binary
mode is disabled during compression. If binary mode is enabled, the context models are updated when the

binary mode length is less than 5 so as to increase the chances of early training of the context model.

B. Enhanced Error Prediction

In CALIC, the context for predicting the error ez, j] = I[i, j] —f[I, j] is defined as a tuple C(Q(A), B), where
A is the least square estimator of the prediction errors and B is the texture pattern of the neighbors. Since the
errors associated with the neighbors are also good indicators of the current prediction errors, we add one more
parameter to the context model, namely, the average of the prediction errors at the neighbors. This average is
defined as epeighbor = |€w + en|/2, where ew and en are the prediction errors of the neighbors to the west and
north of the current pixel. Now the context becomes a triplet, C(Q(A), B, encighbor)- Eneighbor 18 quantized
into five levels. The cutoffs for the quantizer are set to (3, 8, 15, 45). So, the number of contexts becomes five
times those used in CALIC. Table II gives the compression ratios for a subset of our test suite using both the
original context scheme of CALIC and our scheme that includes eneighbor- We can see that epeighpor captures

important neighborhood information and yields better compression performance consistently.

C. Adaptive Histogram Truncation

CALIC codes the final errors ¢/ = I — I — e using arithmetic coding. Since large errors occur with small
frequency, we have a severe zero frequency problem in the arithmetic coding. This is particularly true for

sharp conditional error probabilities p(e|d) with small § = Q(A). CALIC uses a histogram tail truncation
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method to reduce the number of symbols in the arithmetic coding. It limits the size of each conditional error
histogram to some value Ny, 1 < d < L, such that a majority of the errors to be coded under the coding
context § = Q(A) fall into the range of the N;. For any error €' in this coding context that is larger than Ny, a
truncation occurs and the symbol Ny is used to encode the escape character which represents the truncation.
Following this, the truncated information ¢’ — (Ny; — 1) is assimilated into the following class of prediction
errors with the coding context (6 + 1). In CALIC, Ny, 1 < d < L, is fixed and selected empirically.

Instead of using a fixed histogram tail truncation, we propose an adaptive histogram tail truncation that
truncates the low frequency tail of the histogram according to the current error histogram. This eliminates the
unnecessary zero frequency count of symbols during the arithmetic coding without incurring a large overhead.
Theoretically, there is an optimal point where truncation yields the best compression ratio. But, since it is
difficult to analyze quantitatively the relationship between the frequency and codeword length of a certain
symbol in the adaptive arithmetic coding, we use a simple criteria to obtain a truncation point. Specifically,
we first use a two dimensional counter X to count the frequency of an error in a certain context. For example,
X (6,val) represents the number of errors that have a value val in the context §. Then, prior to the encoding,
we search each histogram from the low frequency end (the tail) to the high frequency end. Whenever we
encounter a frequency greater than a threshold 7', we stop and set the truncation point. Since the error
histograms are usually monotonically decreasing, such a truncation can retain the significant entries of each
histogram and cut off the histogram tail with very low frequency entries. Although using such a simple criteria
might seem inadequate for optimal truncation, experiments indicate that this criteria is more effective and
efficient than other criteria such as the entropy.

Table IIT gives the compression ratios for three truncation strategies—no trunction, fixed histogram trunca-
tion, and adaptive histogram truncation. Adaptive truncation results in compression ratios that are at least

as high as those obtained by fixed truncation and no trunction.

D. Ezperimental Evaluation of Enhanced CALIC

Enhanced CALIC (ECALIC) includes adaptive binary mode, enhanced error prediction, and adaptive his-

togram truncation. We have compared the compression effectiveness of ECALIC relative to that of competing
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TABLE IIT
COMPARISON OF ALGORITHM WITH FIXED AND ADAPTIVE TRUNCATION
Image no truncation | fixed truncation | adaptive truncation
lenna 1.80 1.82¢ 1.82¢
man 2.78 2.76 2.80¢
chal 2.33 2.33 2.35¢
coral 1.91 1.92 1.93%
shuttle 2.21 2.22 2.24¢%
sphere 1.88 1.91 1.92¢
brain 2.24 2.23 2.25¢%
head 2.29 2.29 2.31¢%
mri 2.84 2.84 2.87t
ct 6.76 6.90 6.951
airl 1.47 1.48% 1.48%
finger 1.47 1.46 1.47¢
cmpndl 6.25 6.31 6.331
w6 7.67 7.54 7.68%
slice45 2.18 2.18 2.19¢%
skull 2.92 2.94 2.97¢
wrist 4.64 4.63 4.72%
carotid 4.80 4.78 4.881
aperts 7.36 7.29 7.50%
liverl 2.70 2.70 2.73t
liver2 2.56 2.56 3.61¢%
sag 3.25 3.26 3.307%
ped_chest 2.62 2.61 2.647%

