
Describing Similar Control Flows for
Families of Problem-Solving Methods

Rainer Perkuhn

Institute AIFB
University of Karlsruhe (TH)
D-76128 Karlsruhe, Germany

e-mail: perkuhn@aifb.uni-karlsruhe.de

Abstract
A library of software components should be essentially more than just a
juxtaposition of its items. For problem-solving methods the notion of a family is
suggested as means to cluster the items and to provide partially a structure of the
library. This paper especially investigates how the similar control flows of the
members of such a family can be described in one framework.

Keywords: Problem Solving Methods, Reuse, Similarities,
Categories of PSMs, Software Architectures, Meta Modeling

1 Introduction

The notion of a problem-solving method (PSM) was inspired by a lot of different
approaches (Generic Tasks [Chandrasekaran, Johnson, and Smith, 1992], Com-
monKADS [Schreiber et al., 1994], Method-to-Task Approach [Eriksson et al., 1995],
Components of Expertise [Steels, 1990], GDM [Terpstra et al., 1993], MIKE [Angele,
Fensel, and Studer, 1996]). PSMs describe the reasoning behaviour of an intelligent
agent. Though, suitable models are especially conceptual ones and “platform-indepen­
dent” by providing modeling primitives on the knowledge level ([Newell, 1982]). Up
to now the competing modeling frameworks converged and reached consensus on the
fundamental issues a common (“unified”) theory has to cover. [Angele et al., 1996],
[Perkuhn, 1997] summarize the synthesis of this development, the new proposal for
UPML ([Fensel et al., 1999]) tries to capture the result in a unified modeling language.
Reuse of PSMs promises time, cost, and quality improvement in the development pro­
cess of a knowledge-based system, inch maintenance, and a more reasonable assess­
ment of the quality of the resulting product. Mainly, investigations on the reuse of
PSMs focus on the development of libraries ([Motta, 1997], [Breuker and van de
Velde, 1994]) but from a reuse process point of view these are useful only to a limited
extent. Either they offer only a collection of items with no real support of how to select
an appropriate one. Or they attempt to cover a more generalized structure, e.g. task-
method-decomposition trees ([Benjamins, 1993]), but are very poor in showing up the
relations between the possible specializations. The latter approach seems more promis­
ing but evaluations have shown their deficiencies ([Orsvärn, 1996]). The main critics
is that the designer of the library did not consider (and is not able to represent) in his
models of how to adapt the generalized structure to a special application. The tower-
of-adapter approach ([Fensel, 1997]) is derived from the necessity to adapt general
models, like e.g. basic search schemes, to more specialized circumstances, e.g. special
PSMs like propose&revise. In principle, the approach is a constructive one but up to
now it neither offers models that contain the information of the overall structure of the
resulting system in a communicable form - as the conceptual models do - nor offers

Published in: Fensel, Dieter/Studer, Rudi (Eds.): Knowledge Acquisition, Modeling and
Management. 11th European Workshop, EKAW'99 Dagstuhl Castle, Germany, May 26–29, 1999

Proceedings - Berlin/Heidelberg: Springer, 1999. Pp. 361-366.
(Lecture Notes in Artificial Intelligence 1621)

mailto:perkuhn@aifb.uni-karlsruhe.de

362

construction plans of how to combine the basic templates with some adapters to come
to a certain overall conceptual structure. Of course, adapters might improve the reus­
ability of a system like any other design pattern ([Gamma et al., 1994]) can do. But
especially conceptual models of PSMs contain information that is closer to an architec­
tural description ([Shaw and Garlan, 1996]) of the general structure of the target sys­
tem. Nevertheless the approach is an interesting alternative rsp. completion to indexing
the library with simple keywords or logical formulae-based pre-/post-condition anno­
tations. Actually, it is not far away from object-orientation - another view on reuse that
claims that the inheritance hierarchy provides a reasonable structure of the reuse com­
ponents and, thus, solves a good deal of the indexing problem. But a PSM cannot be
captured completely by the notion of an object in this sense since it e.g. contains an
explicit specification of the control flow. [Perkuhn, 1997] suggested the concept of a
family of PSMs that describes the overall architecture for a class of similar methods. In
the same fashion as in object-orientation it is intended to structure a part of the library.
Thus, only a family has to be retrieved from the library by an additional mechanism.
Afterwards the selection of a PSM corresponds to systematic browsing through the
family. [Perkuhn, 1997] focussed on inference structures while this paper especially
investigates how to describe similar control flows for a range of closely related PSMs.

