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Abstract
A library of software components should be essentially more than just a 
juxtaposition of its items. For problem-solving methods the notion of a family is 
suggested as means to cluster the items and to provide partially a structure of the 
library. This paper especially investigates how the similar control flows of the 
members of such a family can be described in one framework.
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1 Introduction

The notion of a problem-solving method (PSM) was inspired by a lot of different 
approaches (Generic Tasks [Chandrasekaran, Johnson, and Smith, 1992], Com- 
monKADS [Schreiber et al., 1994], Method-to-Task Approach [Eriksson et al., 1995], 
Components of Expertise [Steels, 1990], GDM [Terpstra et al., 1993], MIKE [Angele, 
Fensel, and Studer, 1996]). PSMs describe the reasoning behaviour of an intelligent 
agent. Though, suitable models are especially conceptual ones and “platform-indepen­
dent” by providing modeling primitives on the knowledge level ([Newell, 1982]). Up 
to now the competing modeling frameworks converged and reached consensus on the 
fundamental issues a common (“unified”) theory has to cover. [Angele et al., 1996], 
[Perkuhn, 1997] summarize the synthesis of this development, the new proposal for 
UPML ([Fensel et al., 1999]) tries to capture the result in a unified modeling language.
Reuse of PSMs promises time, cost, and quality improvement in the development pro­
cess of a knowledge-based system, inch maintenance, and a more reasonable assess­
ment of the quality of the resulting product. Mainly, investigations on the reuse of 
PSMs focus on the development of libraries ([Motta, 1997], [Breuker and van de 
Velde, 1994]) but from a reuse process point of view these are useful only to a limited 
extent. Either they offer only a collection of items with no real support of how to select 
an appropriate one. Or they attempt to cover a more generalized structure, e.g. task- 
method-decomposition trees ([Benjamins, 1993]), but are very poor in showing up the 
relations between the possible specializations. The latter approach seems more promis­
ing but evaluations have shown their deficiencies ([Orsvärn, 1996]). The main critics 
is that the designer of the library did not consider (and is not able to represent) in his 
models of how to adapt the generalized structure to a special application. The tower- 
of-adapter approach ([Fensel, 1997]) is derived from the necessity to adapt general 
models, like e.g. basic search schemes, to more specialized circumstances, e.g. special 
PSMs like propose&revise. In principle, the approach is a constructive one but up to 
now it neither offers models that contain the information of the overall structure of the 
resulting system in a communicable form - as the conceptual models do - nor offers
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construction plans of how to combine the basic templates with some adapters to come 
to a certain overall conceptual structure. Of course, adapters might improve the reus­
ability of a system like any other design pattern ([Gamma et al., 1994]) can do. But 
especially conceptual models of PSMs contain information that is closer to an architec­
tural description ([Shaw and Garlan, 1996]) of the general structure of the target sys­
tem. Nevertheless the approach is an interesting alternative rsp. completion to indexing 
the library with simple keywords or logical formulae-based pre-/post-condition anno­
tations. Actually, it is not far away from object-orientation - another view on reuse that 
claims that the inheritance hierarchy provides a reasonable structure of the reuse com­
ponents and, thus, solves a good deal of the indexing problem. But a PSM cannot be 
captured completely by the notion of an object in this sense since it e.g. contains an 
explicit specification of the control flow. [Perkuhn, 1997] suggested the concept of a 
family of PSMs that describes the overall architecture for a class of similar methods. In 
the same fashion as in object-orientation it is intended to structure a part of the library. 
Thus, only a family has to be retrieved from the library by an additional mechanism. 
Afterwards the selection of a PSM corresponds to systematic browsing through the 
family. [Perkuhn, 1997] focussed on inference structures while this paper especially 
investigates how to describe similar control flows for a range of closely related PSMs.