lossless compression methods including JPEG [7], LOCO-I/JPEG-LS [12], S+P [8], [10], [18] and CALIC [1].
JPEG and LOCO-I/JPEG-LS are the ISO 2D image lossless compression standards. S+P is an effective
transform domain algorithm based on the principle of the wavelet transform. CALIC is the context-based
spatial domain algorithm upon which ECALIC is based. As reported in [4] CALIC gives the best compression
of the known lossless compression methods.

For our experiments, each of the cited methods was used on the raw images in our 45 image benchmark suite
as well as on a preprocessed version of these images. The preprocessing [3] involved mapping the grayscale
values that occur in an image into a contiguous range of integral values. The mapping table is stored along
with the compressed image to enable reconstruction of the original image.

Our findings are presented as four tables, one for each of the four image categories in our suite. The best

compression result for each image is marked with a { in each table.
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TABLE IV
PERFORMANCE OF 2D COMPRESSION SCHEMES ON ISO TEST IMAGES
Image JPEG JPEG-LS S+P CALIC ECALIC
w |w/o| w [w/o] w [w/o|] w [ w/o w | w/o |

lenna 1.56 | 1.56 | 1.75 | 1.76 | 1.76 | 1.77 | 1.82 | 1.831 | 1.82 | 1.82
man 2.02 | 2.04 | 2.69 | 2.71 | 2.63 | 2.65 | 2.74 | 2.77 | 2.77 | 2.807}
chal 1.93 | 1.59 | 2.28 | 1.85 | 2.21 | 1.79 | 2.351 | 1.90 | 2.357 | 1.91
coral 1.67 | 1.49 | 1.88 | 1.64 | 1.87 | 1.64 | 1.937 | 1.68 | 1.937 | 1.68
shuttle | 1.89 | 1.80 | 2.19 | 2.05 | 2.13 | 2.01 | 2.24}1 | 2.12 | 2.24} | 2.11
sphere 158 | 1.59 | 1.84 | 1.85 | 1.84 | 1.85 | 1.89 | 1.89 | 1.91 | 1.92¢%

mri 2.16 | 2.16 | 2.67 | 2.69 | 2.76 | 2.76 | 2.76 | 2.78 | 2.87 | 2.89%
ct 3.46 | 3.51 | 6.03 | 6.05 | 5.27 | 5.27 | 6.69 | 6.71 | 6.92 | 6.95}
airl 134 | 1.34 | 145 | 145 | 1.44 | 1.45 | 1.497 | 1.49% | 1.47 | 1.48

finger 1.34 | 1.34 | 141 | 141 | 145 | 1.45 | 1.46 | 1.477 | 1.47F | 1.47¢%
cmpndl | 2.91 | 2.87 | 5.76 | 6.12 | 3.32 | 3.33 | 6.19 | 6.19 | 6.27 | 6.32}
w and w/o indicate the algorithm with and without mapping

The performance of the mapping preprocessor is inconsistent; on some images (e.g., the ocean images w6 and
w7), the preprocessing doubles the compression ratio obtained by CALIC and increases the ratio for ECALIC
75%. On other images (e.g., man), there is a small reduction in the compression ratio. ECALIC and CALIC
generally provide higher compression ratio than any of the other schemes. In fact, CALIC and ECALIC were
outperformed on only one of our test images (fprint). CALIC and ECALIC performed better than S+P and
JPEG on all the test images. They performed better than LOCI-I/JPEG-LS on 42 of 45 images. ECALIC
did better than CALIC on 37 of our 45 images; CALIC did slightly better than ECALIC on only 2 of our 45

images; the two methods tied on the remaining 6 images.

V. LoOSSLESS 3D IMAGE COMPRESSION

Several of today’s diagnostic imaging techniques, such as computed tomography (CT), magnetic resonance
(MR), positron emission tomography (PET), and single photon emission computed tomography (SPECT),
produce a three-dimensional volume of the object being imaged, represented by multiple two-dimensional
slices. These images may be compressed independently on a slice by slice basis. However, such a two-
dimensional approach does not benefit from exploiting the dependencies that exist among all three dimensions.
Since the image slices are cross sections that are adjacent to one another, they are partially correlated.