2 Families of PSMs

Most aspects of a PSM that can be
represented in a specific part of the
model (layer rsp. view) can be dis­
tinguished between elements like
concepts or roles and steps in the
problem solving process on the one
hand and relations between them on
the other hand. [Perkuhn, 1997]
introduced colouring as a means to
express that they are not necessarily
parts of the model. All elements in
the same colour form a region. A
coloured region possibly has to be
omitted if certain conditions are not
fulfilled. In the example of [Per­
kuhn, 1997] (a family for assign­
ment tasks that covers generate-
and-test, propose-and-exchange,
and propose-and-revise) different
regions depend on the availability
of the knowledge for static roles
namely propose, exchange, and
revise. The former two are illus­
trated in figure 1. The revise region is part of the refinement of the exchange step that
is not shown here. If one of these static roles cannot be filled, i.e. the knowledge is not
available or cannot be acquired either, the corresponding region has to be removed
from the model. For these cases it seems to be appropriate to colour and remove all
related connections, too. But in other cases the resulting model has to be kept consis­
tent rsp. coherent. E.g. to restore the coherence of a taxonomy or a sequential control
flow the gap in the model has to be bridged with the transitive closure of the adjacent
relations (cf. figure 2) - if possible and reasonable. Colouring is a creative modeling
act and expresses as an epistemological primitive on a cross-model level that the

Figure 1. Coloured task decomposition and
inference structure for the assignment
family (cf. [Perkuhn, 1997])

363

Figure 2. Optional connections vs. transitive closure of adjacent connections

model should still make sense in all variations with or without the regions in every
context.
Capturing similar control flows imposes additional requirements on the modeling
framework. The control flow specification has to prescribe which steps are performed
in which order. If the reasoning process reaches a state where it can follow different
succeeding paths, the control flow has to specify how to go on. In the ordinary PSM
scenario the decision depends on boolean expressions - normally expressing an inter­
nal state during computation. Resembling the manner of procedural programming lan­
guages if- or case-statement-like expressions evaluate these boolean expressions and
according to their truth value decide for one path. Overlaying different control flows
introduces a new aspect that has to be distinguished from these internal states.
In the example family some variants begin with a propose step, others with a generate
step. Some other variants use the generate step as a fallback action if for a certain vari­
able (“parameter”) no propose knowledge is applicable. Since in most cases - if pro­
pose is realized - generate is not taken into consideration at all it is not appropriate to
put these two steps into a sequential order. Rather they should be treated as alterna­
tives. An additional mechanism is necessary to handle the fallback variant, but, actu­
ally, this distinction exactly reflects the difference of ordinary inter-process
communication via return values and extra-ordinary exception handling. This new
form of alternative does not depend on an internal state of the computation. It is a kind
of non-deterministic decision point to be resolved with respect to the possible variants.
At the decision point the problem-solving process is in
a state similar to a person that wants to get from one
place to another one. When the person reaches a point
where the path splits and he/she can decide how to go
on - assuming that both paths still lead to the target
place -, normally, the selection is not arbitrary but
depends on some properties of the alternatives. In this
framework these are annotated as features to the dif­
ferent paths. The next step is then determined by an
external strategy that weighs up the different proper­
ties. In the example of the assignment family the alter­
native paths can be annotated as “founded” on the one
hand, and “random” on the other hand. A usual default
strategy (cf. table 1) would reflect the superiority and
prefer the founded alternative over the random one.