2 Families of PSMs

Most aspects of a PSM that can be 
represented in a specific part of the 
model (layer rsp. view) can be dis­
tinguished between elements like 
concepts or roles and steps in the 
problem solving process on the one 
hand and relations between them on 
the other hand. [Perkuhn, 1997] 
introduced colouring as a means to 
express that they are not necessarily 
parts of the model. All elements in 
the same colour form a region. A 
coloured region possibly has to be 
omitted if certain conditions are not 
fulfilled. In the example of [Per­
kuhn, 1997] (a family for assign­
ment tasks that covers generate- 
and-test, propose-and-exchange, 
and propose-and-revise) different 
regions depend on the availability 
of the knowledge for static roles 
namely propose, exchange, and 
revise. The former two are illus­
trated in figure 1. The revise region is part of the refinement of the exchange step that 
is not shown here. If one of these static roles cannot be filled, i.e. the knowledge is not 
available or cannot be acquired either, the corresponding region has to be removed 
from the model. For these cases it seems to be appropriate to colour and remove all 
related connections, too. But in other cases the resulting model has to be kept consis­
tent rsp. coherent. E.g. to restore the coherence of a taxonomy or a sequential control 
flow the gap in the model has to be bridged with the transitive closure of the adjacent 
relations (cf. figure 2) - if possible and reasonable. Colouring is a creative modeling 
act and expresses as an epistemological primitive on a cross-model level that the

Figure 1. Coloured task decomposition and
inference structure for the assignment 
family (cf. [Perkuhn, 1997])
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Figure 2. Optional connections vs. transitive closure of adjacent connections

model should still make sense in all variations with or without the regions in every 
context.
Capturing similar control flows imposes additional requirements on the modeling 
framework. The control flow specification has to prescribe which steps are performed 
in which order. If the reasoning process reaches a state where it can follow different 
succeeding paths, the control flow has to specify how to go on. In the ordinary PSM 
scenario the decision depends on boolean expressions - normally expressing an inter­
nal state during computation. Resembling the manner of procedural programming lan­
guages if- or case-statement-like expressions evaluate these boolean expressions and 
according to their truth value decide for one path. Overlaying different control flows 
introduces a new aspect that has to be distinguished from these internal states.
In the example family some variants begin with a propose step, others with a generate 
step. Some other variants use the generate step as a fallback action if for a certain vari­
able (“parameter”) no propose knowledge is applicable. Since in most cases - if pro­
pose is realized - generate is not taken into consideration at all it is not appropriate to 
put these two steps into a sequential order. Rather they should be treated as alterna­
tives. An additional mechanism is necessary to handle the fallback variant, but, actu­
ally, this distinction exactly reflects the difference of ordinary inter-process 
communication via return values and extra-ordinary exception handling. This new 
form of alternative does not depend on an internal state of the computation. It is a kind 
of non-deterministic decision point to be resolved with respect to the possible variants.
At the decision point the problem-solving process is in 
a state similar to a person that wants to get from one 
place to another one. When the person reaches a point 
where the path splits and he/she can decide how to go 
on - assuming that both paths still lead to the target 
place -, normally, the selection is not arbitrary but 
depends on some properties of the alternatives. In this 
framework these are annotated as features to the dif­
ferent paths. The next step is then determined by an 
external strategy that weighs up the different proper­
ties. In the example of the assignment family the alter­
native paths can be annotated as “founded” on the one 
hand, and “random” on the other hand. A usual default 
strategy (cf. table 1) would reflect the superiority and 
prefer the founded alternative over the random one.

Figure 3. Decision criteria
annotated as features

strategy “founded” p r e f e r  a [+ founded] p a th  o v e r  any o th e r

strategy “not random” p r e f e r  any p a th  o v e r a [+randoin] one

Table 1 - Two default strategies
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The following example illustrates how the combination of properties and internal 
states is annotated as feature-conditioned boolean expression.

start

[+foundecT [+random]

generate

[-holistic] or 
[♦holistic] | complete

All PSMs of the assignment fam­
ily can be categorized into two 
groups: those that work holisti­
cally, i.e. they first complete the 
system model (in an inner loop) 
before they test and revise it, and 
those that work incrementally, 
i.e. they already test and revise 
incomplete models (partial 
assignments) and extend them in 
an outer loop. Executing propose 
or generate once yields one value 
for one variable. So, afterwards 
the control flow has the option to 
repeat this first step or to test the 
system model built up so far.
This general property is 
expressed by the feature [-(-holis­
tic] for completing first, and [- 
holistic] for the interleaving tests.
The logical complement is used 
here to express the mutual exclu­
siveness of the two alternatives.
The path back to the beginning 
(the inner loop) is only consid­
ered if the strategy prefers “holis­
tic ways”. The path related to the test is considered if “incremental ways” are preferred 
but also at least finally in the holistic case. So, deciding for an incremental strategy has 
trivially the following effect: The loop can be ignored but the connection to test has to 
be realized as an unconditioned path. The holistic strategy still prefers both paths. But