An alternative approach to compress the sequence of slices is to view the slices as a sequence of moving
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TABLE V
PERFORMANCE OF 2D COMPRESSION SCHEMES ON MEDICAL IMAGES

Image JPEG JPEG-LS S+P CALIC ECALIC
w |w/o| w [w/o| w [w/o| w [w/o| w [ w/o |
heart 2.01 | 2.03 | 2.83 | 288|266 270 3.01]|296 | 3.077 | 3.02

brainl 1.86 | 1.49 | 2.09 | 1.63 | 2.16 | 1.68 | 2.21 | 1.71 | 2.251 | 1.71
brain2 1.84 | 1.50 | 2.07 | 1.65 | 2.14 | 1.71 | 2.19 | 1.73 | 2.221 | 1.73
brain3 1.83 | 1.44 | 2.03 | 1.56 | 2.11 | 1.62 | 2.15 | 1.64 | 2.18F | 1.64
head 1.92 |1 1.92 | 2.15 | 2.16 | 2.20 | 2.20 | 2.26 | 2.23 | 2.311 | 2.26
slice0 2.16 | 2.17 | 2.52 | 2.52 | 2.54 | 2.54 | 2.65 | 2.60 | 2.737 | 2.66
slice4d 1.79 | 1.80 | 2.04 | 2.05 | 2.12 | 2.12 | 2.16 | 2.15 | 2.19f | 2.17
slice90 1.92 | 1.93 | 2.25 | 2.25 | 2.29 | 2.29 | 2.37 | 2.34 | 2.421 | 2.38
skull 2.00 | 2.01 | 2.79 | 2.82 | 2.57 | 2.59 | 2.91 | 2.94 | 2.84 | 2.97¢}
wrist 2.61 | 2.63 | 449 | 4.55 | 4.04 | 4.09 | 4.42 | 449 | 4.65 | 4.72¢%
carotid 273 | 2.76 | 4.43 | 4.51 | 3.95 | 4.01 | 4.67 | 4.75 | 4.78 | 4.88%
aperts 3.43 | 3.47 | 6.81 | 6.95 | 5.79 | 5.89 | 6.97 | 7.13 | 7.33 | 7.507

liverl 2.06 | 2.07 | 2.60 | 2.61 | 2.64 | 2.65 | 2.68 | 2.70 | 2.71 | 2.73¢}
liver2 2.20 | 2.22 | 3.34 | 3.37 | 3.27 | 3.30 | 3.54 | 3.58 | 3.57 | 3.61%
sag 234 1235 |3.14 | 3.16 | 3.00 | 3.02 | 3.19 | 3.22 | 3.27 | 3.30%

ped_chest | 2.09 | 2.11 | 2.45 | 2.47 | 2.56 | 2.58 | 2.58 | 2.60 | 2.62 | 2.64f
w and w/o indicate the algorithm with and without mapping

TABLE VI
PERFORMANCE OF 2D COMPRESSION SCHEMES ON NASA IMAGES
Image JPEG JPEG-LS S+P CALIC ECALIC
w |[w/o| w [w/o] w [w/o] w | w/o w | w/o |

EL36 | 1.52 |1.53 |1.80| 1.81 | 1.83 | 1.83 | 1.86 | 1.86 | 1.871 | 1.877
EL92 | 1.80 | 1.80 | 2.33 | 2.34 | 2.28 | 2.29 | 2.45 | 2.46 | 2.46 | 2.47%
EL93 | 1.89 | 1.90 | 2.55 | 2.56 | 2.46 | 2.47 | 2.58 | 2.59 | 2.59 | 2.607
EL94 1.84 | 1.85 | 2.46 | 2.47 | 2.39 | 2.40 | 2.52 | 2.53 | 2.54 | 2.557
EL107 | 1.90 | 1.90 | 2.52 | 2.53 | 2.46 | 2.47 | 2.62 | 2.637 | 2.631 | 2.637
EL199 | 2.10 | 2.11 | 3.05 | 3.06 | 3.05 | 3.06 | 3.12 | 3.13 | 3.15 | 3.167
EL213 | 3.23 | 3.24 | 4.91 | 4.94 | 444 | 4.46 | 5.49 | 5.53 | 5.55 | 5.597
EL216 | 2.76 | 2.77 | 3.92 | 3.95 | 3.55 | 3.57 | 4.16 | 4.19 | 4.21 | 4.24}
EL475 | 1.95 | 1.95 | 2.66 | 2.67 | 2.47 | 2.48 | 2.77 | 2.78 | 2.79 | 2.807
w and w/o indicate the algorithm with and without mapping