Figure 3. Decision criteria
annotated as features

strategy “founded” p r e f e r a [+ founded] p a th o v e r any o th e r

strategy “not random” p r e f e r any p a th o v e r a [+randoin] one

Table 1 - Two default strategies

364

The following example illustrates how the combination of properties and internal
states is annotated as feature-conditioned boolean expression.

start

[+foundecT [+random]

generate

[-holistic] or
[♦holistic] | complete

All PSMs of the assignment fam­
ily can be categorized into two
groups: those that work holisti­
cally, i.e. they first complete the
system model (in an inner loop)
before they test and revise it, and
those that work incrementally,
i.e. they already test and revise
incomplete models (partial
assignments) and extend them in
an outer loop. Executing propose
or generate once yields one value
for one variable. So, afterwards
the control flow has the option to
repeat this first step or to test the
system model built up so far.
This general property is
expressed by the feature [-(-holis­
tic] for completing first, and [-
holistic] for the interleaving tests.
The logical complement is used
here to express the mutual exclu­
siveness of the two alternatives.
The path back to the beginning
(the inner loop) is only consid­
ered if the strategy prefers “holis­
tic ways”. The path related to the test is considered if “incremental ways” are preferred
but also at least finally in the holistic case. So, deciding for an incremental strategy has
trivially the following effect: The loop can be ignored but the connection to test has to
be realized as an unconditioned path. The holistic strategy still prefers both paths. But

[-»-holistic] | not complete

not success and
[♦limited]

success and
[-holistic] | complete w

QnQ

(not success or
[-holistic] | not complete) and
[♦random]

Figure 4. A coloured non-deterministic control flow
for the assignment family

strategy “holistic” prefer [+holistic] over [-holistic]
strategy “incremental" prefer [-holistic] over t+holistic]

Table 2 - Two complementary strategies to be selected by the user

it is clear that the inner loop should not be repeated infinitely but only until the model
is complete. This is what may be expressed by an ordinary boolean expression like
“complete” or “not complete”. Thus, the feature-conditioned boolean expression has to
be read as: Even if the strategy preferred the path due to the feature, solely the evalua­
tion of the boolean expression determines which path to follow. It is worth while to
mention that the completeness of the model has to be checked only once - either before
or after the test. Thus, this framework is able to cope with different strategies that
cause different global effects on the control flow.
By introducing two modeling primitives, namely features in a somehow non-determin­
istic control flow on the one hand and strategies apart from the control flow on a
“strategy layer” to resolve the non-determinism on the other hand the two different
concerns what alternatives are available and which one should be selected could be
modelled separately. Thus, a family is a parametrized representation of several PMSs
with respect to the optional components and the strategies that can be chosen. This
framework offers the advantage in contrast to other approaches ([ten Teije, 1997]) that

365

the parameters are very closely attached to the conceptual models and, by this, can be
exploited in a communicative situation. All parameters can be expressed in a way that
can be understood by an expert but they are also useful for the knowledge engineer.
After selecting a family the parameters can be checked systematically, e.g. with a
questionnaire, to provide actual parameters for an instantiation of the generic family.

3 Conclusion and Related Work

The ambition to make reuse of knowledge (level) models more flexible is not new
([Geldof, 1994]). In the first version KADS ([Schreiber, Wielinga, and Breuker,
1993]) suggested a strategy layer for this purpose. But both only consider the possibil­
ity to chose between different methods with the same competence for one task. Simi­
larly GDM ([Terpstra et al., 1993]) allows the application of alternative rewrite rules
that may cause comparable effects to the graph transformation rules in the approach
presented here. But none of these three frameworks allows to model explicitly decision
criteria or resolution strategies. There is no flexibility related directly to the conceptual
models and there is no way to capture global effects on different strategies. GDM
claims that meta knowledge helps them to cope with some of these problems. But sim­
ilar to task features ([Aamodt et al., 1993]) there is no direct relation to the respective
part of the model so that it could be explained and justified from its context.
Other approaches focus more on strategic aspects. TASK+ ([Pierret-Golbreich and
Talon, 1997]) tries to describe these with abstract data types; DESIRE ([Brazier et al.
1997]) allows to specify multi agent systems. But both are only loosely coupled to the
conceptual models in the sense presented here and they are not able to separate the
concerns on different layers. DESIRE e.g. uses ordinary if-statements for activating
agents, i.e. for selecting the control flow. Thus, the difference between ordinary con­
trol flow and strategic aspects is not obvious in these models.
Very close in spirit is the idea of configuring PSMs via parametric design ([ten Teije et
al., 1996], [ten Teije, 1997]) that is investigated for diagnosis. But the suggested
parameters are only hardly to understand as underpinned by the conceptual model. The
major weakness of the models is the insufficient expressiveness for specifying control
flow especially for capturing alternatives.
The work presented in this paper is the only one that combines the strict relation to the
conceptual models with an explicit layer to capture and specify alternatives and their
resolution.