[-»-holistic] | not complete

not success and 
[♦limited]

success and 
[-holistic] | complete w

QnQ

(not success or
[-holistic] | not complete) and
[♦random]

Figure 4. A coloured non-deterministic control flow 
for the assignment family

strategy “holistic” prefer [+holistic] over [-holistic]
strategy “incremental" prefer [-holistic] over t+holistic]

Table 2 - Two complementary strategies to be selected by the user

it is clear that the inner loop should not be repeated infinitely but only until the model 
is complete. This is what may be expressed by an ordinary boolean expression like 
“complete” or “not complete”. Thus, the feature-conditioned boolean expression has to 
be read as: Even if the strategy preferred the path due to the feature, solely the evalua­
tion of the boolean expression determines which path to follow. It is worth while to 
mention that the completeness of the model has to be checked only once - either before 
or after the test. Thus, this framework is able to cope with different strategies that 
cause different global effects on the control flow.
By introducing two modeling primitives, namely features in a somehow non-determin­
istic control flow on the one hand and strategies apart from the control flow on a 
“strategy layer” to resolve the non-determinism on the other hand the two different 
concerns what alternatives are available and which one should be selected could be 
modelled separately. Thus, a family is a parametrized representation of several PMSs 
with respect to the optional components and the strategies that can be chosen. This 
framework offers the advantage in contrast to other approaches ([ten Teije, 1997]) that
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the parameters are very closely attached to the conceptual models and, by this, can be 
exploited in a communicative situation. All parameters can be expressed in a way that 
can be understood by an expert but they are also useful for the knowledge engineer. 
After selecting a family the parameters can be checked systematically, e.g. with a 
questionnaire, to provide actual parameters for an instantiation of the generic family.

3 Conclusion and Related Work

The ambition to make reuse of knowledge (level) models more flexible is not new 
([Geldof, 1994]). In the first version KADS ([Schreiber, Wielinga, and Breuker, 
1993]) suggested a strategy layer for this purpose. But both only consider the possibil­
ity to chose between different methods with the same competence for one task. Simi­
larly GDM ([Terpstra et al., 1993]) allows the application of alternative rewrite rules 
that may cause comparable effects to the graph transformation rules in the approach 
presented here. But none of these three frameworks allows to model explicitly decision 
criteria or resolution strategies. There is no flexibility related directly to the conceptual 
models and there is no way to capture global effects on different strategies. GDM 
claims that meta knowledge helps them to cope with some of these problems. But sim­
ilar to task features ([Aamodt et al., 1993]) there is no direct relation to the respective 
part of the model so that it could be explained and justified from its context.
Other approaches focus more on strategic aspects. TASK+ ([Pierret-Golbreich and 
Talon, 1997]) tries to describe these with abstract data types; DESIRE ([Brazier et al. 
1997]) allows to specify multi agent systems. But both are only loosely coupled to the 
conceptual models in the sense presented here and they are not able to separate the 
concerns on different layers. DESIRE e.g. uses ordinary if-statements for activating 
agents, i.e. for selecting the control flow. Thus, the difference between ordinary con­
trol flow and strategic aspects is not obvious in these models.
Very close in spirit is the idea of configuring PSMs via parametric design ([ten Teije et 
al., 1996], [ten Teije, 1997]) that is investigated for diagnosis. But the suggested 
parameters are only hardly to understand as underpinned by the conceptual model. The 
major weakness of the models is the insufficient expressiveness for specifying control 
flow especially for capturing alternatives.
The work presented in this paper is the only one that combines the strict relation to the 
conceptual models with an explicit layer to capture and specify alternatives and their 
resolution.
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