frames. The third dimension can be treated as the time axis and motion analysis techniques from the computer
vision literature can be applied to determine the motion between consecutive frames. The motion estimator
acts as a predictor for the next slice. The error between the estimation of the next slice and the actual values
for the next slice may be viewed as a 2D image, which can be compressed using 2D compression methods.
Yet another approach is to consider the set of slices as a 3D volume and use prediction or 3D frequency trans-

form compression methods. For example, we could use the lossless 3D wavelet compression algorithm of Bilgin
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TABLE VII
PERFORMANCE OF 2D COMPRESSION SCHEMES ON OTHER IMAGES
Image JPEG JPEG-LS S+P CALIC ECALIC
w |w/o| w [w/o| w [w/o| w [w/o| w | w/o |
w6 4.63 | 241 | 6.66 | 2.69 | 5.15 | 1.76 | 7.45 | 4.24 | 7.681 | 4.69
w7 4.66 | 241 | 6.77 | 2.69 | 5.21 | 1.77 | 7.22 | 3.83 | 7.521 | 4.22

mandrill | 1.15 | 1.16 | 1.21 | 1.21 | 1.25 | 1.25 | 1.25 | 1.26 | 1.25 | 1.26¢}
fprint 1.72 | 1.36 | 2.42F | 1.77 | 1.88 | 1.39 | 1.99 | 1.47 | 2.02 | 1.49
peppers | 1.53 | 1.53 | 1.73 | 1.73 | 1.67 | 1.67 | 1.76 | 1.76 | 1.771 | 1.77%
city 1.65 | 1.46 | 2.267 | 1.90 | 1.68 | 1.45 | 1.93 | 1.65 | 1.97 | 1.70
country | 1.79 | 1.59 | 2.271 | 1.99 | 1.79 | 1.58 | 2.06 | 1.82 | 2.09 1.86
animals | 1.30 | 1.18 | 1.37 | 1.22 | 1.34 | 1.21 | 1.42 | 1.27 | 1.42} | 1.27
miranda | 1.98 | 1.98 | 2.63 | 2.63 | 2.65 | 2.66 | 2.78 | 2.79 | 2.81 | 2.82¢%
w and w/o indicate the algorithm with and without mapping

[24]. This algorithm first decomposes the image data into subbands using a 3D integer wavelet transform, it
then uses a generalization of the zerotree coding scheme [9] together with context-based adaptive arithmetic

coding to encode the subband coefficients. [21], [22], [23] also use wavelets for 3D image compression.

A. Motion Based Compression Algorithm

Prediction using a motion estimator is called motion compensation. This prediction permits extracting the
temporal redundancy that exists in a sequence of images through motion estimation. If the motion vector at
each pixel location is (u,v), then the motion error is given by e(z,y) = I(z,y;n) — I(z —u,y —v;n— 1), where
n is the slice or frame number. The task of the encoder is to encode the motion errors.

Our proposed algorithm comprises the following steps:

1. Motion estimation

The motion from one slice to the next can be represented by a geometric transformation on one slice. A
2D affine transformation is an example of a geometric transformation and it includes rotation, translation

and scaling. The affine motion model is defined in the following manner:

EvinFA I HEHEH

where, T = (%, ...,t5)1 performs a global transformation. So, given two 2D images, a motion estimation
algorithm will compute a 2D affine transform vector T'. To reduce the computational burden, the transform

T is computed only at a subset of the image grid called the control point grid. The transformation can then
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be interpolated at other locations using a B-Spline representation for the control grid. In our motion-based
3D compression algorithm we used the robust and efficient estimator proposed in [2].

2. Compute the motion error

We use the motion transform vector T to compute
E=T(I, 1) - I, (1)

which is the motion error between the predicted value T'(I,,—1) of slice n and the actual value of slice n.

Specifically, the following steps are used:

(a) Apply the motion estimation algorithm on the control points to get the motion vector (u,v) at the
control points,

(b) Use bilinear interpolation to get the motion vectors at other locations of the image grid.

(c) Compute the difference (i.e., the motion error) E between the transformed image I,, = T(I,—1) and
the target image I,.