References
[Aamodt et al., 1993] A. Aamodt, B. Benus, C. Duursma, C. Tomlinson, R. Schrooten, and W.

van der Velde: Task Features and their Use in CommonKADS. Deliverable 1.5. Version 1.0,
Consortium, University of Amsterdam, 1993.

[Angele et al., 1996] J. Angele, S. Decker, R. Perkuhn, and R. Studer: Modeling Problem
Solving Methods in New KARL. In: [KAW, 1996], 1-1 - 1-18.

[Angele, Fensel, and Studer, 1996] J. Angele, D. Fensel, and R. Studer: Domain and Task
Modeling in MIKE. In: A. Sutcliffe, D. Benyon, F. van Assche (eds.): Domain Knowledge for
Interactive System Design, Chapman & Hall, 1996, 149-163.

[Benjamins, 1993] R. Benjamins: Problem Solving Methods for Diagnosis. Ph.D. Thesis,
University of Amsterdam, Amsterdam, 1993.

[Brazier et al. 1997] F.M.T. Brazier, B.M. Dunin-Keplicz, N.R. Jennings, and J. Treur:
DESIRE: Modeling Multi-Agent Systems in a Compositional Framework. International
Journal o f Cooperative Information Systems: Multiagent Systems. 6(1), 1997, 67-94.

[Breuker and van de Velde, 1994] J.A. Breuker and W. van de Velde (eds.): The CommonKADS
Library for Expertise Modeling. IOS Press, Amsterdam, 1994.

366

[Chandrasekaran, Johnson, and Smith, 1992] B. Chandrasekaran, T.R. Johnson, and J.W.
Smith: Task-Structure Analysis for Knowledge Modeling. Communications o f the ACM,
35(9), 1992, 124-137.

[Eriksson et al., 1995] H. Eriksson, Y. Shahar, S.W. Tu, A.R. Puerta, and M.A. Musen: Task
Modeling with Reusable Problem-Solving Methods. Artificial Intelligence, 79, 2, 1995, 293-
326.

[Fensel, 1997] D. Fensel: The Tower-of-Adapter Method for Developing and Reusing Problem-
Solving Methods. In: [Plaza and Benjamins, 1997], 97- 112.

[Fensel et ah, 1999] D. Fensel, R. Benjamins, S. Decker, M. Gaspari, R. Groenboom, W.
Grosso, M. Musen, E. Motta, E. Plaza, G. Schreiber, R. Studer, and B. Wielinga: The
Component Model of UPML in a Nutshell. To appear in: Proceedings o f the 1st Working IFIP
Conference on Software Architecture (WICSAI), San Antonio Texas, USA, February 22-24,
1999.

[Gamma et ah, 1994] E. Gamma, R. Flelm, R. Johnson, and J. Vlissides: Design Patterns.
Elements o f Reusable Object-Oriented Software. Addison-Wesley, Reading/Mass. 1994.

[Geldof, 1994] S. Geldof: Towards More Flexibility in Reuse. In: Proceedings o f the 14th
International Conference in Artificial Intelligence, KBS, Expert Systems, Natural Language
o f Avignon. Paris, 1994, 65-75.