3. Encode the motion error

The error is the difference E between two images as defined in (1). The absolute values of the motion errors

are expected to be smaller than the intensities of the pixels in a slice. Thus, applying a 2D compression

algorithm on the motion errors is expected to yield a smaller compressed file than when a 2D compression

method is applied on the original slice. Since the value of the motion errors can be both positive and

negative, we make all errors nonnegative by offsetting the errors an amount equal to the most negative

error. This offsetting operation does not alter the correlations in the error image.

The first slice of a 3D image is compressed using a 2D compression scheme such as ECALIC (Section IV).
The motion estimation scheme is applied to all other slices. The motion vector and motion errors are stored
for each of these remaining slices. Since the motion parameters are six floating point numbers, the storage
space they require is very small.

Besides providing good overall compression, our motion based scheme requires only enough computer mem-
ory to store just three slices. Thus we can handle very large 3D images. The other schemes require the entire

3D image be in memory at the same time. Further, unlike the wavelet-based 3D compression schemes which
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TABLE VIII
COMPARISON OF WAVELET AND MOTION BASED METHODS
Image slices # | wavelet | motion
CT _skull 192 3.981 4.0927
CT_wrist 176 7.022 | 7.022%
CT _carotid 64 5.743 | 6.0707
CT_Aperts 96 8.966 | 9.8757
MR liver_t1 48 3.624 | 3.663t
MR _liver_t2el 48 4.823 | 4.921%
MR _sag_head 16 3.502 | 4.06371
MR _ped_chest 64 4.267 | 4.304%

1 indicates the best result

require that the number of slices be a power of 2, our motion-based scheme can be applied to images with
any number of slices.

Table VIII gives the compression ratios obtained by our motion-based compressor and the algorithm
(wavelet)proposed by Bilgin [24]. Our motion-based scheme outperforms the wavelet-based scheme on 7

of the 8 test images used in [24]. On the 8th image, the two methods are tied.

B. 3D Context-Based Compression Algorithm

This algorithm is an extension of our proposed 2D lossless compression algorithm ECALIC. We introduce
a third dimension in the prediction and context modeling steps. For each slice k, the algorithm comprises the
following steps:
1. Binary mode detection
In addition to the six neighbors of the current pixel z used in the 2D algorithm, we use three neighbors
from the previous slice k — 1 (see Fig. 7(b)). If all 9 of these neighbors (neighbors are shown in bold fonts
in Fig. 7) have only two distinct values, then binary mode is triggered. The operation of binary mode
here is the same as in the 2D case.

2. Prediction
Once again we use a gradient based non-linear prediction. We add d, as the gradient in the z/temporal
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direction and the prediction equation becomes:

(wy, (dy — dp, > 80 or d, — dp, > 80){sharp horizontal edge}

g (dn — dy > 80 or d, — d, > 80){sharp vertical edge}
Th_1 (dy —d;, > 80 or d, — d, > 80){sharp z edge}
(Avg + wy)/2 (dy — dp > 32 or d, — dp, > 32){horizontal edge}

f[z' il = (3% Avg + wy) /4 (dy —dp > 8 or d, — dp, > 8){weak horizontal edge}
’ (Avg + ny)/2 (dp —dy > 32 or d, — d,, > 32){vertical edge}

(3% Avg + ny)/4 (dp —dy > 8 or d, — d, > 8){weak vertical edge}

(Avg + x5-1)/2 (dy —d, > 32 0or dy, — d, > 32){z edge}

(3x Avg+ z1)/4 (dy —d, > 8 or d —d, > 8){weak z edge}

Avg otherwise

where
Avg = (wg + ng + z5-1)/3 + ((nex, — nwg) /4 + (ex—1 — wr—1)/4 + (ng—1 — sx—1)/4)/3
d, = |lwg — wg_1| + [Pk — nk_1| + |xk—1 — Tk_2|- The pixel labels used in the above equations are shown
in Fig. 8.
3. Context modeling

For 3D context modeling, we first define the error energy as:

A= (dh +dy, +d,+ |6U)k| + |enk| + \exk_1|)

where ewy and eny, are the errors in positions w and n of slice k and exj_1 is the error in position z of
slice k — 1. To reduce the number of parameters, we still quantize A into L = 8 levels.

Since there are several slices in a volume data set, we have access to more context (relative to the 2D
case) due to the increased neighborhood size in 3D. Thus, in addition to the 8 bits required to code the
texture pattern in the 2D case, we add 10 bits to represent the texture pattern in 3D. These 10 bits are
obtained from the pixels contained in slice k¥ — 1 shown in Fig. 8 and a pixel in slice kK — 2 corresponding
to the location of .

4. Entropy coding

We maintain the context models of prediction errors for the entire volume, and they are updated during
the prediction process of each slice. However, for reasons of space efficiency, we encode the errors in each
slice separately from other slices. Thus the truncation of the histogram and the arithmetic coding of the
errors are done at the end of the prediction stage of every slice. Following this, the histograms of each
context are reset for the next slice. In this way, the algorithm needs to access at most three slices at one

time, thereby reducing the space complexity of the algorithm.
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TABLE IX
COMPARISON OF WAVELET AND CONTEXT-BASED METHODS
Image slices # | wavelet | 3D context-based
CT _skull 192 3.981% 3.910
CT_wrist 176 7.0221 6.447
CT_carotid 64 5.743 6.041%
CT_Aperts 96 8.966 9.741%
MR liver_t1 48 3.624¢ 3.280
MR _liver_t2el 48 4.823t 4.405
MR _sag_head 16 3.502 4.09371
MR._ped_chest 64 4.2677 4.100

1 indicates the best result

Table IX gives the compression ratios obtained by our 3D context-based compression algorithm and the
wavelet-based algorithm proposed by Bilgin [24]. The wavelet-based algorithm does better than our context-

based algorithm on 5 of the 8 test images.

C. FEvaluation of all 8D Methods

To complete the evaluation of the 3D methods, we consider the two versions of the wavelet method proposed
in [24]. The methods wavelet-based(a) and wavelet-based(b) differ in the block size used. The results for the
schemes wavelet-based(a) and wavelet-based(b) are from Bilgin [24]. The method wavelet-based(a) uses a 2-
level dyadic decomposition on blocks of 16 slices, while wavelet-based(b) uses a 3-level dyadic decomposition
on the entire volume. As pointed out in Bilgin [24], no single transform performs best over the entire data
set, therefore, for comparison pusposes, we include the best results from all the transforms considered in [24].
Table X shows that our motion-based scheme gives best compression on 7 of the 8 test images; our context-
based scheme yields the best result on the remaining image. The wavelet-based schemes tie the performance
of our motion-based scheme on 1 image.

From the space complexity point of view, our context-based algorithm has the advantage that during each
step of compression at most three slices of data are brought into memory, whereas, in the wavelet-based
algorithm (b), the whole volume needs to be loaded into memory in order to apply the wavelet transform.
When the method wavelet-based(a) is used, blocks of 16 slices are read in and compressed. This scheme,

however, does not give as much compression as does wavelet-based(b).
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TABLE X
COMPARISON OF 3D COMPRESSION METHODS

Image slices # | wavelet | wavelet | motion | context

based(a) | based(b) | based | based
CT _skull 192 3.671 3.981 4.0921 | 3.910
CT _wrist 176 6.522 7.0221 | 7.0221 | 6.447
CT _carotid 64 5.497 5.743 6.070t | 6.041
CT_Aperts 96 8.489 8.966 9.8751 | 9.741
MR _liver_t1 48 3.442 3.624 3.6631 | 3.280
MR _liver_t2el 48 4.568 4.823 4.921% 4.405
MR _sag_head 16 3.644 3.502 4.063 | 4.093t
MR _ped_chest 64 4.021 4.267 4.3041 | 4.100

1 indicates the best result

VI. CONCLUSION

In this paper, we have proposed enhancements to the 2D lossless compression method CALIC. The enahnced
version, ECALIC, outperforms CALIC on 37 of our 45 test images, and ties with CALIC on 6 of the remaining
8 images.

We have also proposed two lossless 3D image compression algorithms, one is motion-based, the other is
context-based. The motion-based algorithm outperformed the wavelet-based algorithms of [24] on 7 of the 8
data sets used; it tied on the 8th data set. Besides providing better compression, our motion-based scheme

requires less computer memory than required by the competing methods of [24].
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(a) EL36 (c) EL93

(e) EL107 (f) EL199 (h) EL216

(i) EL475

Fig. 3. NASA Images
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Fig. 4. Other Images
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Fig. 5. Neighborhood template for CALIC
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Fig. 7. (a)neighbors in slice k, (b)neighbors in slice k — 1
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Fig. 8. neighbors in texture pattern in slice k-1
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