[Gennari et ah, 1994] J.H. Gennari, S. Tu, Th.E. Rothenfluh, and M.A. Musen: Mapping
Domains to Methods in Support of Reuse. International Journal o f Human-Computer Studies
(IJHCS), 41, 1994,399-424.

[KAW, 1996] Proceedings o f the IOth Banff Knowledge Acquisition for Knowledge Based
Systems Workshop (KAW‘96), Banff, Canada, November 1996.

[Motta, 1997] E. Motta: Reusable Components for Knowledge Modeling. Ph.D. Thesis,
Knowledge Media Institute, Open University, Milton Keynes, UK, 1997.

[Newell, 1982] A. Newell: The Knowledge Level. Artificial Intelligence. 18, 1982, 87-127.
[Orsväm, 1996] K. Orsväm: Principles for Libraries of Task Decomposition Methdos -

Conclusions from a Case Study. In: N. Shadbolt, K. 0 ‘Hara, G. Schreiber (eds.): Advances in
Knowledge Acquisition. Proceedings o f the I Oth European Knowledge Acquisition Workshop
(EKAW'96), Nottingham, England, May 1996, Lecture Notes in Artificial Intelligence
(LNAI), vol. 1076, Springer, Berlin, 1996, 48-65.

[Perkuhn, 1997] R. Perkuhn: Reuse of Problem-Solving Methods and Family Resemblances.
In: [Plaza and Benjamins, 1997], 174-189.

[Pierret-Golbreich and Talon, 1997] C. Pierret-Golbreich, X. Talon: Specification of Flexible
Knowledge-Based Systems. In: [Plaza and Benjamins, 1997], 190-204.

[Plaza and Benjamins, 1997] E. Plaza, R. Benjamins (eds.): Knowledge Acquisition, Modeling
and Management. Proceedings o f the I Oth European Workshop (EKAW‘97), Sant Feliu de
Guixols, Catalonia, Spain, October 1997, Lecture Notes in Artificial Intelligence (LNAI), vol.
1319, Springer, Berlin, 1997.

[Puerta et ah, 1992] A. R. Puerta, J. W. Egar, S. W. Tu, and M. A. Musen: A Multiple-Method
Knowledge Acquisition Shell for the Automatic Generation of Knowledge Acquisition Tools.
Knowledge Acquisition, A, 1992, 171-196.

[Schreiber, Wielinga, and Breuker, 1993] G. Schreiber, B. Wielinga, and J. Breuker (eds.):
KADS. A Principled Approach to Knowledge-Based System Development. Knowledge-Based
Systems, vol. 11, Academic Press, London, 1993.

[Schreiber et ah, 1994] A.Th. Schreiber, B.J. Wielinga, R. de Hoog, H. Akkermans, and W. van
de Velde: CommonKADS: A Comprehensive Methodology for KBS Development. IEEE
Expert, December 1994, 28-37.

[Shaw and Garlan, 1996] M. Shaw, D. Garlan: Software Architectures. Perspectives on an
Emerging Discipline. Prentice Hall, Upper Saddle River, NJ, 1996.

[Steels, 1990] L. Steels: Components of Expertise. AI Magazine, 11(2), 1990, 29-49.
[ten Teije, 1997] A. ten Teije: Automated Configuration o f Problem Solving Methods in

Diagnosis. Ph.D. Thesis, University of Amsterdam, Amsterdam, 1997.
[ten Teije et ah, 1996] A. ten Teije, F. van Harmelen, G. Schreiber, and B. Wielinga:

Construction of Problem Solving Methods as Parametric Design. In: [KAW, 1996], 12-1 - 12-
20

[Terpstra et ah, 1993] P. Terpstra, G. van Heijst, B. Wielinga, and N. Shadbolt: Knowledge
Acquisition Support Through Generalized Directive Models. In: J.-M. David, J.-P. Krivine,
and R. Simmons (eds.): Second Generation Expert Systems, Springer, Berlin, 1993, 428-455.

